The right choice for the ultimate yield!

LS ELECTRIC strives to maximize your profits in gratitude for choosing us as your partner.

Programmable Logic Control

Standalone Motion Controller

XGT Series

User's Maunal

XMC-E32A(/DC)

XMC-E16A(/DC)

XMC-E08A(/DC)

XMC-E32C(/DC)

Safety Instructions

- Read this manual carefully before installing, wiring, operating, servicing or inspecting this equipment.
- Keep this manual within easy reach for quick reference,

Before using the product ...

For your safety and effective operation, please read the safety instructions thoroughly before using the product.

- Safety Instructions should always be observed in order to prevent accident or risk with the safe and proper use the product.
- ► Instructions are divided into "Warning" and "Caution", and the meaning of the terms is as follows.

Warning

This symbol indicates the possibility of serious injury or death if some applicable instruction is violated.

Caution

This symbol indicates the possibility of severe or slight injury, and property damages if some applicable instruction is violated.

Moreover, even classified events under its caution category may develop into serious accidents relying on situations. Therefore we strongly advise users to observe all precautions properly just like warnings.

► The marks displayed on the product and in the user's manual have the following meanings.

PBe careful! Danger may be expected.

 4
 Be careful! Electric shock may occur.

► The user's manual even after read shall be kept available and accessible to any user of the product.

Safety Instructions for Design Process

- Design the analog input / output signal or pulse input / output line at least 100mm away from high voltage line or power line so that it is not affected by noise or magnetic field change. It may cause malfunction due to noise.
- If there is a lot of vibration in the installation environment, take measures to prevent direct vibration from being applied to the PLC. It may cause electric shock, fire or malfunction.
- If metallic dust is present in the installation environment, take measures to prevent metallic dust from entering the product. It may cause electric shock, fire or malfunction.

Safety Instructions on Installation Process

- ▶ Use PLC only in the environment specified in PLC manual or general standard of datasheet.

 If not, electric shock, fire, abnormal operation of the product may be caused.
- ▶ Before install or remove the module, be sure PLC power is off. If not, electric shock or damage on the product may be caused.
- Be sure that every module is securely attached after adding a module or an extension connector. If the product is installed loosely or incorrectly, abnormal operation, error or dropping may be caused. In addition, contact failures under poor cable installation will be causing malfunctions as well.
- ▶ Make sure that the I/O connector is securely fastened. It may cause wrong input or output.

Safety Instructions for Wiring Process

! Warning

Prior to wiring works, make sure that every power is turned off. If not, electric shock or damage on the product may be caused.

∴ Caution

- Check rated voltages and terminal arrangements in each product prior to its wiring process. Applying incorrect voltages other than rated voltages and misarrangement among terminals may cause fire or malfunctions.
- ▶ Secure terminal screws tightly applying with specified torque. If the screws get loose, short circuit, fire or abnormal operation may be caused. Securing screws too tightly will cause damages to the module or malfunctions, short circuit, and dropping.
- ▶ Be sure to earth to the ground using Class 3 wires for PE terminals which is exclusively used for PLC. If the terminals not grounded correctly, abnormal operation or electric shock may be caused.
- Don't let any foreign materials such as wiring waste inside the module while wiring, which may cause fire, damage on the product or abnormal operation.

Safety Instructions for Test-Operation and Maintenance

Warning

- ▶ Don't touch the terminal when powered. Electric shock or abnormal operation may occur.
- Prior to cleaning or tightening the terminal screws, let all the external power off including
 PLC power. If not, electric shock or abnormal operation may occur.

! Caution

> Do not make modifications or disassemble each module.

Fire, electric shock or abnormal operation may occur.

- Prior to installing or disassembling the module, let all the external power off including
 PLC power. If not, electric shock or abnormal operation may occur.
- Keep any wireless equipment such as walkie-talkie or cell phones at least 30cm away from PLC. If not, abnormal operation may be caused.

Safety Instructions for Waste Disposal

Product or battery waste shall be processed as industrial waste. The waste may discharge toxic materials or explode itself.

Revision History

Version	Date	Remark	Revised position	
V 1.0	2017.4	First Edition	-	
		Added 'speed unit' and 'filter time constant' in encoder parameter	5-12, 18	
		Added LS_ReadCamTableMasterPos function block	6-141~142	
V 1.1	2017.11	Added G-Code of 'G21'	9-12, 26	
		Added Acceleration/Constant speed/Deceleration Operation flags	Appendix 1-6	
		Added appendix chapter of 'Using EtherCAT slaves from other companies'	Appendix 6	
		Setting range of encoder position filter constant is corrected	5-12~13, 7-24	
		Added LS_OnOffCam function block	6-143~145	
		Added LS_RotaryKnifeCamGen function block	6-146~148	
V1.2	2018.6	Added LS_CrossSealCamGen function block	6-149~151	
		Revised TransitionMode about LS_MoveLinearTimeAbsolute and LS_MoveLinearTimeRelative	6-160, 6-162	
		Added error code (0x1124, 0x1170~0x1179)	A 2-14, A2-16	
V1.3	2018.12	Added XMC-E32C function block	Ch15, A7	
		Added XMC-E16A and XMC-E08A function blocks	Ch2, Ch6, Ch13	
V1.4		Added wiring specifications	Chapter 3	
			Set up Ethercat Network/Added Flags	Chapter 4
		Set up NC Spindles, Encoder Latch, Added Position Control Range Expansion	Chapter 5	
	4 2019.5	Added LS_OnOffCamEx, NC_RetraceMove, NC_BlockSkip, NC_DryRun, NC_ToolMode, NC_ReadToolMode, NC_MirrorImage, NC_SpindleControl, NC_BlockOptionalSkip, NC_ManualToolComp, NC_ChgSpindleGear, FILE_OPEN, FILE_CLOSE, FILE_WRITE, FILE_READ, FILE_SEEK	Chapter 6	
		Added Parameters	Chapter 7	
		Added NC Control Expansion Function	Chapter 9	
		Added Built-in Cnet Function	Chapter 15	
		Added Flags according to NC Control Expansion Function	Appendix 1	
		Added Error Information according to Cnet, NC Control Expansion Function	Appendix 2	
		Added the Explanation of Cnet Communications Code Words	Appendix 7	
		Added EtherCAT Diagnostic Function	Appendix 8	
V1.5	2020.7	Format and contents modification according to the change of company name(LSIS → LS ELECTRIC)	-	

Thank you for purchasing PLC of LS ELECTRIC Co., Ltd.

Before use, make sure to carefully read and understand the User's Manual about the functions, performances, installation and programming of the product you purchased in order for correct use and importantly, let the end user and maintenance administrator to be provided with the User's Manual.

The User's Manual describes the product. If necessary, you may refer to the following description and order accordingly. In addition, you may connect our website (http://www.lselectric.co.kr/) and download the information as a PDF file. Relevant User's Manuals

Title	Description
XG5000 User's Manual	XG5000 software user manual describing online function such as programming, print,
(for XGK, XGB)	monitoring, debugging by using XGK, XGB CPU.
XG5000 User's Manual	XG5000 software user manual describing online function such as programming, print,
(for XGI, XGR)	monitoring, debugging by using XGI, XGR CPU.
XGK/XGB Instructions &	User's manual for programming to explain how to use instructions that are used PLC
Programming User's Manual	system with XGK, XGB CPU.
XGI/XGR/XEC Instructions &	User's manual for programming to explain how to use instructions that are used PLC
Programming User's Manual	system with XGI, XGR, XEC CPU.
XGK CPU User's Manual (XGK-CPUA/E/H/S/U)	XGK-CPUA/CPUE/CPUH/CPUS/CPUU user manual describing about XGK CPU module, power module, base, IO module, specification of extension cable and system configuration, EMC standard.
XGI CPU User's Manual (XGI-CPUU/CPUH/CPUS)	XGI-CPUU/CPUH/CPUS user manual describing about XGI CPU module, power module, base, IO module, specification of extension cable and system configuration, EMC standard.
XGR Redundant Series User's Manual	XGR- CPUH/F, CPUH/T user manual describing about XGR CPU module, power module, extension drive, base, IO module, specification of extension cable and system configuration, EMC standard.
XG-PM User's Manual	XG-PM software user manual describing online function such as motion programing, monitoring, debugging by using Positioning Module.

The User's Manual is based on XMC-E32A.

- 1) The differences according to product name and figure, please check the chapter of specifications, function blocks, analog and serial interfaces.
- 2) This manual is based on the following versions.

XMC-E32A	XMC-E16A	XMC-E08A	XMC-E32C	XG5000
V1.40	V1.40	V1.40	V1.40	V4.28

Chapter 1	Overview	1-1~1-10
1.1 Cha	aracteristics	1 - 1
1.2 Sign	nal Flow of Motion Controller	1-3
1.3 Fun	ction Overview of Motion Controller	1 - 4
1.3.1	Positioning Control	1 - 4
1.3.2	Interpolation Control	1-5
1.3.3	Speed Control	1-9
1.3.4	Torque Control	1 - 10
Chapter 2	Specification	2-1~2-17
2.1 Gen	neral Specification	2-1
2.2 Pow	ver Specification	2-2
2.3 Perf	formance Specification	2-3
2.3.1	Function Specification	2-3
2.3.2	Communication Specification	2-6
2.3.3	Internal Input/ Output Specification	2-7
2.3.4	Encoder Input Specification	2-9
2.3.5	Specification of Cnet Cable	2-10
2.4 The	Name of Each Part	2-11
2.4.1	The Name of Each Part	2-11
2.4.2	Specification of Interface with External Device	2-14
Chapter 3	Operation Order and Installation	3-1~3-40
3.1 Ope	eration Order	3-1
3.2 Insta	allation	3-2
3.2.1	Safety Precautions	3-2
3.2.2	Installation Environment	3-4
3.2.3	Notice in Handling	3 - 4
3.2.4	Attachment/Detachment of Motion Controller	3-5

3.3 No	tices in Wiring	3 - 10
3.3.1	Notices in Wiring	3 - 10
3.3.2	Power Wiring	3 - 11
3.3.3	I/O Device Wiring	3 - 12
3.3.4	Grounding(LG) Wiring	3 - 13
3.3.5	Specifications of Wiring Cable	3 - 14
3.3.6	Connection Example of Servo Drive	3 - 15
3.3.7	Encoder Input (DC 5V Voltage Output) Wiring Example	3 - 19
3.3.8	Encoder Input (DC 5V Line Driver Output) Wiring Example	3 - 20
3.3.9	External Input Signal Wiring Example	3 - 21
3.3.10	External Output Signal Wiring Example	3 - 21
3.4 EM	IC	3 - 22
3.4.1	EMC Standard	3 - 22
3.5 Fai	l Safe	3 - 26
3.5.1	Fail Safe Circuit	3 - 26
3.6 Ma	intenance	3 - 28
3.6.1	Maintenance and Inspection	3 - 28
3.6.2	Daily Inspection	3 - 28
3.6.3	Periodic Inspection	. 3 - 29
3.7 Tro	ubleshooting	3 - 30
3.7.1	Basic Procedure of Troubleshooting	3 - 30
3.7.2	Troubleshooting	3 - 30
3.7.3	Troubleshooting Questionnaire	3 - 36
3.7.4	Troubleshooting Example	3 - 37
3.7.5	Output Circuit and Corrective Actions	3 - 38
Chapter 4	Motion Control Operation4-	1~4-22
4.1 Str	ucture of Motion Controller	4 - 1
4.2 Co	nfiguration of Motion Control	4-2
4.3 Mo	tion Control Tasks	4-3
4.3.1	Types of Tasks	4-3
4.3.2	Task Operation	4-4
4.3.3	Execution of Motion Commands	4-7

4.4 Etr	nerCAT Communication	4-8
4.4.1	What is EtherCAT	4-8
4.4.2	COE(CANopen over EtherCAT)	4-8
4.4.3	EtherCAT State Machine	4-9
4.4.4	EtherCAT Process Data Objective(PDO)	4 - 10
4.4.5	Specification of Motion Controller EtherCAT Communication	4 – 11
4.4.6	EtherCAT Network Connection	4 – 11
4.4.7	EtherCAT Network Setting	4 – 13
4.4.8	CiA 402 Operation Mode Supported	4 – 15
4.4.9	EtherCAT Master Setting	4 – 16
4.4.10	EtherCAT Slave Setting	4 – 17
4.4.11	EtherCAT Error Information Flags	4 – 18
4.4.12	EtherCAT Master Status Diagnosis Flag	4 – 19
4.4.13	EtherCAT Slave Status Diagnosis Flag	4 – 19
4.4.14	Using the Third Party EtherCAT Slave	4-20
4.5 Mc	otion Control Program	4 - 21
4.5.1	Program Execution	4 - 21
4.5.2	Operation Modes	4 - 21
Chapter 5	5 Memory and Parameter 5-	1~5-48
5.1 Me	emory	5 - 1
5.1.1	Program and Data Memory	5 - 1
5.1.2	Device	5 - 2
5.1.3	Parameter	5 - 9
Chapter 6	6-1 Motion Function Block	~6-238
6.1 Co	mmon Elements of Motion Function Blocks	6-1
6.1.1	The State of Axis	6-1
6.1.2	The state of Group	6-3
6.1.3	Basic I/O Variable	6-4
6.1.4	BufferMode Input	6-7
6.1.5	Changes in Parameters during Execution of Motion Function Block	6-7
6.1.6	Group Operation Route Change Settings	6-8

	6.1.7	Motion Function Block Errors	6 - 11
6	.2 Mo	tion Function Block	6-12
	6.2.1 5	Setting Range by Product	6 - 16
6	.3 Sin	gle-Axis Motion Function Blocks	6 - 17
	6.3.1	Servo On/Off (MC_Power)	6 - 17
	6.3.2	Perform the search home (MC_Home)	6 - 18
	6.3.3	Stop immediately (MC_STOP)	6 - 20
	6.3.4	Stop (MC_Halt)	6-21
	6.3.5	Absolute positioning operation (MC_MoveAbsolute)	6-22
	6.3.6	Relative positioning operation (MC_MoveRelative)	6 - 25
	6.3.7	Additive positioning operation (MC_MoveAdditive)	6 - 28
	6.3.8	Specified velocity operation (MC_MoveVelocity)	6 - 32
	6.3.9	Absolute position operation ending with specified velocity operation	
		(MC_MoveContinuousAbsolute)	6 - 35
	6.3.10	Relative position operation ending with specified velocity operation	
		(MC_MoveContinuousRelative)	6 - 39
	6.3.11	Torque control (MC_TorqueControl)	6 - 42
	6.3.12	Setting the current position (MC_SetPosition)	6 - 44
	6.3.13	Velocity/Acceleration override (MC_SetOverride)	6 - 46
	6.3.14	Read Parameter (MC_ReadParameter)	6 - 48
	6.3.15	Write Parameter (MC_WriteParameter)	6 - 52
	6.3.16	Reset axis error (MC_Reset)	6 - 56
	6.3.17	Touch probe (MC_TouchProbe)	6 - 57
	6.3.18	Abort trigger events (MC_AbortTrigger)	6 - 61
	6.3.19	SuperImposed operation (MC_MoveSuperImposed)	6 - 62
	6.3.20	SuperImposed operation halt (MC_HaltSuperImposed)	6 - 63
6	.4 Mu	Iti-Axis Motion Function Blocks	6 - 64
	6.4.1	Camming run (MC_CamIn)	6 - 64
	6.4.2	Camming stop (MC_CamOut)	6 - 71
	6.4.3	Electrical gearing run (MC_GearIn)	6 - 74
	6.4.4	Electrical gearing disengage (MC_GearOut)	6 - 77
	6.4.5	Electrical gearing by specifying the position (MC_GearInPos)	6 - 79
	6.4.6	Phase compensation (MC_Phasing)	6 - 84
6	.5 Gro	pup Motion Function Blocks	6 - 86

	6.5.1	Adds one axis to the group (MC_AddAxisToGroup)	. 6-86
	6.5.2	Removes one axis from the group (MC_RemoveAxisFromGroup)	. 6-87
	6.5.3	Removes all axes from the group (MC_UngroupAllAxes)	. 6-88
	6.5.4	Changes the state for group from GroupDisable to GroupEnable (MC_GroupEnable)	. 6-89
	6.5.5	Changes the state for group from GroupEnable to GroupDisable (MC_GroupDisable)	. 6-90
	6.5.6	Performs the search home of all axes in the group (MC_GroupHome)	. 6-91
	6.5.7	Sets the position of all axes in the group without moving (MC_GroupSetPosition)	. 6-92
	6.5.8	Stop the group immediately (MC_GroupStop)	. 6-94
	6.5.9	Stop the group (MC_GroupHalt)	. 6-95
	6.5.10	Reset the group error (MC_GroupReset)	. 6-96
	6.5.11	Absolute positioning linear interpolation operation (MC_MoveLinearAbsolute)	. 6-97
	6.5.12	Relative positioning linear interpolation operation (MC_MoveLinearRelative)	6 - 101
	6.5.13	Absolute positioning circular interpolation operation (MC_MoveCircularAbsolute)	6 - 105
	6.5.14	Relative positioning circular interpolation operation (MC_MoveCircularRelative)	6 - 110
6	.6 Exc	lusive Function Blocks	6 - 115
	6.6.1	Connect servo drives (LS_Connect)	6 - 115
	6.6.2	Disconnect servo drives (LS_Disconnect)	6 - 116
	6.6.3	Read SDO (LS_ReadSDO)	6 - 117
	6.6.4	Write SDO (LS_SDO)	6 - 118
	6.6.5	Save SDO (LS_SaveSDO)	6 - 119
	6.6.6	Encoder preset (LS_EncoderPreset)	6 - 120
	6.6.7	JOG operation (LS_Jog)	6 - 121
	6.6.8	Read Cam data (LS_ReadCamData)	6 - 123
	6.6.9	Write Cam data (LS_WriteCamData)	6 - 124
	6.6.10	Read ESC (LS_ReadEsc)	6 - 126
	6.6.11	Write ESC (LS_WriteEsc)	6 - 128
	6.6.12	Skip Cam (LS_CamSkip)	6 - 130
	6.6.13	Variable Cam operation (LS_VarCamIn)	6 - 131
	6.6.14	Variable gear operation (LS_VarGearIn)	6 - 133
	6.6.15	Variable positioning gear operation (LS_VarGearInPos)	6 - 135
	6.6.16	Read the slave location of the CAM table (LS_ReadCamTableSlavePos)	6 - 137
	6.6.17	Write inverter speed (LS_InverterWriteVel)	6 - 138
	6.6.18	Read inverter speed (LS_InverterReadVel)	6 - 139
	6.6.19	Write inverter control word (LS_InverterControl)	6 - 140

	6.6.20	Read inverter status 1 (LS_InverterStatus1)	6 - 143
	6.6.21	Read inverter status 2 (LS_InverterStatus2)	6 - 144
	6.6.22	Speed control operation (CSV mode) (LS_SyncMoveVelocity)	6 – 145
	6.6.23	Read CAM table master position (LS_ReadCamTableMasterPos)	6 – 146
	6.6.24	OnOff CAM Operation (LS_OnOffCam)	6 – 148
	6.6.25	RotaryKnife cam profile generation (LS_RotaryKnifeCamGen)	6 – 151
	6.6.26	Cross sealer cam profile generation (LS_CrossSealCamGen)	6 – 154
	6.6.27	Expand OnOff CAM Operation (LS_OnOffCamEx)	6 – 157
6.	.7 Co	ordinate System Operation Function Block	6 - 162
	6.7.1	Machine information setting (MC_SetKinTransform)	6 - 162
	6.7.2	PCS setting (MC_SetCartesianTransform)	6 - 165
	6.7.3	Work space setting (LS_SetWorkspaceTransform)	6 - 167
	6.7.4	Time-linear interpolation operation for absolute position of coordinate system	
		(LS_MoveLinearTimeAbsolute)	6 - 170
	6.7.5	Time-linear interpolation operation for relative position of coordinate system	
		(LS_MoveLinearTimeRelative)	6 - 172
	6.7.6	Circular interpolation operation for absolute position of coordinate system	
		(MC_MoveCircularAbsolute2D)	6 - 174
	6.7.7	Circular interpolation operation for relative position of coordinate system	
		(MC_MoveCircularRelative2D)	6 - 178
	6.7.8	Synchronization setting of conveyor belt (MC_TrackConveyorBelt)	6 - 182
	6.7.9	Synchronization setting of the rotary table (MC_TrackRotaryTable)	6 - 184
	6.7.10	JOG operation of the coordinate system (MC_RobotJog)	6 - 185
	6.7.11	Set path operation data (MC_SetMovePath)	6 - 187
	6.7.12	Delete path operation data (MC_RestMovePath)	6 - 189
	6.7.13	Read path operation data (MC_GetMovePath)	6 - 190
	6.7.14	Perform path operation (MC_RunMovePath)	6 - 192
6.	.8 NC	Control Function Block	6 - 194
	6.8.1	Specify NC program (NC_LoadProgram)	6 - 194
	6.8.2	Specify block operation (NC_BlockControl)	6 - 195
	6.8.3	Reset (NC_Reset)	6 - 196
		F (NO F)	6 100
	6.8.4	Emergency stop (NC_Emergency)	0 - 190
	6.8.4	Start automatic operation (NC_CycleStart)	

6	5.8.7	Homing (NC_Home)	6 - 201
6	8.8.6	Rapid traverse override (NC_RapidTraverseOverride)	6 - 202
6	6.8.9	Cutting feed override (NC_CuttingFeedOverride)	6 - 203
6	5.8.10	Spindle override (NC_SpindleOverride)	6 - 204
6	5.8.11	M Code operation completed (NC_McodeComplete)	6 - 205
6	5.8.12	S Code operation completed (NC_ScodeComplete)	6 - 206
6	5.8.13	T Code operation completed (NC_TcodeComplete)	6 - 207
6	6.8.14	Read NC parameters (NC_ReadParameter)	6 - 208
6	6.8.15	Write NC parameters (NC_WriteParameter)	6-218
6	5.8.16	Reverse Operation (NC_RetraceMove)	6-219
6	5.8.17	Block skip (NC_BlockSkip)	6-220
6	5.8.18	Dry Run (NC_DryRun)	6-221
6	5.8.19	Tool Retract/Recover Operation (NC_ToolMode)	6-222
6	6.8.20	Read Tool Retract/Recover Modes (NC_ReadToolMode)	6-223
6	5.8.21	Mirror Image (NC_MirrorImage)	6-224
6	5.8.22	Spindle Operation Control (NC_SpindleControl)	6-225
6	5.8.23	NC optional block skip(NC_BlockOptionalSkip)	6-226
6	5.8.24	Manual Measurement of Compensation Amount (NC_ManualToolComp)	6-227
6	6.8.25	NC spindle gear change(NC_ChgSpindleGear)	6-228
6.9	File	command	6-230
6	5.9.1	Open Files in SD Memory Card (FILE_OPEN)	6-230
6	5.9.2	Open Files in SD Memory Cards (FILE_CLOSE)	6-232
6	5.9.3	Open Files in SD Memory Cards (FILE_WRITE)	6-233
6	5.9.4	Open Files in SD Memory Cards (FILE_READ)	6-235
6	6.9.5	Seek the Position to Access in SD Memory Card (FILE_SEEK)	6-237
Cha	pter 7	Program	7-1~7-46
7.1	Pro	gram Configuration	7-1
7	7.1.1	Program Configuration	7-1
7	7.1.2	How to Set the Program	7-2
7	7.1.3	Run Time of the Program	7-4
7.2	Sta	tus Information Reading	7-6
7.3	Disc	crete Motion Program	7-7

7.3.1	Preparation for Operation	7-7
7.3.2	Homing Operation	7-8
7.3.3	Absolute Position/Relative Position Operation	7 - 10
7.3.4	Speed/Torque Control Operation	7 - 13
7.3.5	Axis Stop	7 - 16
7.3.6	Error Processing	7 - 18
7.3.7	Change in Operation	7 - 20
7.3.8	Parameter Write/Read	7 - 22
7.4 Mu	ılti-Axis Operation Program	7 - 29
7.4.1	Linear Interpolation Operation	7 - 29
7.4.2	Circular Interpolation Operation	7 - 31
7.4.3	Synchronous Operation	7 - 33
7.4.4	CAM Operation	7 - 36
7.4.5	Axis Group Processing	7 - 38
7.4.6	Operation Example of Axis Group	7 - 40
7.5 I/O	Processing Program	7 - 46
7.5.1	Input Signal Processing	7 - 46
7.0.1	mpar eigran recessing	_
	Output Signal Processing	
7.5.2		7 - 46
7.5.2 Chapter 8	Output Signal Processing	7 - 46 I~8-120
7.5.2 Chapter 8 8.1 Ori	Output Signal Processing	7 - 46 I~8-120 8 - 1
7.5.2 Chapter 8 8.1 Ori 8.1.1	Output Signal Processing	7 - 46 I~8-120 8 - 1 8 - 1
7.5.2 Chapter 8 8.1 Ori 8.1.1 8.1.2	Output Signal Processing. 8 Motion Control Function	7 - 46 I~8-120 8 - 1 8 - 1
7.5.2 Chapter 8 8.1 Ori 8.1.1 8.1.2	Output Signal Processing. 8 Motion Control Function	7 - 46 1~8-120 8 - 1 8 - 1 8 - 2 8 - 9
7.5.2 Chapter 8 8.1 Ori 8.1.1 8.1.2 8.2 Typ	Output Signal Processing. 8 Motion Control Function	7-46 1~8-120 8-1 8-1 8-2 8-9
7.5.2 Chapter 8 8.1 Ori 8.1.1 8.1.2 8.2 Typ 8.2.1	Output Signal Processing	7-46 1~8-120 8-1 8-2 8-9 8-9
7.5.2 Chapter 8 8.1 Ori 8.1.1 8.1.2 8.2 Typ 8.2.1 8.2.2	Output Signal Processing	7-46 I~8-120 8-1 8-2 8-9 8-9 8-14 8-16
7.5.2 Chapter 8 8.1 Ori 8.1.1 8.1.2 8.2 Typ 8.2.1 8.2.2 8.2.3	Output Signal Processing	7-46 I~8-120 8-1 8-2 8-9 8-9 8-14 8-16 8-18
7.5.2 Chapter 8 8.1 Ori 8.1.1 8.1.2 8.2 Typ 8.2.1 8.2.2 8.2.3 8.2.4	Output Signal Processing	7-46 I~8-120 8-1 8-2 8-9 8-9 8-14 8-16 8-18 8-20
7.5.2 Chapter 8 8.1 Ori 8.1.1 8.1.2 8.2 Typ 8.2.1 8.2.2 8.2.3 8.2.4 8.2.5	Output Signal Processing	7-46 I~8-120 8-1 8-2 8-9 8-14 8-16 8-18 8-20 8-22
7.5.2 Chapter 8 8.1 Ori 8.1.1 8.1.2 8.2 Typ 8.2.1 8.2.2 8.2.3 8.2.4 8.2.5 8.2.6	Output Signal Processing	7-46 I~8-120 8-1 8-2 8-9 8-14 8-16 8-18 8-20 8-22 8-24
7.5.2 Chapter 8 8.1 Ori 8.1.1 8.1.2 8.2 Typ 8.2.1 8.2.2 8.2.3 8.2.4 8.2.5 8.2.6 8.2.7	Output Signal Processing	7-46 I~8-120 8-1 8-1 8-9 8-9 8-14 8-16 8-18 8-20 8-22 8-24 8-29

8.2.10	Axis Group Control Buffer Mode and Transition Mode	8 - 40
8.2.11	Synchronous Control	8-42
8.2.12	Manual Control	8-57
8.2.13	SuperImposed Operation	8-59
8.2.14	Phase Correction Control	8-61
8.3 Oth	ner Functions	8-63
8.3.1	Functions to Change Control	8 - 63
8.3.2	Auxiliary Function of Control	8 - 70
8.3.3	Data Management Function	8 - 75
8.3.4	EtherCAT Communication Diagnosis Function	8 - 80
8.3.5	Cable Duplication Function	8 - 85
8.3.6	Replace Function during Connection	8-86
8.3.7	Encoder Position Latch Function	8-87
8.3.8	Position Control Range Expansion	8-88
8.4 Co	ordinate System Operation Function	8-90
8.4.1	Summary of the Coordinate Systems Operation	8-90
8.4.2	ACS/MCS/PCS/TCP	8 - 90
8.4.3	PCS Setting	8-91
8.4.4	Machine Information Setting	8-92
8.4.5	Work Space Setting	8 - 97
8.4.6	Time Linear Interpolation Operation for Absolute Position of Coordinate System	8 - 99
8.4.7	Circular Interpolation Operation for Coordinate System	8 - 102
8.4.8	Synchronized Operation for Conveyor Belt	8 - 110
8.4.9	Synchronized Operation for Rotary Table	8 - 113
8.4.10	Path-Operation Function for Coordinate System	8 - 116
8.5 Fol	E(File Access over EtherCAT) Function	8 - 118
8.5.1	Overview of FoE Function	8 - 118
8.5.2	FoE Download	8 - 118
_		
Chapter 9	9 NC Control Function	1~9-142
9.1 NC	Command	9 - 1
9.1.1	Definition of the NC Command	9 - 1
9.1.2	Definition of the Command Character	9 - 1

9.1.3	Coordinate System	9-3
9.1.4	How to Accelerate/Decelerate Interpolation Operation	9-5
9.2 Co	onfiguration of the Program	9 - 10
9.2.1	NC Program	9 - 10
9.2.2	Configuration of the NC Program	9 - 10
9.2.3	Data	9 - 13
9.3 NC	Command	9 - 15
9.3.1	Basic Format of the NC Position Command	9 - 15
9.3.2	List of the NC Commands	9 - 17
9.3.3	Description of the NC Command	9 - 21
9.4 NC	C Parameter	9-103
9.5 Sp	indle Function	9-115
9.5.1	Spindle Device	9 - 115
9.5.2	How to Operate the Spindle Axis	9 - 120
9.5.3	Spindle-related Parameters	9 - 125
9.5.4	Spindle Operation Function	9 - 128
0.5.5	October 19 October 2014	
9.5.5	Spindle Operation State	9 – 138
9.5.6		
9.5.6		9-140
9.5.6 Chapter	Spindle-related Commands	9 – 140 10-1~10-45
9.5.6 Chapter 2	Spindle-related Commands	9 – 140 10-1~10-45 10 - 1
9.5.6 Chapter 7 10.1 Ta 10.1.1	Spindle-related Commands 10 CPU Function ask Design	9 – 140 10-1~10-45 10 - 1 10 - 1
9.5.6 Chapter 7 10.1 Ta 10.1.1	Spindle-related Commands 10 CPU Function Cask Design Task Overview Task Specification	9 – 140 10-1~10-45 10 - 1 10 - 2
9.5.6 Chapter 10.1 Ta 10.1.1 10.1.2	Spindle-related Commands 10 CPU Function Task Design Task Overview Task Specification Basic Operation of Task	9 – 140 10-1~10-45 10 - 1 10 - 2 10 - 2
9.5.6 Chapter 10.1 Ta 10.1.1 10.1.2 10.1.3	Spindle-related Commands 10 CPU Function Task Design Task Overview Task Specification Basic Operation of Task Examples of Task Execution Sequence	9 – 140 10-1~10-45 10 - 1 10 - 2 10 - 2 10 - 5
9.5.6 Chapter 10.1.1 10.1.2 10.1.3 10.1.4	Spindle-related Commands 10 CPU Function Task Design Task Overview Task Specification Basic Operation of Task Examples of Task Execution Sequence Program Occupancy Rate Operation	9 – 140 10-1~10-45 10 - 1 10 - 2 10 - 2 10 - 5 10 - 6
9.5.6 Chapter 10.1.1 10.1.2 10.1.3 10.1.4 10.1.6	Spindle-related Commands 10 CPU Function ask Design Task Overview 2 Task Specification 3 Basic Operation of Task Examples of Task Execution Sequence 6 Program Occupancy Rate Operation 7 Task Setting Items	9 – 140 10-1~10-45 10 - 1 10 - 2 10 - 2 10 - 5 10 - 6 10 - 9
9.5.6 Chapter 10.1.1 10.1.2 10.1.3 10.1.4 10.1.6 10.1.7 10.1.8	Spindle-related Commands 10 CPU Function ask Design Task Overview 2 Task Specification 3 Basic Operation of Task Examples of Task Execution Sequence 5 Program Occupancy Rate Operation 7 Task Setting Items	9 – 140 10-1~10-45 10 - 1 10 - 2 10 - 2 10 - 6 10 - 9 10 - 10
9.5.6 Chapter 7 10.1 Ta 10.1.1 10.1.2 10.1.3 10.1.4 10.1.6 10.1.7 10.1.8 10.1.9	Spindle-related Commands 10 CPU Function Task Design Task Overview Task Specification Basic Operation of Task Examples of Task Execution Sequence Program Occupancy Rate Operation Task Setting Items Methods on How to Use Variables between Tasks	9 – 140 10-1~10-45 10 - 1 10 - 2 10 - 5 10 - 6 10 - 9 10 - 10 10 - 11
9.5.6 Chapter 10.1 Ta 10.1.1 10.1.2 10.1.3 10.1.4 10.1.6 10.1.7 10.1.8 10.1.9 10.1.1	Spindle-related Commands 10 CPU Function ask Design Task Overview Task Specification Basic Operation of Task Examples of Task Execution Sequence Program Occupancy Rate Operation Task Setting Items Methods on How to Use Variables between Tasks Task Flags	9 – 140 10-1~10-45 10 - 1 10 - 2 10 - 5 10 - 6 10 - 9 10 - 10 10 - 11 10 - 12
9.5.6 Chapter 10.1 Ta 10.1.1 10.1.2 10.1.3 10.1.4 10.1.6 10.1.7 10.1.8 10.1.9 10.1.1	Spindle-related Commands 10 CPU Function ask Design 1 Task Overview 2 Task Specification 3 Basic Operation of Task 4 Examples of Task Execution Sequence 5 Program Occupancy Rate Operation 7 Task Setting Items 8 Methods on How to Use Variables between Tasks 9 Task Flags 10 Task-Related Warning/Error Parameter Setting	9 – 140 10-1~10-45 10 - 1 10 - 2 10 - 5 10 - 6 10 - 10 10 - 11 10 - 12 10 - 14

10.3 Self-Diagnosis Function	10 - 18
10.3.1 Main Task/Periodic Task Cycle Error	10 - 18
10.3.3 Error History Storage Function	10 - 19
10.3.4 Failure Management	10 - 20
10.3.5 Failure Diagnosis Function for the External Device	10 - 23
10.3.6 Instantaneous Power Failure Protection Function	10 - 24
10.4 RTC Function	10 - 25
10.4.1 How to Use the RTC	10 - 25
10.5 Remote Function	10 - 29
10.6 I/O Forced On/Off Functions	10 - 30
10.6.1 Forced I/O Setting Method	10 - 30
10.6.2 Time to Process the Forced I/O On/Off and Processing Method	10 - 31
10.7 Function Saving the Operation History	10 - 32
10.7.1 Error History	10 - 32
10.7.2 Mode Conversion History	10 - 32
10.7.3 Power Down History	10 - 32
10.7.4 System History	10 - 32
10.7.5 Motion Error History	10 - 32
10.8 Program Modification during Operation(Modification during RUN)	10 - 33
10.8.1 Modification Procedures during RUN	10 - 33
10.9 Read I/O Information	10 - 36
10.10 Monitoring Functions	10 - 37
10.11 Function to Delete All of the Motion Controller	10 - 40
10.12 Built-in Input/Output Function	10 - 41
10.12.1 Input Filter Function	10 – 41
10.12.2 Emergency Output Function	10 - 43
10.13 Reading of Serial Number Information	10 - 44
Chapter 11 Datalog Function	. 11-1~11-103
11.1 Overview	11 - 1
11.1.1 Features	11 - 1
11.1.2 Part Names	11 - 2
11.1.3 Operation Sequence	11 -3

11.1	.4 Control Signal Flow	. 11-4
11.2	Performance Specifications	. 11-5
11.3	Specification Functions	. 11-6
11.3	3.1 Data Type and Device	. 11-6
11.3	3.2 Data Save Method	11 - 10
11.3	3.3 Data Sampling Condition	11 - 11
11.3	3.4 Save Folder Structure	11 - 22
11.3	3.5 CSV File Format	11 - 23
11.3	3.6 How to Save CSV	11 - 26
11.3	3.7 Buffer Memory	11 - 27
11.3	3.8 Data Omission	11 - 28
11.3	3.9 Files Backup Cycle	11 - 29
11.4	Regular Save	11 - 30
11.4	l.1 Save Method	11 - 30
11.4	1.2 Save at Designated Interval	11 - 33
11.4	1.3 Save at Designated Time	11 - 37
11.5	Trigger Save	11 - 40
11.5	5.1 Trigger Condition	11 - 41
11.5	5.2 Trigger Sample Block Calculation	11 - 49
11.5	5.3 Trigger Sample Calculation	11 - 50
11.5	5.4 Trigger Sample Save Cycle	11 - 50
11.5	5.6 Setting Method	11 - 51
11.6	Event Save	11 - 62
11.6	S.1 Event Condition	11 - 63
11.6	6.2 Setting Method	11 - 77
11.7	Additional Functions	11 - 88
11.7	7.1 File Save History Setting	11 - 88
11.7	7.2 Formatting Function	11 - 89
11.7	7.3 Diagnosis Function	11 - 92
11.8	CSV File Structure	11 - 93
11.8	3.1 File Save Format	11 - 93
11.8	3.2 File Name and Save Sequence	11 - 93
11.9	SD Memory Card	11 - 94
11.9	9.1 SD Memory Specifications	11 - 94

11.9.2 Caution	11 - 94
11.9.3 Micro SD Memory Usage Capacity	11 - 95
11.10 Flag List	11 - 96
11.10.1 Common Flag	11 - 96
11.10.2 Group Specific Flag	11 - 98
11.10.3 Error Code and Solution	11 - 99
11.11 Datalog Performance	11 - 100
11.11.1 Data Processing Time	11 - 100
11.11.2 Save Performance by Main Task Interval	11 - 100
11.11.3 Save Process Time Verification	11–102
Chapter 12 SD Addition Function	12-1~12-13
12.1 Overview	12 - 1
12.1.1 Characteristics	12 - 1
12.1.2 Export to the SD Card	12-2
12.1.3 Import from the SD Card	12 - 5
12.1.4 PLC Update Function	12 - 5
12.1.5 PLC Backup Function	12-7
12.1.6 Comparison with the PLC	12 - 8
12.1.7 PLC Boot Operation	12 - 10
12.1.8 Automatic Logging Function	12 - 12
12.1.9 Error Codes and Countermeasures	12 - 13
Chapter 13 Built-in Analog Function	13-1~13-52
13.1 Overview	13 - 1
13.2 Name of Analog Part and Functions	13 - 4
13.3 Characteristic of I/O Control	13-5
13.3.1 Input Characteristic	13-5
13.3.2 Output Characteristic	13-7
13.4 Accuracy	13-9
13.4.1 Input Accuracy	13-9
13.4.2 Output Accuracy	13 - 10
13.5 Built-in Analog functions	13 - 11

13.5.1	Sampling Processing	13 - 11
13.5.2	Filter Processing	13 - 12
13.5.3	Average Processing	13 - 13
13.5.4	Detection Alarm (Input Disconnection)	13 – 15
13.5.5	Hold Last Value Function	13 - 16
13.5.6	Alarm Function	13 - 17
13.5.7	Setting Function of Channel Output Status	13 - 17
13.5.8	Interpolation Method Setting	13 - 18
13.6 Wii	ing	13 - 21
13.6.1	Example for Wiring Analog Input	13 - 21
13.6.2	Example for Wiring Analog Output	13 - 24
13.7 Op	eration Parameter Setting	13 - 25
13.8 Sp	ecial Module Monitoring Functions	13 - 27
13.9 Au	omatic Register U Devices	13 - 32
13.10 C	onfiguration and Function of Internal Memory	13 - 37
13.10.1	I/O Area of Built-in Analog Data	13 - 37
13.11 E	xample Program	13 - 48
13.12 Tı	roubleshooting	13 - 50
13.12.1	LED Indication by Errors	13 - 50
13.12.2	Check the Built-in Analog Module	13 - 50
13.12.3	Troubleshooting	13 - 51
Chapter 14	Local Ethernet Function	1~14-32
	cal Ethernet Function	
14.1.1	Local Ethernet Parameter Settings	. 14-1
14.1.2	Local Ethernet Connection with XG5000	. 14 - 4
14.1.3	Local Ethernet Connection with XGT Server	. 14-5
14.1.4	Local Ethernet Connection with TCP/IP Server	. 14-5
14.1.5	Local Ethernet Diagnosis Information Function	. 14-7
14.2 FT	P Server Functions	. 14-9
14.2.1	Outline	. 14-9
14.2.2	Support Functions	. 14-9
14.2.3	Setting FTP Server Parameters	14 - 10

14.2.4	How to Access to the FTP Server	14 - 12
14.2.5	Firewall Setting	14 - 21
14.2.6	Speed up of FTP	14 - 24
14.3 SN	TP Client Functions	14 - 26
14.3.1	Outline of the Time Synchronization Protocol	14 - 26
14.3.2	SNTP Parameter Setting	14 - 26
14.3.3	How to Setup a Local NTP Server	14 – 28
Chapter 1	5 Built-in Cnet Communications	~15-167
15.1 Ov	erview	. 15-1
15.1.1	Characteristics	. 15-1
15.2 Sp	ecification	. 15-2
15.2.1	Advance Preparation	. 15-2
15.2.2	Install the XG5000	. 15-2
15.2.3	Check the product version	. 15-3
15.3 Sp	ecifications	. 15-4
15.3.1	Performance Specifications	. 15-4
15.3.2	Names and Roles of Built-in Cnet Components	15-5
15.3.3	Cable Specifications	15-6
15.3.4	Termination Resistor	15-7
15.4 Pe	rformance Specifications	15-8
15.4.1	Operation Mode Setting	. 15-8
15.4.2	Operation by Channel	. 15-9
15.4.3	Channel Operation in Repeater Mode	15 – 10
15.4.4	Serial Connection Methods	15 – 10
15.5 Ins	tallation and operation	15 -11
15.5.1	Parameter information for communication mode	15 - 11
15.5.2	Device Information	15 - 15
15.5.3	Device Area Information	15 - 17
15.6 Cn	et Communication System Configuration	15 - 18
15.7 Co	mmunication parameter	. 15 - 22
15.7.1	Summary	. 15 - 22
15.7.2	Downloading Parameters	. 15 - 26

15.7.3	Server Function and P2P Service	15 - 28
15.7.4	Start operation	15 - 34
15.7.5	Diagnostic Function of XG5000	15 - 40
15.8 XGT	Communication	15 - 49
15.8.1	XGT Protocol Overview	15 - 49
15.8.2	P2P service	15 – 50
15.8.3	XGT communication function	15 - 67
15.8.4	P2P Commands	15 - 78
15.9 LSE	Bus Protocol	15 - 81
15.9.1	LS Bus Protocol Architecture	15 - 81
15.9.2	Command Details	15 - 83
15.10 Mo	odbus Protocol	15 - 87
15.10.1	Modbus Communication Setting Procedures	15 - 87
15.10.2	Modbus Protocol	15 – 87
15.10.3	Frame Structure	15 - 89
15.10.4	Modbus server	15 - 103
15.10.5	Modbus RTU / ASCII client	15 - 109
15.10.6	Frame monitor	15 - 114
15.11 Us	er Defined Communication Service	15 - 116
15.11.1	Summary	15 -116
15.11.2	User-defined frame configuration	15 - 117
15.11.3	Create Frame	15 - 119
15.11.4	Frame monitor	15 – 126
15.11.5	User-defined communication commands	15 - 127
15.12 Pro	ogram examples	15 - 129
15.12.1	How to set each operation mode	15 - 129
15.12.2	Dedicated Communication Examples	15 - 134
15.12.3	Modbus Communication Examples	15 - 142
15.12.4	User-Defined Communication Examples	15 -150
15.13 Dia	agnostic Functions	15 - 157
15.13.1	Diagnostic Function of XG5000	15 - 157
15.13.2	Protocol-specific error codes	15 - 164
15.13.3	Troubleshooting	15 - 166

Appendix 1 Flag List	A1-1~A1-18
Appendix 2 Error Information & Solution	A2-1~A2-48
Appendix 3 Setting Example	A3-1~A3-17
Appendix 4 Dimension	A4-1
Appendix 5 ESC (EtherCAT Slave Controller) Register	A5-1~A5-4
Appendix 6 Using EtherCAT slaves from other companies	A6-1~A6-7
Appendix 7 Cnet communication terminology explanation	A7-1~A7-5
Appendix 8 EtherCAT Diagnostics	A8-1~A8-10

Chapter 1 Overview

This user's manual describes the standard of motion controller, installation method, the method to use each function, programming and the wiring with external equipment.

1.1 Characteristics

The characteristics of motion controller are as follows.

(1) Various motion control function

It has various functions needed for motion control system such as position control, speed control etc.

- (a) It supports various motion control commands.
 - 1) It supports a number of function blocks.
 - 2) It supports a number of motion function blocks compliant to PLCopen standards.
 - 3) Motion programs are supported in the form of LD or ST by using XG5000.
- (b) It can control actual/virtual axis of up to 32 axes, virtual axis of 4 axes and EtherCAT I/O of 64 slaves, and supports digital input 8 points, digital output 16 points,, analog input 2 channels, analog output 2 channels and encoder input of 2 channels.
- (c) Various sing-axis operations are available.
 - 1) Position control
 - 2) Speed control
 - 3) Synchronous control
 - 4) Multi-axis simultaneous start
- (d) Various multi-axis group operations are available.
 - 1) Circular arc interpolation
 - 2) Linear interpolation
 - 3) Helical interpolation
 - 4) Group homing / Changes group position
- (e) Switching control in operation is available.
 - 1) Position/Speed control switching
 - 2) Position/Torque control switching
 - 3) Speed/Torque control switching
- (f) Cam Control is available.

It is available to create up to 32 kinds of cam data with various cam profile of XG5000.

(g) Various Homing Control Function.

As for a homing method, you can use Homing method supported by each servo drive model. (Refer to the instruction manual of each servo drive for more detailed homing methods and servo parameter settings.)

- (h) For the Acceleration/Deceleration method, trapezoidal acceleration/deceleration and S-shaped acceleration/deceleration is supported, and S-shaped acceleration/deceleration can be implemented by setting jerk on a motion function block.
- (2) Speed-up of execution of the motion program

Through realization of speed-up of processing at the time of start-up operation, the motion program set as main task can be performed at up to 0.5ms intervals. In addition, there is no delay time between axes in Simultaneous start and interpolation start.

- (3) Connection with the servo driver through EtherCAT*1
 - (a) Direct connection to servo drives of up to 32 units and EtherCAT I/O of up to 64 units can be achieved through EtherCAT.
 - (b) Since the connection between motion control module and servo drive is made using Ethernet cables. So wiring is simple.
 - (c) You can easily check and set up the servo driver information and parameter at the Motion Control module
 - (d) Max. connection distance is 100m.
- (4) Able to realize the absolute position system

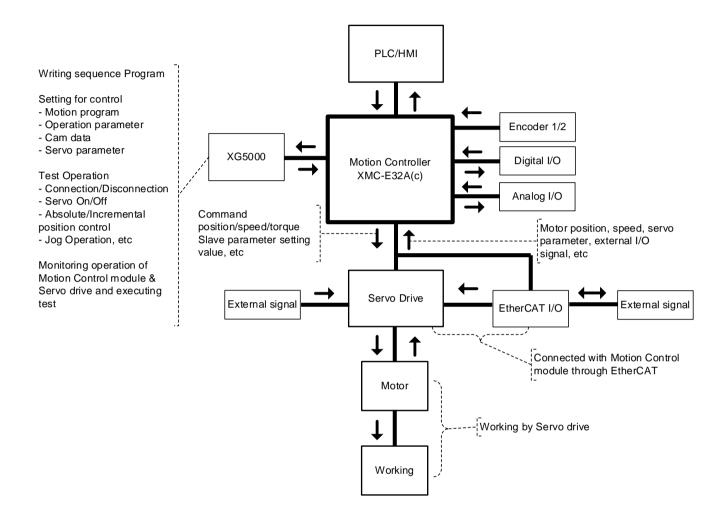
You can realize the absolute position system just by connecting to the servo drive using the absolute position encoder and in case of ON/OFF, it can know the current position of the motor without homing.

(5) Easy maintenance

As retain registers, parameters, cam data and location data are stored within the motion controller, data can be stored without delay, and there is no limited number of writes.

- (6) Self-diagnosis, monitoring and test are available with strong software package, XG5000.
 - (a) Monitoring function (Module & Servo driver)
 - (b) Trace function
 - (c) Trend function
 - (d) Reading and saving module program/parameter
 - (e) Reading and saving servo parameter
 - (f) Creation of CAM data
 - (g) Providing details about errors and the solution for it
 - (h) Print function of various forms

Note


What is EtherCAT?

EtherCAT, Open Industrial Ethernet Solution, is developed by Beckhoff at 2002 and at 2003, November EtherCAT Technology Group (ETG-http://www.ethercat.org) is organized and it opens its technology. At 2005, February, that is authorized as IEC standard specification. Because of fast control speed and easiness for use and maintenance, it is widely used in the industrial field and conforming its performance

In our positioning module, data communication with service driver is done with master-slave method through EtherCAT, and electric Ethernet Cable is used.

1.2 Signal Flow of Motion Controller

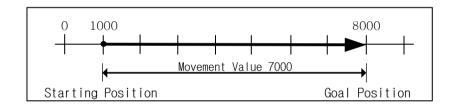
The flow of system using the motion controller is as follows.

1.3 Function Overview of Motion Controller

Describe Representative functions of motion controller (Coordinate & Linear Interpolation, Circular Interpolation & Stop) briefly.

1.3.1 Position Control

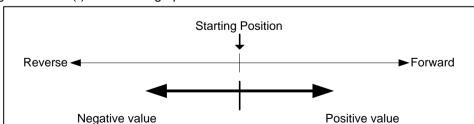
Execute positioning control for the designated axis from starting position(current position) to goal position.(the position to move to)


(1) Control by Absolute coordinates

- (a) Execute positioning control from starting position to goal position designated in motion function block.
- (b) Positioning control is executed based on home position designated in homing.
- (c) Moving direction is decided by starting position and goal position.
 - 1) Starting Position < Goal Position : Forward Positioning Operation
 - 2) Starting Position > Goal Position : Reverse Positioning Operation

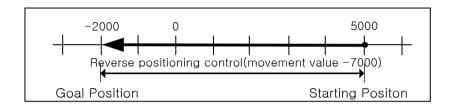
[Example]

Starting Position: 1000
 Goal Position: 8000


Value of Forward movement is 7000 (7000=8000-1000)

(2) Control by Incremental Coordinates

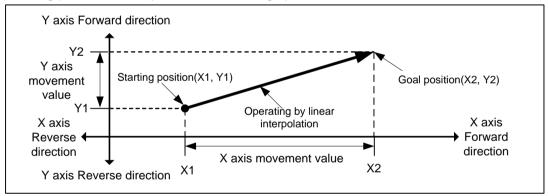
- (a) Execute positioning control from starting position as much as goal movement value.


 The difference from absolute coordinates control is that the goal position is movement value, not position value.
- (b) Moving direction depends on sign of movement value.
 - 1) Positive value (+ or 0): Positioning operation with forward direction
 - 2) Negative value (-): Positioning operation with reverse direction

[Example]

Starting Position: 5000
 Goal Position: -7000

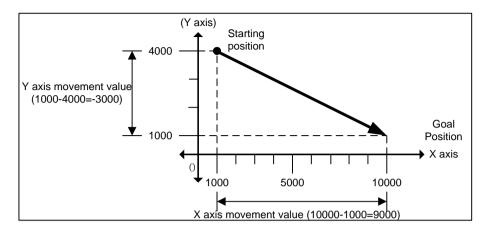
In this condition, it moves reversely and stops at -2000.

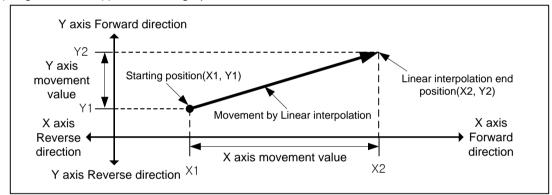


1.3.2 Interpolation Control

(1) Linear Interpolation Control

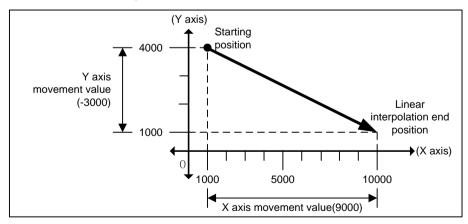
Execute Linear interpolation control with designated axis at start position. (Current position) Combination of interpolation axis is unlimited and it is available to execute max. 4 axis Linear interpolation control.


- (a) Linear interpolation by absolute coordinates
 - 1) Execute Linear interpolation from starting position to goal position designated by positioning data.
 - 2) Positioning control is executed based on home position designated in homing.
 - 3) Movement direction is designated by starting position & goal position of each axis.
 - a)Starting position < Goal position : Positioning operation with forward direction
 - b)Starting position > Goal position : Positioning operation with reverse direction


[Example]

- a) Starting Position (1000, 4000)
- b)Goal Position (10000, 1000)

In this condition, operation is as follows.

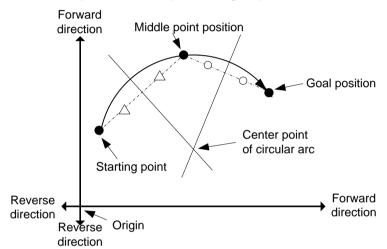

- (b) Linear Interpolation by incremental coordinates
 - 1) Goal value becomes movement value.
 - 2) Moving direction depends on movement value is positive or negative.
 - a)Positive value (+ or 0): Positioning operation with forward direction
 - b) Negative value (-): Positioning operation with reverse direction

[Example]

- a) Starting position (1000, 4000)
- b)Goal position (9000, -3000)

In this condition, operation is as follows.

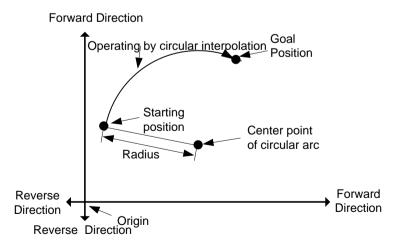
(2) Circular Interpolation Control

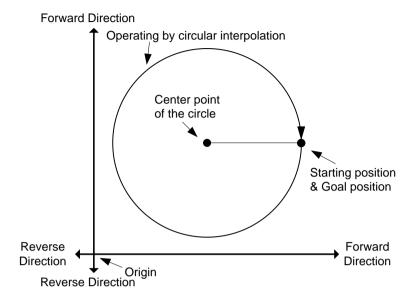

Execute interpolation operation along the trace of circle with 2 axes in forward direction that already designated for each axis.

Circular interpolation has 3 types according to auxiliary point, Middle point method passing auxiliary point, Center point method using auxiliary point as center of circle and Radius method using auxiliary point as radius of circle.

The combination of 2 axes that used in circular interpolation is unlimited. Any of the two axes from the actual axes (1-axis to 32-axis) or virtual axes (37-axis to 40-axis) can be used.)

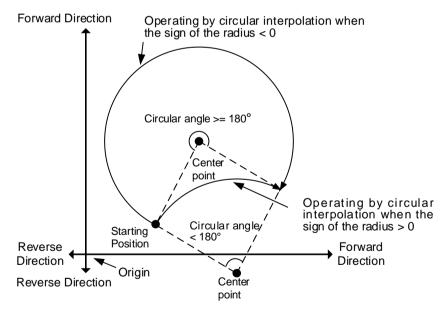
(a) Middle Point Specified Circular interpolation


- 1) Starts operating at starting position and executes circular interpolation through the designated middle point.
- 2) There will be a circular arc whose center point is crossing point of perpendicular bisection between starting position and middle point or middle point and goal position.


3) Movement direction is automatically designated by goal position and auxiliary point of circular interpolation.

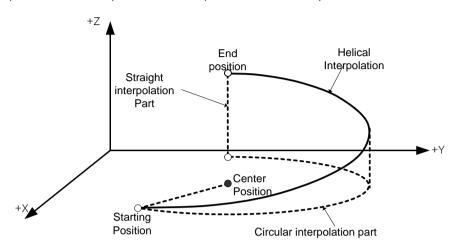
(b) Center Point Specified Circular interpolation

 Starts operating from starting position and execute circular interpolation along trace of circle that has distance from starting point to designated center point as radius.

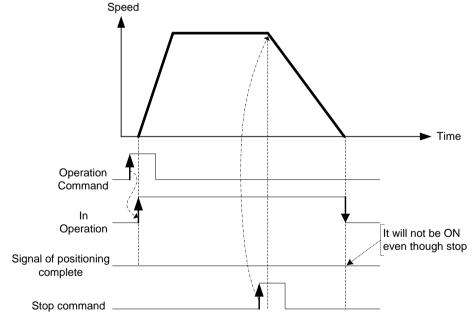

2) If the goal position is same as starting position, it is available to have an operation like a circle that has distance from starting point to auxiliary point as its radius.

3) The direction of movement is determined according to the selection of paths (CW, CCW) to be set at the time of motion function block.

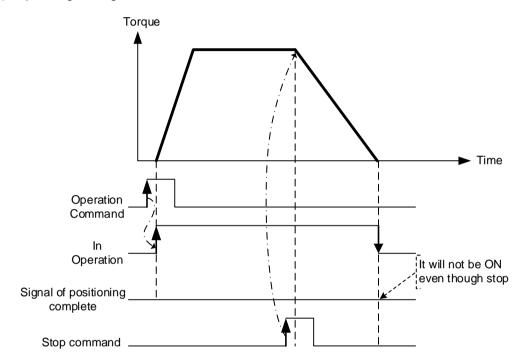
(3) Radius Specified Circular interpolation


(a) Starts operating from starting position and execute circular interpolation along trace of circular arc thathas value designated in auxiliary point of main axis as it radius. An arc whose central point varies depending on the sign of the radius is drawn.

- (b) In radius designation form, goal position can not be set the same as starting position.
- (c) The operational directions and the size of the arc are determined by the path selection (CW, CCW) of circular interpolation commands and the sign of the radius.


(4) Helical Interpolation

- (a) Moves along the designated trace of circular arc depending on circular arc interpolation setting and executes Linear interpolation synchronously.
- (b) There is no limit to the combination of axes to be used in helical interpolation, and three axes from actual axis (1 axis to 32 axes) or virtual axis (37 axes to 40 axes) are used.


1.3.3 Speed Control

- (1) Execution is made by speed control commands, and the operation proceeds at the established rate until buffer commands are executed, or stop commands are entered.
- (2) Speed control has forward operation and reverse operation.
 - (a) Forward run: In case of velocity > 0 and forward direction, or velocity < 0 and reverse direction
 - (b) Reverse run: In case velocity > 0 and reverse direction, or velocity < 0 and reverse direction.
- (3) Operating Timing

1.3.4 Torque Control

- (1) The execution is made by the torque control command, and the operation is done in the set torque until the buffer command or stop command is entered.
- (2) Torque control includes forward operation and a reverse operation..
- (a) Forward operation: When direction input setting is '1-forward' direction
- (b) Reverse operation: When direction input setting is 2-reverse' direction
- (3) Operating Timing

Chapter 2 Specification

2.1 General Specification

The following table shows the general specification of XGT series.

No.	Item		Related specifications					
1	Ambient temperature		0 ~ 55 °C					
2	Storage temperature		−25 ~ +70 °C					
3	Ambient humidity		5 ~ 95%RH (Non-condensing)					
4	Storage humidity			5 ~ 95%RH (No	on-condensing)		-	
			Occasi	onal vibration		-	-	
		Frequency	Ac	celeration	Amplitude	How many times		
		5 ≤ f < 8.4Hz		-	3.5mm			
5	Vibration	8.4 ≤ f ≤ 150H	lz 9.8	3 m/s² (1G)	-			
"	resistance		For conti	nuous vibration		10 times each directions	IEC61131-2	
		Frequency	Ac	celeration	Amplitude	(X, Y and Z)		
		5 ≤ f < 8.4Hz	:	-	1.75mm			
		8.4 ≤ f ≤ 150H	lz 4.9	m/s² (0.5G)	-			
6	Peak acceleration: 147 m/s²(15G) Shock resistance Duration: 11ms Half-sine, 3 times each direction per each axis						IEC61131-2	
		Square wave Impulse noise		·	AC: ± 1,500V DC: ± 900V		LS ELECTRIC standard	
	Noise resistance	Electrostatic discharge		Voltage :	4kV (contact disch	narging)	IEC 61131-2, IEC 61000-4-2	
7		Radiated electromagnetic field noise		80 ~	1,000 MHz, 10V	//m	IEC 61131-2, IEC 61000-4-3	
		Fast transient /bust noise	Segment	Power supply module		out/output communication interface	IEC 61131-2, IEC 61000-4-4	
		/bust noise	Voltage	2kV		1kV	120 01000 1 1	
8	Environment	Free from corrosive gasses and excessive dust					-	
9	Altitude	Up to 2,000m					-	
10	Pollution degree	Less than equal to 2					-	
11	Cooling	Air-cooling Air-cooling					-	

Note

- 1. IEC (International Electrotechnical Commission):
 - An international nongovernmental organization which promotes internationally cooperated standardization in electric/electronic field, publishes international standards and manages applicable estimation system related with.
- 2. Pollution degree:

An index indicating pollution degree of the operating environment which decides insulation performance of the devices. For instance, Pollution degree 2 indicates the state generally that only non-conductive pollution occurs. However, this state contains temporary conduction due to dew produced.

2.2 Power Specification

The following table shows the power specifications of motion controller.

Items		Specification				
	items		AC Powe	er	DC Power	
	Rated input voltage		AC100V~AC	240V	DC19.2 ~ 28	.8V
	Input frequency		50/60Hz		-	
	Input our	ont	0.7A or less(A0	C100V)	1.6A or le	00
	Input curre	ənı	0.4A or less(AC240V)		1.6A of les	55
Input	Inrush current		120Apeak or less(AC240V, Phase 90 degree)		100Apeak or less	(DC28.8V)
	Leakage current		3mA or less		3mA or less	
	Efficiency		65% or more		65% or more	
	Permitted momentary power failure		10ms or less		10ms or less	
	Output voltage	Voltage	Output voltage ripple range	Current	Output voltage ripple range	Current
		+5V	4.90V~5.20V	4A	4.90~5.15V	4A
		+24V	21.1V~26.9V	0.4A	-	-
		Voltage	Ripple	Noise	Ripple	Noise
Output	Ripple & Noise	+5V	100mVpp or less	200mVpp or less	100mVpp or less	200mVpp or less
		+24V	400mVpp or	less	-	
		Voltage	Current		Current	
	Protecting overcurrent	+5V	4.4A or mo	ore	4.4A or more	
	2 TOTOGITOTIC	+24V	0.44A or mo	0.44A or more		

^{*} For protection of the power supply, you are recommended to use the power supply with the maximum of 4A fuse.

Note

- 1. Allowable instantaneous interruption time
 - It is the time to maintain the normal output voltage(normal operation) on the condition that the input voltage of (AC110/220V) is lower than the maximum/minimum (AC85/170V).
- 2. Overcurrent protection
 - (a) When the voltage exceeding the standard is applied to the circuit of DC5V,DC24V, overcurrent protection device interrupts the circuit and stops the system.
 - (b) If overcurrent occurs, after removing the causes such as shortage of current capacity, short circuit, etc., restart the system.
- 3. Overvoltage protection
 - When the voltage exceeding the standard is applied to the circuit of DC5V, overvoltage protection device interrupts the circuit and stops the system.
- 4. Use a UL certified product for the power supply. Use a power supply that meets Class 2 or LVLC (Limited Voltage Limited circuit).

2.3 Performance Specification

The following table shows the Performance specifications of motion controller.

2.3.1 Function Specification

			XMC-E32A	XMC-E16A	XMC-E08A	
	Items		XMC-E32C	-	-	
Oper	ation method		Main task/Periodic task: Fixed cyclic operation, reiterative operation Initial task: Only once at the time of entering the RUN			
Control cyclic			Main task cyclic time: 0.5ms, 1ms, 2ms, 4ms Periodic task cyclic time: Multiple setting of main task			
I/O Co	ontrol method		Synchronism with main task cyclic (Refresh method)			
Progr	am language		Ladder Diagram(Function b	lock), Structured Text, G-Cod	e	
	Operat	or	18			
Number of	Basic fun	ction	202			
instruction	Basic function	n block	174			
	Special functi	on block	97			
	Basic	;	6.25ns or more (General po	int/coil)		
Processing speed	Move	•	5ns or more (Word type)			
•	Arithmetic		30ns or more (Word type)			
Drogram	gram number Capacity		Max. 256			
Flogram			10MB(Motion program,), 10	OMB(NC program)		
	Symbolic variable(A)		4,096KB(Retain setting avail	ilable up to 2,048KB)		
	Input variable(I)		16KB			
	Output variable(Q)		16KB			
	Direct variable(M)		2,048KB(Retain setting avail	ilable up to 1,024KB)		
Data area		F	128KB			
		K	18KB			
	Flag variable	U	1KB			
		L*Note 3)	22KB			
		N*Note 3)	49KB			
	Timer		No limit in points, Time rang	ge: 0.001~ 4,294,967.295sec(1,193hour)	
	Counter		No limit in points, Counter range: 64 bit range			
	Program		Initial program, Main task program, Periodic task program, NC program			
Operation mode			RUN, STOP			
Restart mode			Cold, Warm			
Self-diagnosis function			Cyclic error monitoring, time share over detection of task program, memory abnormal, power abnormal, etc.			
Back	k-up method		Retain area setting in basic parameter or of variables			
Number of control axis			32 axes(Real/Virtual axis), 4 axes(Virtual axis), 64 Slaves(Included real/virtual axis)			

	Item		XMC-E32A XMC-E16A XMC-E08A			
		XMC-E32C	-	-		
	Real/Virtual Axes	32 axes	16 axes	8 axes		
	Dedicated Virtual Axis	4 axes	2 axes	1 axis		
Axis/Slave	Slave (Including Real Axes)	64 Slaves	32 Slaves	16 slaves		
Types of C	Communication	EtherCAT (CoE: CANopen	over EtherCAT, FoE: File Acc	cess over EtherCAT)		
Commun	ication Period	0.5ms, 1ms, 2ms, 4ms (Sa	me as the Main Task Period)			
Servo d	drive support	Servo drive to support Ethe	erCAT CoE			
Cor	ntrol unit	pulse, mm, inch, degree				
Contr	rol method	Position, Velocity, Torque (Servo drive support), Synchro	onous, Interpolation Control		
Range	e of position	± LREAL, 0				
Spe	ed range	± LREAL, 0				
Tor	que unit	Rated torque % designation	n			
Acc./Dec	c. processing	Trapezoid type, S-type (Se	tting by specifying Jerk at a fu	ınction block)		
Rage o	of Acc./Dec.	±LREAL ^{note1)} , 0				
Manua	al operation	JOG operation				
Cam	Operation	32 profiles/ 32,768 points	16 profiles/ 16,384 points	8 profiles/ 8,192 points		
Absolute p	position system	Available (When using an absolute encoder type servo drive)				
	Digital input	8 points				
	Digital output	16 points (Transistor)				
Digital I/O	Encoder input	Channel 2 Max. input: 500 Kpps Input method: Line drive, Voltage input Input type: CW/CCW, Pulse/Direction, Phase A/B				
Analog input/output	Analog input	Channel 2 Voltage input range: -10~10V / 0~10V / 1~5V / 0~5V Current input range: 4~20mA / 0~20mA Max. resolution: 14 bit (1/16,000)				
note2)	Analog output	Channel 2 Voltage Output range: -10~10V / 0~10V / 1~5V / 0~5V Max. resolution: 14 bit (1/16,000)				
Serial	Port	RS-232C: 1 port, RS-485: 1 port				
communication note3)	Protocols supported	XGT dedicated protocol, Modbus protocol, User-defined protocol, LS bus (inverter protocol) support				
Coordinate system function (Robot)		Cartesian, Delta				
	Memory type	Micro SDHC				
	File system	FAT32				
SD memory	Max. capacity	32GB (Memory over 8GB can use only 8GB of overall area)				
	Service	Program back-up/restoration, Booting operation, Data logging				

	lt a m	XMC-E32A	XMC-E16A	XMC-E08A				
Item		XMC-E32C	-	-				
	Communication speed	Auto/10Mbps/100Mbps	Auto/10Mbps/100Mbps					
	Communication port	1 port						
Ethernet	Communication distance	Max. 100m between nodes						
Ethemet	Service		oported (XGT, MODBUS TCP) ad/write files of the SD memor					
USB	Characteristics	USB 2.0, Channel 1						
USB	Service	Loader service supported (XG5000)						
Error indication		Indicated by LED						
Weight		790g						

Note

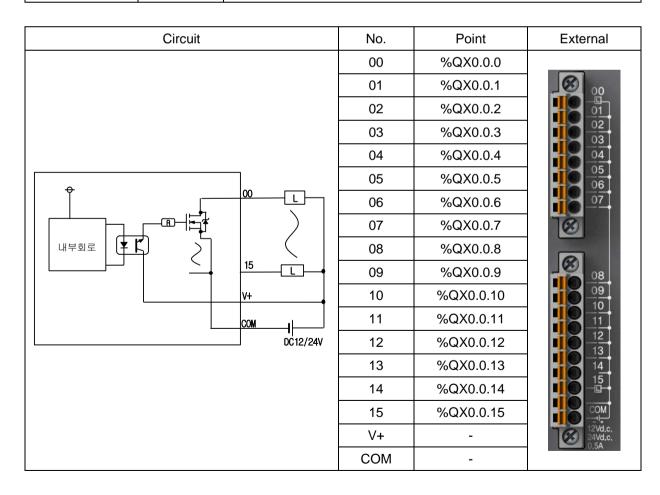
- 1. LREAL range: 2.2250738585072^{e-308} ~ 1.79769313486232^{e+308} LREAL(positive) range: 0 ~1.79769313486232^{e+308} (Excluded 0)
- The analog function is supported only by analog-type products (XMC-E32A, E16A, E08A).

 The serial communication function is supported only by communication-type products (XMC-E32C).

2.3.2 Communication Specification

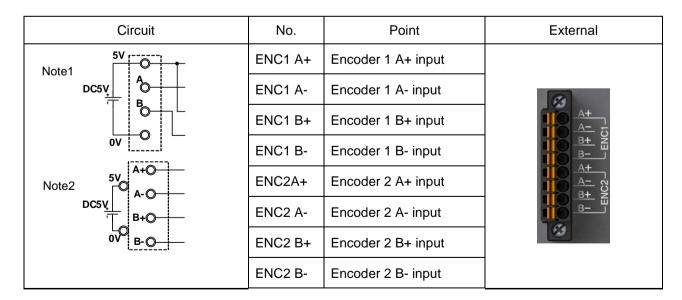
Item	Specification
Communication protocol	EtherCAT
Support specification	CoE(CANopen over EtherCAT)
Physical layer	100BASE-TX
Communication speed	100Mbps
Topology	Daisy Chain
Communication cable	Over Cat. 5 STP(Shielded Twisted-pair) cable
Number of maximum slave	64(Able to mapping Max. 32 drive to motion axis)
Communication period	0.5ms/1ms/2ms/4ms
Synchronous Jitter	0.5ms/1ms/2ms/4ms
Synchronous communication	PDO(Process Data Object) Mapping through CoE
Non-synchronous communication	SDO(Service Data Object) communication through CoE
Communication setting	Set the communication configuration using XG5000
Maximum transmission distance	100m
Indicates the communication status	LED

2.3.3 Internal input/Output Specification


1. Input specifications (source/sink type)

input opcomedicine (seurospenic type)				
Item		Specification		
Input poi	nt	8 point		
Insulation me	ethod	Photo-coupler insulation		
Rated input v	oltage	24V		
Rated output	voltage	About 5mA		
Used voltage	range	DC20.4V~28.8V(within ripple rate 5%)		
On voltage/On	current	DC19V or more / 3mA or more		
Off voltage/Off	current	DC6V or less / 1mA or less		
Input resista	ance	About 4.7 kΩ		
Decrease time	Off → On	Initial, 4 (0.5 /4/2/5/4.0/20/7.0/4.00		
Response time	On → Off	Initial: 1ms(0.5/1/3/5/10/20/70/100ms: I/O Parameter setting)		
Insulation voltage		AC560Vrms/3 Cycle (Altitude 2,000m)		
Insulation resi	istance	Insulation resistance 10 MΩ or more		
Common me	ethod	8 points/COM		

Circuit	No.	Point	External
	00	%IX0.0.0	
	01	%IX0.0.1	
00 R	02	%IX0.0.2	00
	03	%IX0.0.3	$\begin{array}{c c} 01 \\ 02 \\ 03 \end{array}$
Internal	04	%IX0.0.4	04
or o	05	%IX0.0.5	05
сом	06	%IX0.0.6	06 07 00M
[] LOCOM	07	%IX0.0.7	24Vd.c. 5 mA
DC24V	СОМ	-	
	СОМ	-	


2. Output specifications (sink type)

Output specifications (sink type)				
Item		Specification		
Output p	oint	16 point		
Insulation r	nethod	Photo-coupler insulation		
Rated load	voltage	DC 12V / 24V		
Used load volt	age range	DC10.2V~26.4V		
Maximum loa	d current	0.5A /point, 2A/COM		
Off leakage	current	0.1mA or less		
Maximum inru	sh current	4A / 10ms or less		
Maximum voltag	ge drop(On)	DC 0.3V or less		
Surge abs	orber	Zener diode		
Posponso timo	Off→On	1ms or less		
Response time	On→Off	1ms or less(Rated load, resistive load)		
Common method		8 points/COM		
External power	Voltage	DC12/24V±10% (Ripple voltage 4Vp-p or less)		
Laternal power	Current	10mA or less (DC24V connection)		

2.3.4 Encoder Input Specification

Item	Specification			
Input voltage	5V (3V ~ 6V)			
Input current	2 mA~7.5 mA	In accordance with RS-422A Line		
Min. On guarantee voltage	2.5V	Driver Level		
Max. Off guarantee voltage	1.7V			
Input pulse	1) Pulse width Over 2.5 Over 1.25 Over 1.25 Over 1.25 Solve 1.25 Over 1.25	When A phase input pulse is ahead of B phase input pulse : Position value increases When B phase input pulse is ahead of A phase input pulse : Position value decreases		

Note

Note 1 : Encoder of 5V voltage output type(Open collector) Note 2 : Encoder of 5V voltage output type(Line driver)

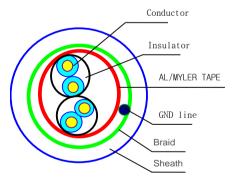
2.3.5 Cnet cable specification

When RS-485 communication is performed in XMC-E32C, considering speed and distance, the RS-485 twist Cable must be used.

The following table shows the recommended cable specifications. When using cables other than those recommended, use cables that meet the characteristics listed in the table below.

(1) Product Name: Low capacitance LAN interface cable

(2) Type: LIREV-AMESB


(3) standard: 2P X 22AWG(D/0.254 TA)

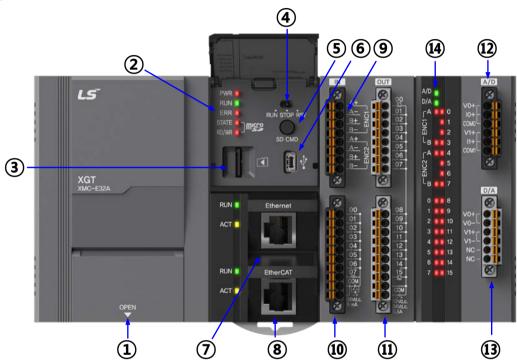
(4) Manufacturer: LS Cable

٠,) Manadada on 20 Cable						
		Test List	Unit	Characteristics	Test conditions		
		Conductor resistance	Ω/km	59	Normal Temp.		
	Electrical characteristi	Internal Voltage(DC)	V/1min	tolerate at 500V for 1 minute	In air		
	С	Insulation Resistance	MΩ/km	1,000	15.6℃		
		Static capacity	pF/M	45 or below	1kHz		
		Charaterictic Impedance	Ω	120 ± 12	10MHz		

	Item			Single line
		Sim	Pair	2
Appearance	Conductor	Standard	AWG	22
Appearance characteristi c	Insulator	Configuration	NO./mm	1/0.643
		Diameter	mm	0.643
		Thickness	mm	0.59
		Diameter	mm	1.94

[Table 2.3.5.1] twisted cable pair specification

[Pic 2.3.5.1] structure Diagram


Notes

- 1) In XMC-E32C Cnet, when RS-485 Communication is performed, termination resistance is built-in, so it can be set by XG5000. External termination resistance is unnecessary.
- 2) The termination resistor serves to prevent signal distortion caused by the reflected wave of the cable when performing long-distance communication.

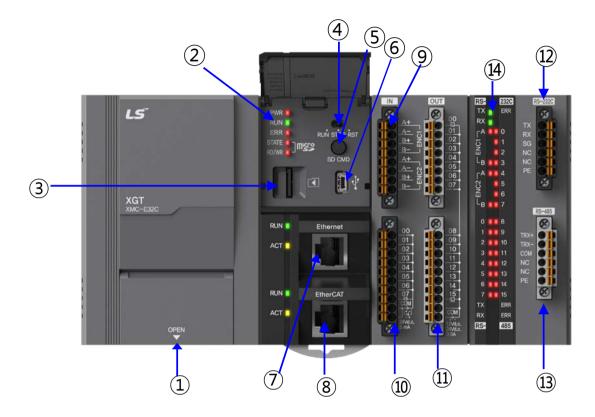
2.4The Name of Each Part

2.4.1 The Name of Each Part

(1) XMC-E32A


No.	Name	Description
1	Power terminal	AC 110/220V power input, LG terminal, DC24V output
2	Staus display LED	 Displays the motion controller's operation mode. PWR(Red light on): The power is supplied RUN(Green light on): During RUN mode ERR(Flickering Red light): Occurrence of errors during operation STATE(Red light on/Flickering Red light): When the SD card is installed, the red light is turned On; when the SD card error occurs, the red light is flickering. RD/WR(Flickering Red light): During SD memory reads or writes
3	SD card connector	Connector with the SD memory card
4	Mode switch	Sets the motion controller's operation mode. • RUN: Program's operation is executed. • STOP: Program's operation is stopped. • RST: Program's operation is reset.
(5)	SD card command button	Press to button less than 3 second. • Additional function(back-up, recover, compare) operation in according to script setting Press to button over 3 second. • SD Power On/Off Pressing to button and power on • Boot operation

No.	Name	Description
6	USB port	Port to access to XG5000
7	Ethernet port	Port to communicate Ethernet
8	EtherCAT port	Port to communicate EtherCAT
9	Encoder input connector	-
10	Digital input connector	-
11)	Digital output connector	-
12	Analoog input connecotr	-
13	Analog output connector	-
14)	Display input/output operaiton LED	Digital input/oupt, Analog input/output, Encoder input


^{*} With exception of the outer part where the product name is shown, the XMC-E16A and XMC-E08A are identical to the XMC-E32A.

Notes

After inserting the SD memory into the SD memory slot entrance (display ①) as shown below, press the middle part of SD memory (②) and install it completely. If the SD memory is not inserted correctly in the SD memory slot (direction reversed, up / down (left / right) tilting or twisting) It may not operate normally.

(2) XMC-E32C

Number	Name	Description
① ~ ①	Same as XMC-E32A	-
12)	Serial communication port (connector)	The port to execute RS-232C communication (connector)
13	Serial communication port (connector)	The port to execute RS-485 communication (connector)
14)	I/O display	Digital I/O, Encoder input, Communication interface status display

2.4.2 Specification of Interface with External Device

1. Pin arrangement of connector

External		Signal name	Signal direction	
	ENC1 A+	Encoder 1 A+		
A+	ENC1 A-	Encoder 1 A-		
B+ 5	ENC1 B+	Encoder 1 B+		
B- "	ENC1 B-	Encoder 1 B-	- Input	
A+ N	ENC2 A+	Encoder 2 A+	input	
B+ NB-	ENC2 A-	Encoder 2 A-		
	ENC2 B+	Encoder 2 B+		
	ENC2 B-	Encoder 2 B-		
	IN0	Input signal 0		
00	IN1	Input signal 1		
$\begin{array}{c c} 01 \\ 02 \end{array}$	IN2	Input signal 2		
03	IN3	Input signal 3	Input	
04 05	IN4	Input signal 4	_	
06	IN5	Input signal 5	_	
U COM	IN6	Input signal 6	_	
24Vd.c. 5 mA	COM	Input signal 7 Input signal Common	Input	
	OUT0	Output signal 0		
	OUT1	Output signal 1		
	OUT2	Output signal 2		
01 02	OUT3	Output signal 3		
03	OUT4	Output signal 4		
04 05	OUT5	Output signal 5		
06	OUT6	Output signal 6		
	OUT7	Output signal 7	1	
	OUT8	Output signal 8	Output	
08	OUT9	Output signal 9	1	
09	OUT10	Output signal 10	-	
11 12	OUT11	Output signal 11	1	
13	OUT12	Output signal 12	-	
14	OUT12	Output signal 13	1	
СОМ		Output signal 14	1	
12Vd.c. 24Vd.c.	OUT14	·	-	
0.5A	OUT15	Output signal 15		
	24V	DC24V GND	Input	
	GND	DC24V GND		

External		Signal name	Signal direction	
	V0+	Analog voltage input 0		
V0+C	10+	Analog current input 0		
COMO COMO	COM0	Analog input 0 common		
V1+ C	V1+	Analog voltage input 1	Input	
COM1	l1+	Analog current input 1		
	COM1	Analog input 1 common		
	V0+	Analog voltage output 0+		
V0+_	V0-	Analog voltage output 0-		
V0 V1+-	V1+	Analog current output 0+	Output	
V1-L NC -	V1-	Analog current output 0-	Output	
NC -	NC	No Connection		
	NC	No Connection		
RS-232C	TX	RS-232C TRX+		
TX OII	RX	RS-232C TRX-		
RX SG	SG	Signal ground	DC 222C	
NC OII	NC	No Connection	RS-232C	
PE S	NC	No Connection		
	PE	Potential Earth		
RS-485	TRX+	RS-485 TRX+		
TRX+	TRX-	RS-485 TRX-		
TRX-	COM	COMMON	DC 405	
NC NC PE	NC	No Connection	RS-485	
	NC	No Connection		
	PE	Potential Earth		

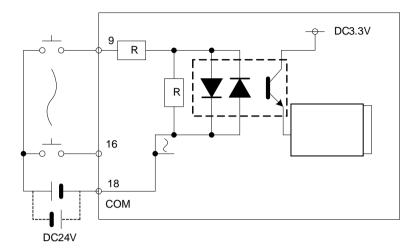
2. Encoder internal circuit

Item	Pin No.	Signal	
*Note1 5V	ENC1A+	ENC1A+	Encoder 1A+ input
DC5V B	ENC1A-	ENC1A-	Encoder 1 A- input
	ENC1B+	ENC1B+	Encoder 1 B+ input
0V []	ENC1B-	ENC1B-	Encoder 1 B- input
*Note2	ENC2A+	ENC2A+	Encoder 2 A+ input
DC5V A-O	ENC2A-	ENC2A-	Encoder 2 A- input
B+O B+O	ENC2B+	ENC2B+	Encoder 2 B+ input
(<u>B-O</u>	ENC2B-	ENC2B-	Encoder 2 B- input

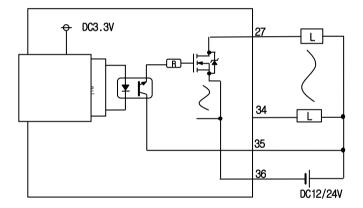
Note

* Note1

Wiring of encoder 1 is example about 5V voltage output type (open collector). When using 12V, 24V type MPG, change the input voltage from 5V to 12V or 24V and in case of 12V, connect 910Ω resistor to ENC1 A+(pin 1), ENC1 B+ (pin3), in case of 24V, $2.4k\Omega$ resistor, before connecting the power source (adding PULL-UP resistor is needed)

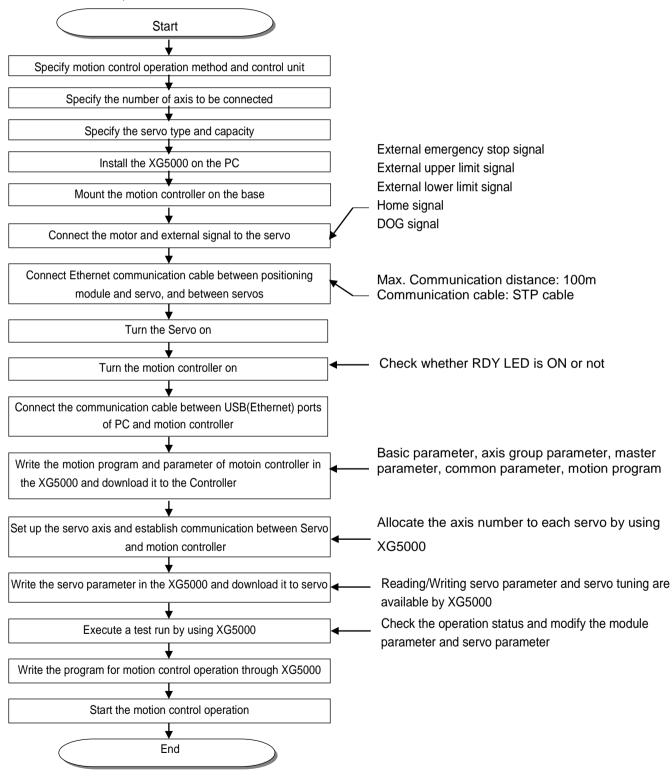

* Note2

Wiring of encoder 2 is example about 5V voltage output type (line driver)


This describes the internal circuit of the module when connecting the encoder.

Item	Internal circuit	No.	Terminal	Signal name
Input	2	1	A+	A phase pulse input +
		2	A-	A phase pulse input -
		1	B+	B phase pulse input +
		2	B-	B phase pulse input -

3. Input internal circuit


4. Output internal circuit

Chapter 3 Operation Order and Installation

3.1 Operation Order

Here describes the Operation order of motion controller.

3.2 Installation

3.2.1 Safety Precautions

<u>/!\</u>

Danger

- ▶ Please design protection circuit at the external of Contrller for entire system to operate safely because an abnormal output or a malfunction may cause accident when any error of external power or malfunction of Controller.
 - (1) It should be installed at the external side of Controller to emergency stop circuit, protection circuit, interlock circuit of opposition action such as forward /reverse operation and interlock circuit for protecting machine damage such as upper/lower limit of positioning.
 - (2) If Controller detects the following error, all operation stops and all output is off.
 - (Available to hold output according to parameter setting)
 - (a) When over current protection equipment or over voltage protection operates
 - (b) When self diagnosis function error such as WDT error in Controller occurs
- When error about IO control part that is not detected by Controller, all output is off.
 Design Fail Safe circuit at the external of Controller for machine to operate safely. Refer to 4.1.1 Fail Safe circuit.
 - (1) Because of error of output device, Relay, TR, etc., output may not be normal. About output signal that may cause the heavy accident, design supervisory circuit to external.
- ▶ When load current is more than rating or over current by load short flows continuously, danger of heat, fire may occur so design safety circuit to external such as fuse.
- ▶ Design for external power supply to be done first after Controller power supply is done. If external power supply is done first, it may cause accident by misoutput, misoperation.
- ▶ In case communication error occurs, for operation status of each station, refer to each communication manual.
- In case of controlling the Controller while peripheral is connected to Controller, configure the interlock circuit for system to operate safely. During operation, in case of executing program change, operation status change, familiarize the manual and check the safety status. Especially, in case of controlling long distance Controller, user may not response to error of Controller promptly because of communication error or etc.

Limit how to take action in case of data communication error between Controller and external device adding installing interlock circuit at the Controller program.

Danger □

- ▶ Don't close the control line or communication cable to main circuit or power line. Distance should be more than 100mm. It may cause malfunction by noise.
- In case of controlling lamp load, heater, solenoid valve, etc. in case of Off -> On, large current (10 times of normal current) may flows, so consider changing the module to module that has margin at rated current.
- ▶ Process output may not work properly according to difference of delay of Controller main power and external power for process (especially DC in case of) Controller power On-Off and of start time.
 - For example, in case of turning on Controller main power after supplying external power for process, DC output module may malfunction when Controller is on, so configure the circuit to turn on the Controller main power first

Or in case of external power error or Controller error, it may cause the malfunction.

▶ Not to lead above error to entire system, part causing breakdown of machine or accident should be configured at the external of Controller.

3.2.2 Installation Environment

This controller has a good reliability regardless of installation environment but cares should be taken in the following items to guarantee the reliability and safety of the system.

1. Environment Condition

- (1) Install the control panel available for water-proof, anti-vibration.
- (2) The place free from continuous impact or vibration.
- (3) The place not exposed to direct rays.
- (4) The place with no dew phenomena by rapid temperature change.
- (5) The place where surrounding temperature maintains 0-55°C.

2. Installation Construction

- (1) In case of processing the screw hole or wiring, cares should be taken not to put the wiring remnants to Controller inside.
- (2) Install on the good place to operate.
- (3) Do not install the high voltage machine on the same Panel.
- (4) The distance from duct or surrounding module shall be more than 50mm.
- (5) Ground to the place where surrounding noise environment is good enough.

3.2.3 Notices in Handling

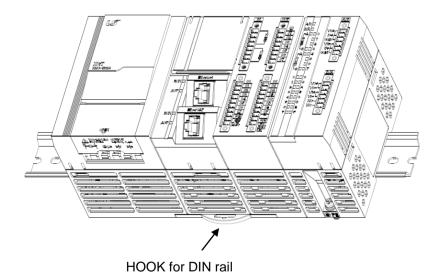
Here describes the notices in handling the positioning module from opening to installation.

- (1) Do not fall down or apply the strong impact.
- (2) Do not remove PCB from the case. It may cause the failure.
- (3) In wiring, cares should be taken not to put the wiring remnants or foreign materials to the upper part of Controller. If something entered, it should be removed.

3.2.4 Attachment/Detachment of Motion Controller

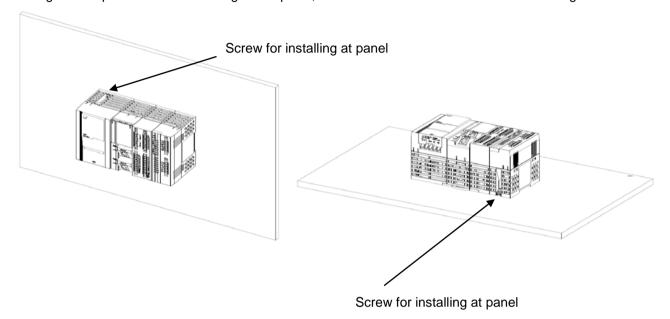
∴ Remark

- ▶ Motion controller must be mounted to hook for fixation properly before its fixation.

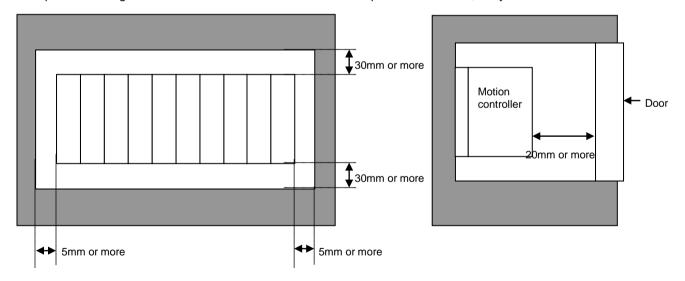

 The Controller may be damaged from over-applied force. If module is not mounted properly, it may cause malfunction.
- ▶ Do not drop or impact the module case, terminal block connector.
- ▶ Do not separate PCB from case.

Caution in handling

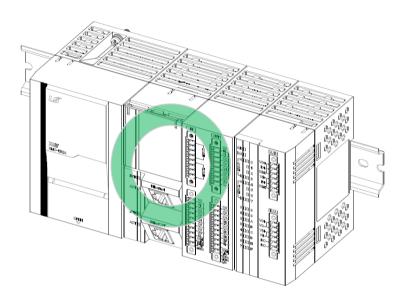
- 1. Use motion controller in the range of general specification specified by manual.
- 2. In case of usage out of range, it may cause electric shock, fire, malfunction, damage of product.
- (1) Installation of motion controller


Motion controller has a hook for DIN rail (rail width: 35mm) so that cab be installed at DIN rail.

- (a) In case of installing at DIN rail
 - Pull the hook as shown below for DIN rail at the bottom of motion controller and install it at DIN rail
 - Push the hook to fix the module at DIN rail after installing motion controller at DIN rail

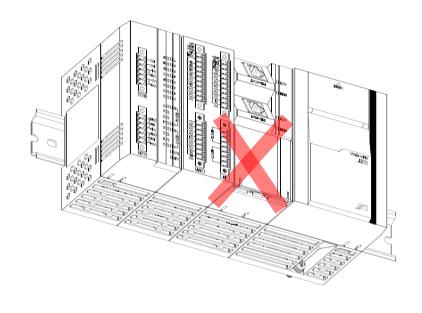

(b) In case of installing at panel

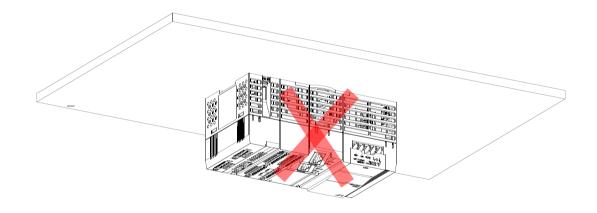
- You can install motion controller onto a panel directly using screw hole
- Use M4 type screw to install the product onto a panel.
- This product is designed so that PE and panel come in contact with each other through a screw at the bottom right of the product. When installing on the panel, be sure to connect the screw in the bottom right side.


(2) Controller equipment locaiton

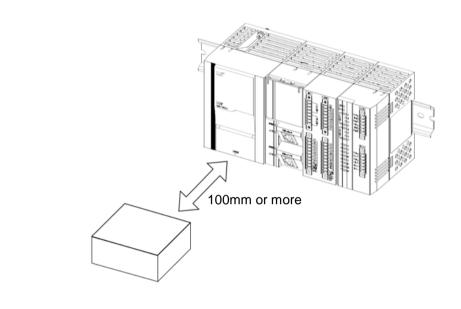
Keep the following distance between module and structure or part for ventilation, easy detachment and attachment.

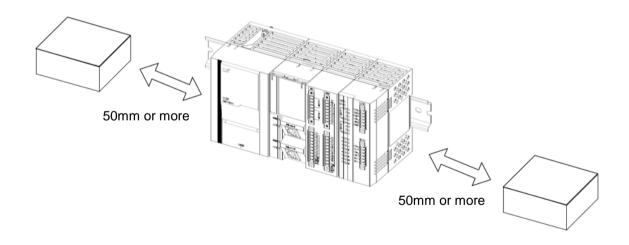



Chapter3 Operation Order and Installation


- (3) Controller equipment direction
 (a) For easy ventilation, install as shown below.

(b) Don't install as shown below.

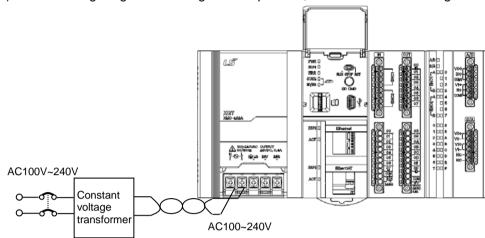




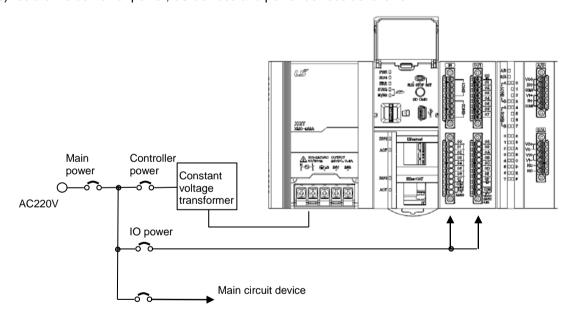
(4) Distance with other device

To avoid radiation noise or heat, keep the distance between motion controller and device (connector and relay) as far as the following figure.

Device installed in front of motion controller: 100mm or more Device installed beside motion controller: 50mm or more


3.3 Notices in Wiring

3.3.1 Notices in Wiring


- (1) The length of connecting cable between controller and drive machine shall be as short as possible. (Max. length: 2m and 10m).
- (2) For alternating current and external I/O signal of controller, it is required to use the separate cables to avoid the surge or induction noise generated from the alternating current.
- (3) The wires should be selected considering surrounding temperature, allowable current and it is recommended to be more than max. size AWG22(0.3mm²).
- (4) In wiring, if it is too close to the high temperature machine or material or it is directly contacted to the oil for a long time, the short-circuit will occur that may cause the damage or malfunction.
- (5) Make sure to check the polarity before applying the external contact signal to the terminal board.
- (6) In case of wiring the high voltage cable and power cables together, the induction noise occurs that may cause the malfunction or failure.
- (7) In case of wiring by the pipe, the grounding of pipe is required.
- (8) Connect the line between controller and EtherCAT slave device by using more than STP CAT-5 in wiring between controller and drive unit.
- (9) When a communication error(0x0F50, 0x0F51, 0x1F00, 0x1011, 0x2011, etc.) occurs in operation of controller, attach Ferrite Core to communication cable connecting controller to EtherCAT slave device and run the controller because it may be caused by noise interference in wiring between controllerand EtherCAT slave device.
- (10) When using the wiring connector for encoder signal and external I/O signal, install it on the place where there is no dust or corrosive gas.

3.3.2 Power Wiring

(1) In case voltage regulation is larger than specified, connect constant voltage transformer.

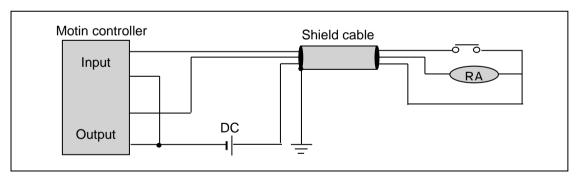
- (2) Connect noise that includes small noise between line and earth. (When there is much noise, connect insulated transformer.)
- (3) Isolate the contorller power, I/O devices and power devices as follows.

- (4) If using DC24V of the controller, do not connect DC24V of several power modules in parallel.
- (5) AC power cables should be compactly twisted and connected in the shortest distance.
- (6) AC power cables should be as thick as possible(2mm²) to reduce voltage drop.
- (7) AC power cables should not be installed close to main circuit cable(high voltage/high current) and I/O signal cable. They should be 100mm away from such cables
- (8) When noise penetration coure use an insulated shielding transformer or noise filter.
- (9) Wiring of each input power should be twisted as short as possible and the wiring of shielding transformer or noise filter should not be arranged via a duct.

Controller I/O device

E1 = E2

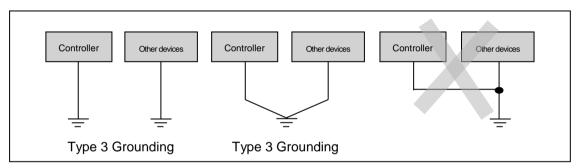
Surge absorber to prevent

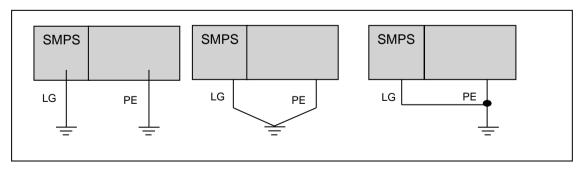

(10)To prevent surge from lightning, use the lightning surge absorber as presented below.

Note

Isolate the grounding(E1) of lightning surge absorber from the grounding(E2) of the controller. Select a lightning surge absorber type so that the max. voltage may not the specified allowable voltage of the absorber.

3.3.3 I/O Device Wiring


- (1) The size of I/O device cable is limited to 0.3~2 mm² but it is recommended to select a size(0.3 mm²) to use conveniently.
 - (2) Please isolate input signal line from output signal line.
 - (3) I/O signal lines should be wired 100mm and more away from high voltage/high current main circuit cable.
- (4) Batch shield cable should be used and the motion contoller side should be grounded unless the main circuit cable and power cable can not be isolated.


(5) When applying pipe-wiring, make sure to firmly ground the piping.

3.3.4 Grounding(LG) Wiring

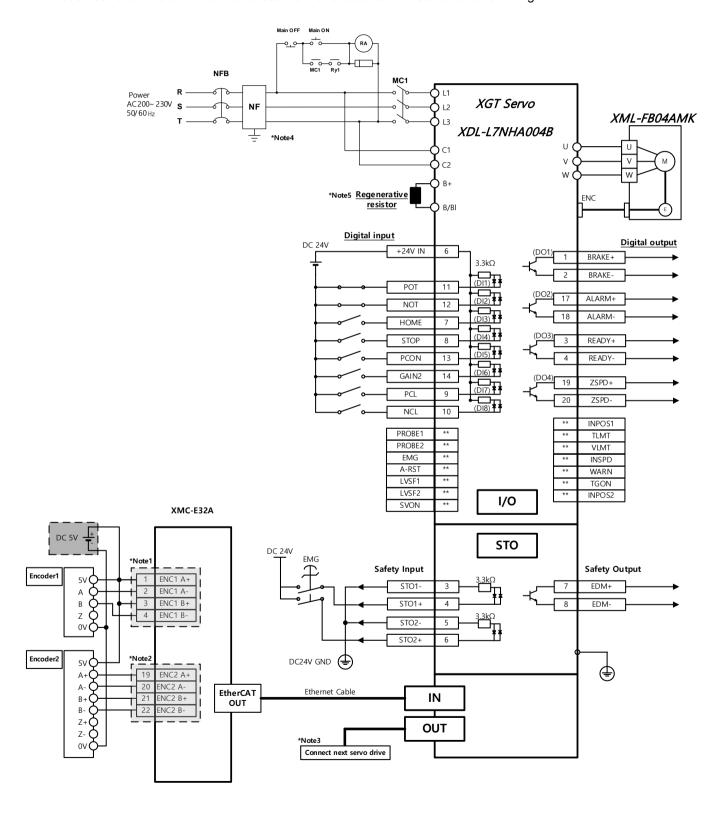
- (1) This controller has two types of grounding systems such as LG and PE.
- (2) LG () is grounding for a power filter and used as a noise countermeasure. This controller performs sufficient noise countermeasures, but it is recommended to use LG if there is no specific reason. For the location of LG, please refer to the names of each part of 2.4.1.
- (3) PE () is grounding to prevent an electric shock. It should be in contact with ground portion to prevent accidents. When Din rail is installed, it is in contact with the DIN rail. When the panel is installed, it is contact with the panel through the screw for panel installation. For the location of PE, please refer to Section 3.2.3 Installing and Removing the Motion Controller.
- (4) Please refer to the following instructions for LG grounding.
 - (a) For grounding, please make sure to use the exclusive grounding. For grounding construction, apply type 3 grounding (grounding resistance lower than 100 Ω)
 - (b) If the exclusive grounding is not possible, use the common grounding as presented in B) of the figure below.

- A) Exclusive grounding: best
- B) common grounding: good
- C) common grounding: defective
- (c) Use the grounding cable more than 2 mm². To shorten the length of the grounding cable, place the grounding point as close to the controller as possible.
- (d) If any malfunction from grounding is detected, separate the PE and LG.

- A) Exclusive grounding : best
- B) common grounding: good
- C) common grounding: defective
- (5) PE() is basically in contact with DIN rail. However, if DIN rail is coated, it may not be grounded. In this case, use a screw and connect ground wiring to the PE () terminal.

3.3.5 Specifications of Wiring Cable

The specifications of cable used for wiring are as follows.


Types of external connection	Cable specification (mm²)		
Types of external connection	Lower limit	Upper limit	
Digital input	0.18 (AWG24)	1.5 (AWG16)	
Digital output	0.18 (AWG24)	1.5 (AWG16)	
Analogue I/O	0.18 (AWG24)	1.5 (AWG16)	
Communication	0.18 (AWG24)	1.5 (AWG16)	
Main power	1.5 (AWG16)	2.5 (AWG12)	
Grounding(LG)	1.5 (AWG16)	2.5 (AWG12)	

Use the following specifications for the power cable.

Туре	Cable specification (mm²)	Thermal resistance	Thermal resistance	Screw torque
Power and protection ground	1.5 (AWG16) ~2.5 (AWG12)	Copper	60°C	0.51N•m

3.3.6 Connection Example of Servo Drive

(1) This is an example of wiring which connects EtherCAT servo drive/motor, XDL-L7NH Model of XGT Servo, in motion cotroller. Refer to manual of each drive for details on installation and wiring.

Note

*Note1

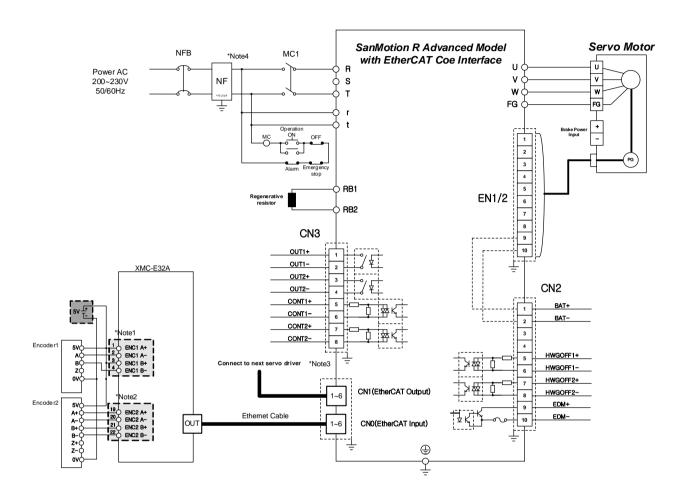
Wiring of encoder 1 is an example about 5V voltage output (open collector) type.

*Note2

Wiring of encoder 2 is an example about 5V voltage output (line driver) type.

*Note3

When connecting more than 2 servo drivers, connect first servo driver's IN to the motion controller's OUT and for other servo drivers, connect previous servo driver's OUT to next servo driver's IN. Last servo driver's OUT doesn't need to be connected. And connection order is not related with axis order.


*Note4

NF is abbreviation of Noise Filer. It is necessary to prevent the noise from coming in.

*Note 5

Use after making a short circuit between terminals B and BI as regenerative resistor of L7NHA001B~L7NHA004B (50[W], $100[\Omega]$), L7NHA008B~L7NHA010B(100[W], $40[\Omega]$), L7NHA020B~ L7NHA035B(150[W], $13[\Omega]$) is contained inside. In case of a high regeneration capacity due to frequent acceleration/deceleration, open the shorting pin(B, BI) and connect external resistor to B and BI to use.

(2) This is wiring example connecting SanMotion R Advanced Model EtherCAT servo drive/motor to motion controller. For detail on installation and wiring, refer to the driver manual.

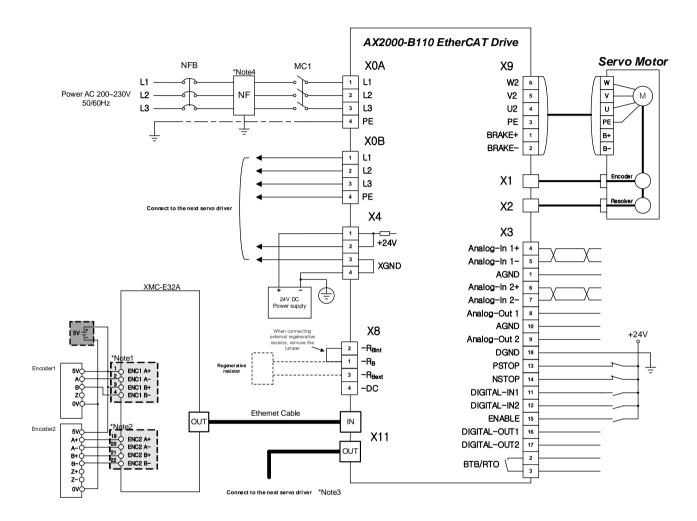
Note

*Note1

Wiring of encoder 1 is an example about 5V voltage output (open collector) type.

*Note2

Wiring of encoder 2 is an example about 5V voltage output (line driver) type.


*Note3

When connecting more than 2 servo drivers, connect first servo driver's IN to the positioning module's OUT and for other servo drivers, connect previous servo driver's OUT to next servo driver's IN. Last servo driver's OUT doesn't need to be connected. And connection order is not related with axis order.

*Note4

NF is abbreviation of Noise Filer. It is necessary to prevent the noise from coming in.

(3) This is wiring example connecting BeckHoff AX2000 servo drive/motor to motion controller. For detail on installation and wiring, refer to the driver manual.

Note

*Note1

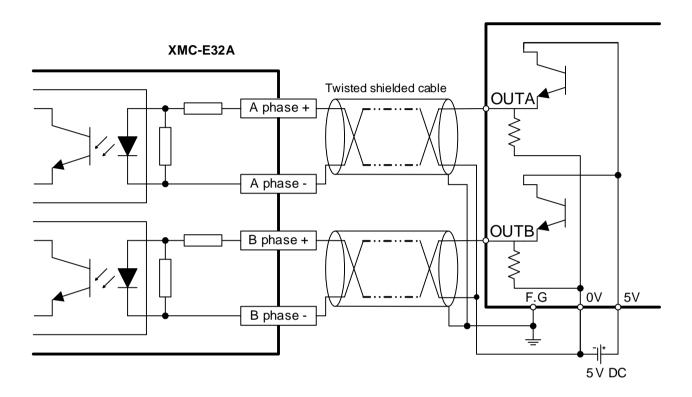
Wiring of encoder 1 is an example about 5V voltage output (open collector) type.

*Note2

Wiring of encoder 2 is an example about 5V voltage output (line driver) type.

*Note3

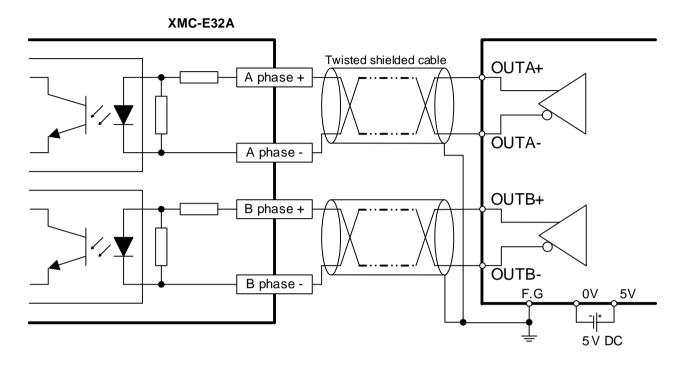
When connecting more than 2 servo drivers, connect first servo driver's IN to the positioning module's OUT and for other servo drivers, connect previous servo driver's OUT to next servo driver's IN. Last servo driver's OUT doesn't need to be connected. And connection order is not related with axis order.


*Note4

NF is abbreviation of Noise Filer. It is necessary to prevent the noise from coming in.

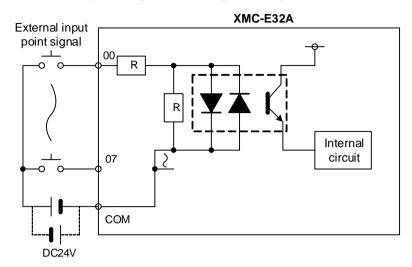
3.3.7 Encoder Input (DC5V Voltage Output) Wiring Example

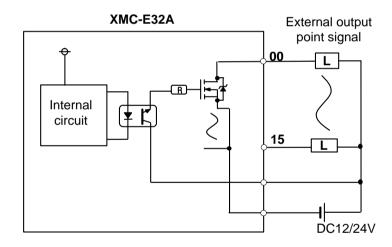
When pulseulse generator is a voltage output type, wiring example of motion controller and encoder input part is as follows.


In case pulse generator is totem-pole output and used as voltage output style, wiring is equal.

Note

Before Wiring, please consider maximum output distance of pulse generator.


3.3.8 Encoder Input (5V Line Driver Output) Wiring Example


Note

Before Wiring, please consider maximum output distance of pulse generator.

3.3.9 External Input Signal Wiring Example

3.3.10 External Output Signal Wiring Example

3.4 EMC

3.4.1 EMC Standard

(1) Reauirements for comformance to EMC directive

The EMC Directive specifies the products must "be so constructed that they do not cause excessive electromagnetic interference (emissions) and are not unduly affected by electromagnetic interference (immunity)". The applicable products are requested to meet these requirements.

This section summarizes the precautions on conformance to the EMC Directive of the machinery assembled using motion controller. The details of these precautions are based on the requirements and the applicable standards control. However, LS ELECTRIC will not guarantee that the overall machinery manufactured according to the details conforms to the below-described directives. The method of conformance to the EMC directive and the judgment on whether or not the machinery conforms to the EMC Directive must be determined finally by the manufacturer of the machinery.

(2) EMC standard

The standards applicable to the EMC Directive are listed below.

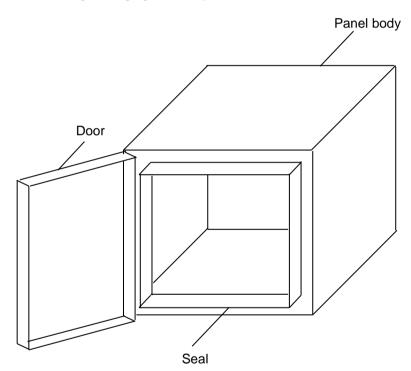
Specification	Test item	Test details	Standard value
EN50081-2	EN55011 Radiated noise * 2	Electromagnetic emissions from the product are measured	30~230 Mtz QP:50 dB μV/m * 1 230~1000 Mtz QP:57 dB μV/m
	EN55011 Conducted noise	Electromagnetic emissions from the product to the power line is measured	150~500 kHz QP : 79 dB Mean: 66 dB 500~230 kHz QP : 73 dB Mean: 60 dB
EN61131-2	EN61000-4-2 Electrostatic immunity	Immunity test in which static electricity is applied to the case of the equipment	15 kV Aerial discharge 8 kV Contact discharge
	EN61000-4-4 Fast transient burst noise	Immunity test in which burst noise is applied to the power line and signal lines	Power line: 2 kV Digital /O : 1 kV Analog I/O, signal lines: 1 kV
	EN61000-4-3 Radiated field AM modulation	Immunity test in which field is irradiated to the product	10Vm,26~1000 MHz 80%AM modulation@ 1 kHz
	EN61000-4-12 Damped oscillatory wave immunity	Immunity test in which a damped oscillatory wave is superimposed on the power line	Power line: 1 kV Digital I/O (24V or higher): 1 kV

^{* 1)} QP: Quasi-peak value, Mean: Average value

^{* 2)} The motion controller is an open type device (device installed to another device) and must be installed in a conductive control panel. The tests for the corresponding items were performed while the motio controller was installed inside a control panel.

(3) Control panel

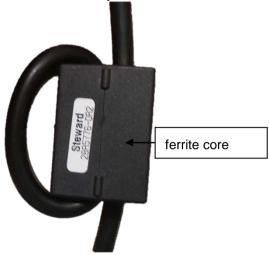
The motion controller is an open type device (device installed to another device) and must be installed in a control panel. This is needed to prevent electric shock by touching motion controller and reduce the motion controller-generated noise. Install the motion controller in a metallic panel to reduce motion controller-generated EMI (Electro-magnetic interference),


The specifications for the control panel are as follows:

1) Control panel

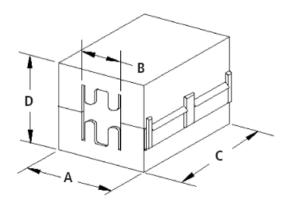
The motion controller control panel must have the following features:

- (a) Use SPCC (Cold Rolled Mild Steel) for the control panel.
- (b) The steel plate should be thicker than 1.6mm.
- (c) Use isolating transformers to protect the power supply from external surge voltage.
- (d) The control panel must have a structure which the radio waves do not leak out.


For example, make the door as a box-structure so that the panel body and the door are overlapped each other. This structure reduces the surge voltage generate by motion controller.

(e) To ensure good electrical contact with the control panel or base plate, mask painting and weld so that good surface contact can be made between the panel and plate.

2) Connection of power and earth wires


Earthing and power supply wires for the motion controller system must be connected as described below.

- (a) Earth the control panel with a thick wire so that a low impedance connection to ground can be ensured even at high frequencies.
- (b) The function of LG (Line Ground) and FG (Frame Ground) terminals is to pass the noise generated in the motion controller system to the ground, so impedance that is as low as possible must be ensured.
- (c) The earthing wire itself can generate the noise, so wire as short and thick to prevent from acting as an antenna.
- (d) Attach ferrite core under the power cable to satisfy CE specification.

[Ferrite core]

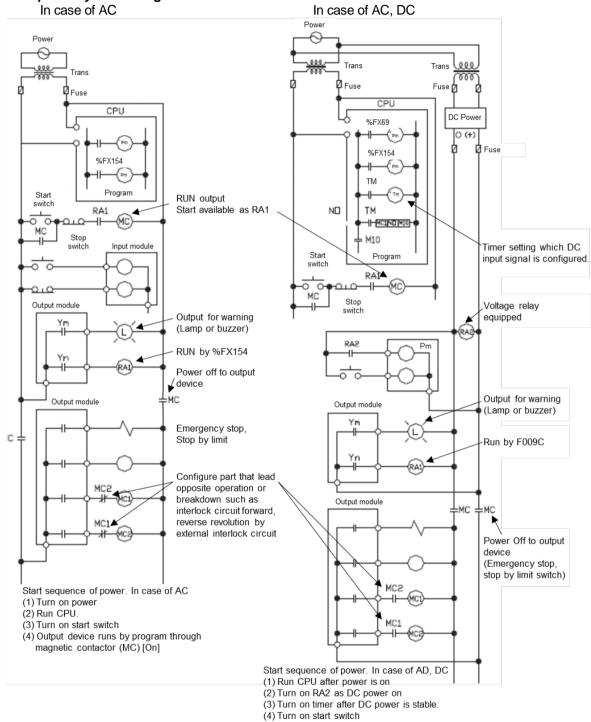
		External Dimension (mm)			nm)	Maximum	
Manufacture	Name	Α	В	С	D	cable diameter(mm)	Address
Laird	28A3851-0A2	30.00	13.00	33.70	30.00	12.85	www.lairdtech.com
Laird	28A5776-0A2	29.20	20.00	42.00	42.00	19.40	www.lairdtech.com
Coilmaster	C2L RU130B	31.50	13.00	33.00	31.50	13.00	www.coilmaster.com.tw
TDK	ZCAT3035- 1330	30.00	13.00	34.00	30.00	13.00	www.tdk.com

Chapter3 Operation Order and Installation

(4) Requirement to conform to eh Low-Voltage directive

The low-voltage directive requires each device that operates with the power supply ranging from 50V to 1000VAC and 75V to 1500VDC to satisfy the safety requirements. Cautions and installation and wiring of the motion controller series to conform to the low-voltage directive are described in this section.

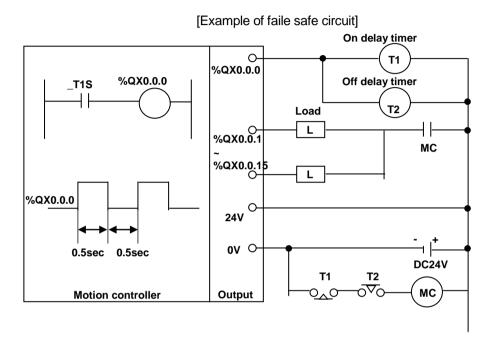
The described contents in this manual are based on the requirements and the applicable standards control. However, LS ELECTRIC will not guarantee that the overall machinery manufactured according to the details conforms to the above regulation. The method of conformance to the EMC directive and the judgment on whether or not the machinery conforms to the EMC Directive must be determined finally by the manufacturer of the machinery.


1) Standard applied for motion contorller

The motion controller follow EN6100-1 (safety of devices used in measurement rooms, control rooms, or laboratories). And the motion controller modules which operate at the rated voltage of AC50V/DC75V or above are also developed to conform the above standard.

3.5 Fail Safe

3.5.1 Fail Safe Circuit


(1) Example of system design

(5) Output device runs by program through magnetic contactor (MC) [On]

(2) Fail safe measures in case of motion controller failures

Failures of the motio controller and memory are detected by self-diagnosis but if there are some problems with I/O control part, etc, the failure may not be detected from the motion controller. In this case, it can be different depending on the failure status, all contacts may be On or Off so normal operation or safety of the controlled subject cannot be guaranteed. We have done our best to assure quality but in case there are some problems with the PLC, please configure the fail safe circuit on the outside to prevent damage of the equipment or accident due to some cause. The below is the example of system configuration with the fail sage circuit.

3.6 Maintenance

Be sure to perform daily and periodic maintenance and inspection in order to maintain the moiton controller in the best conditions.

3.6.1 Maintenance and Inspection

The I/O module mainly consists of semiconductor devices and its service life is semi-permanent. However, periodic inspection is requested for ambient environment may cause damage to the devices. When inspecting one or two

times per six months, check the following items.

Check Items		Judgment	Corrective Actions
Change rate of input voltage		Within change rate of input voltage	d it with the allowable range.
Power supply for input/output		Input/Output specification of each module	Hold it with the allowable range of each module.
	Temperat ure	0 ~ + 55℃	Adjust the operating temperature and humidity
Ambient environment	Humidity	5 ~ 95%RH	with the defined range.
GIVII GIIII GII	Vibration	No vibration	Use vibration resisting rubber or the vibration prevention method.
Play of modules		No play allowed	Securely enrage the hook.
Connecting conditions of terminal screws		No loose allowed	Retighten terminal screws.
Spare parts		Check the number of Spare parts and their Store conditions	Cover the shortage and improve the conditions.

3.6.2 Daily InspectionThe following table shows the inspection and items which are to be checked daily.

Che	ck Items	Check Points	Judgment	Corrective Actions
Connection conditions of base		Check the screws.	Screws should not be loose.	Retighten Screws.
		Check for loose mounting screws.	Screws should not be loose.	Retighten Screws.
Connecting conditions of terminal block or extension cable		Check the distance between solderless terminals.	Proper clearance should be provided.	Correct.
		Connecting of expansion cable.	Connector should not be loose.	Correct.
	PWR LED	Check that the LED is On.	On (Off indicates an error)	
	Run LED	Check that the LED is On during Run.	On (flickering or On indicates an error)	
LED	ERR LED	Check that the LED is Off during Run.	Flickering indicates an error	
indicator	Input LED	Check that the LED turns On and Off.	On when input is On, Off when input is off.	
	Output LED	Check that the LED turns On and Off	On when output is On, Off when output is off	

3.6.3 Periodic Inspection
Check the following items once or twice every six months, and perform corrective actions as needed.

C	Check Items	Checking Methods	Judgment	Corrective Actions
	Ambient temperature	- Measure with	0 ~ 55 °C	Adjust to general standard
Ambient	Ambient Humidity	thermometer and	5 ~ 95%RH	Adjust to general standard (Internal environmental
environment	Ambient pollution level	hygrometer	There should be no	standard of control section)
	Ambient pollution level	- measure corrosive gas	corrosive gases	Standard of control section)
	Looseness, Ingress	The module should be	The module should	Retighten screws or hook
	Looselless, lilgless	move the unit	be mounted securely	Religition sciews of floor
				Place the product
				horizontally so that dust
Controller	Dust or foreign material			does not enter the ventilation
conditions		Visual check	No dust or foreign	holes, and remove dust or
			material	foreign material with a dry
				cloth. Be careful not to let
				foreign material into the
				ventilation holes.
	Loose terminal screws	Re-tighten screws	Screws should not be loose	Retighten
Connecting conditions	Distance between terminals	Visual check	Proper clearance	Correct
CONGRETE	terrinais		Connectors should	Retighten connector
	Loose connectors	Visual check	not be loose.	mounting screws
		Measure voltage between	3.3 Power	mounting objection
Line voltage check		input terminals	specifications	Change supply power

3.7 Troubleshooting

The following explains contents, diagnosis and corrective actions for various errors that can occur during system operation.

3.7.1 Basic Procedure of Troubleshooting

System reliability not only depends on reliable equipment but also on short downtimes in the event of fault. The short discovery and corrective action are needed for speedy operation of system. The following shows the basic instructions for troubleshooting.

(1) Visual checks

Check the following points.

- Machine operating condition (in stop and operation status)
- Power On/Off
- Status of I/O devices
- Condition of wiring (I/O wires, extension and communications cables)
- Display states of various indicators (such as POWER LED, RUN LED, ERR LED and I/O LED)

After checking them, connect peripheral devices and check the operation status of the motion controller and the program contents.

(2) Trouble Check

Observe any change in the error conditions during the following.

- Switch to the STOP position, and then turn the power on and off.
- (3) Narrow down the possible causes of the trouble where the fault lies, i.e.:
 - Inside or outside of the motion controller?
 - I/O module or another module ?

Symptoms

Motion program ?

3.7.2 Troubleshooting

This section explains the procedure for determining the cause of troubles as well as the errors and corrective actions.

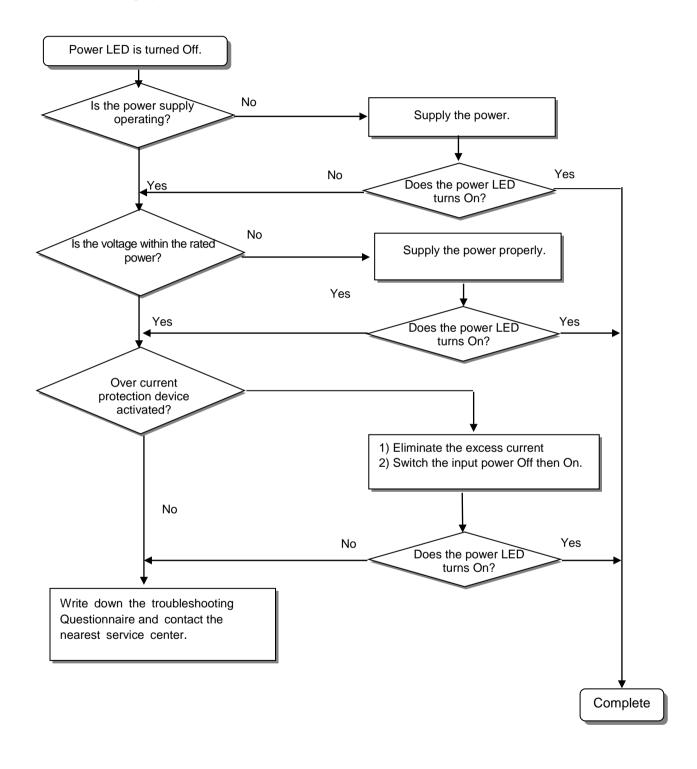
Is the power LED turned

Is the ERR LED flickering?

Flowchart used when the ERR LED is turned Off.

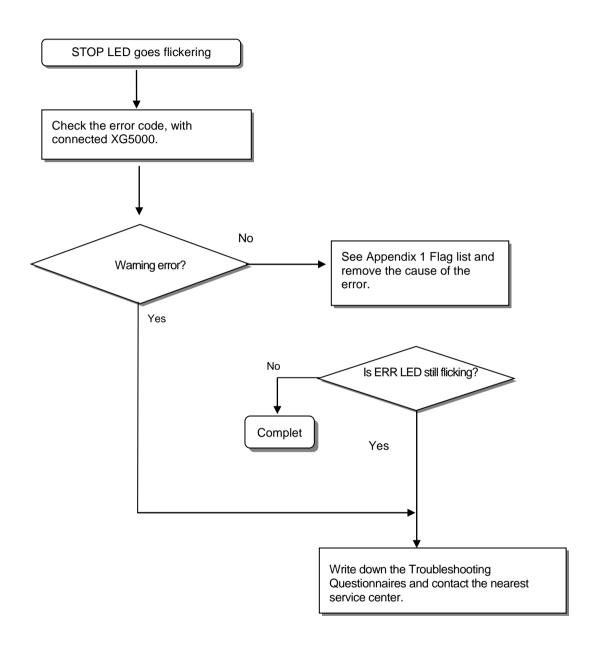
Flowchart used when the ERR LED is flickering.

Flowchart used when the RUN turned Off.


Flowchart used when the output load of the output module

Flowchart used when a program can't be written to the

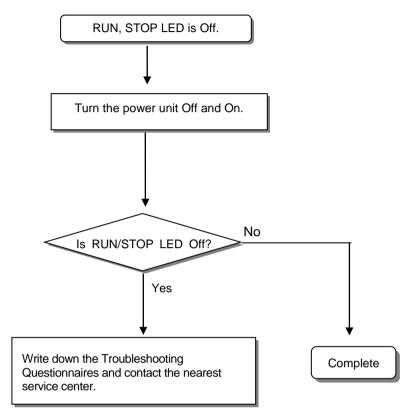
motion controller.


(1) Troubleshooting flowchart used when the PWR (Power) LED turns Off

The following flowchart explains corrective action procedure used when the power is supplied or the power LED turns Off during operation.

(2) Troubleshooting flowchart used with when the ERR (Error) LED is flickering

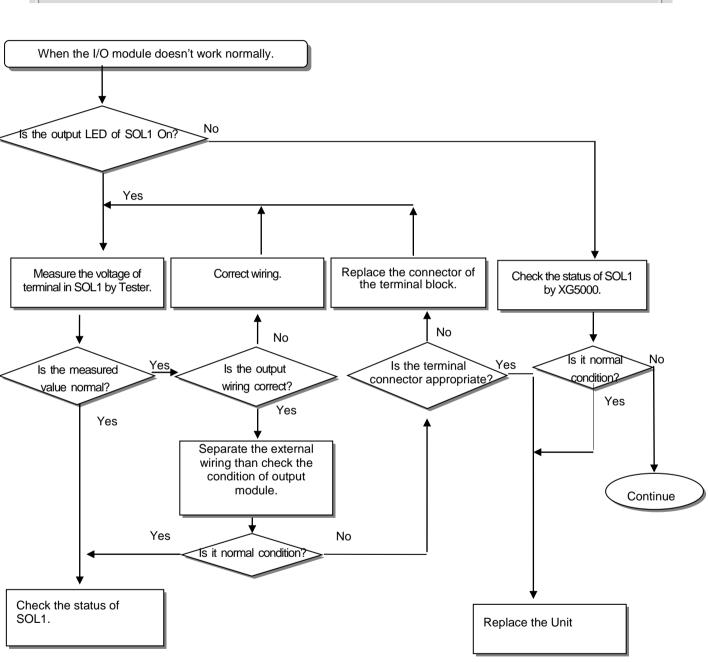
The following flowchart explains corrective action procedure used when the power is supplied starts or the ERR LED is flickering during operation. The following flowchart explains corrective action procedure used when the power is supplied or the power LED turns

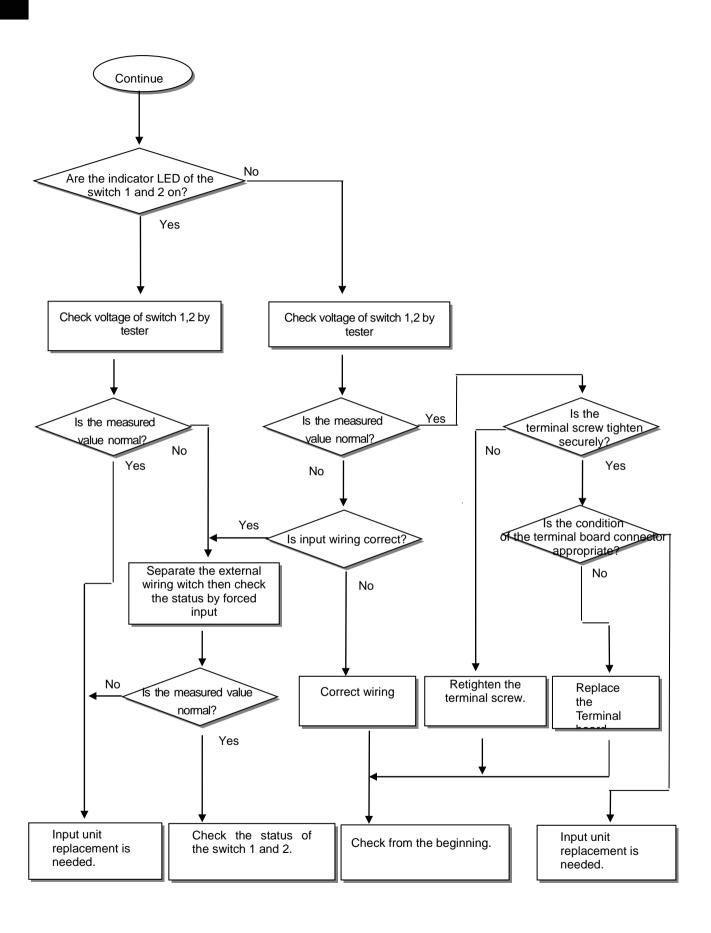


Note

Though warning error appears, motion controller system doesn't stop but corrective action is needed promptly. If not, it may cause the system failure.

(3) Troubleshooting flowchart used with when the RUN, STOP LED turns Off.


The following flowchart explains corrective action procedure to treat the lights-out of RUN LED when the power is supplied, operation starts or is in the process.



(4) Troubleshooting flowchart used when the I/O part doesn't operate normally

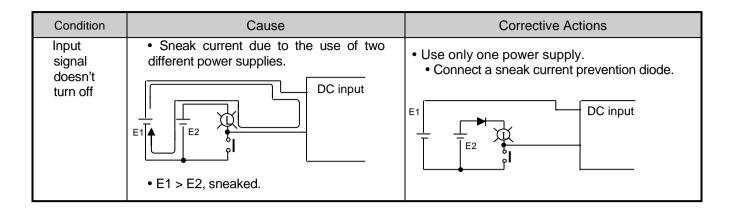
The following flowchart explains corrective action procedure used when the I/O module doesn't operate normally.

3.7.3 Troubleshooting Questionnaire

If any problem occurs during the operation of motin controller, please write down this Questionnaire and contact the service center via telephone or facsimile.

 Fr 	or errors relating	r to special c	or communication modules,	use the guestionnair	e included in the L	Iser's manual of the unit
٠,		g to opeoidi c	or communication modules,	ase the question hair		Joor o manaan or the arm.

1. Telephone & FAX No Tell)	FAX)	
2. Using equipment model:		
3. Details of using equipment Controller model () OS version No. (XG5000 (for program compile) version No. () Serial No. ()


- 4. General description of the device or system used as the control object:
- 5. The kind of the motion controller
 Operation by the mode setting switch ()
 Operation by the XG5000 or communications ()
- 6. Is the ERR. LED of the motion controller turned On? Yes (), No ()
- 7. XG5000 error message:
- 8. History of corrective actions for the error message in the article 7:
- 9. Other tried corrective actions:
- 10. Characteristics of the error
- Repetitive (): Periodic (), Related to a particular sequence (), Related to environment ()
- Sometimes (): General error interval:
- 11. Detailed Description of error contents:
- 12. Configuration diagram for the applied system:

3.7.4 Troubleshooting Example

Possible troubles with various circuits and their corrective actions are explained.

(1) Input circuit troubles and corrective actions
The followings describe possible troubles with input circuits, as well as corrective actions.

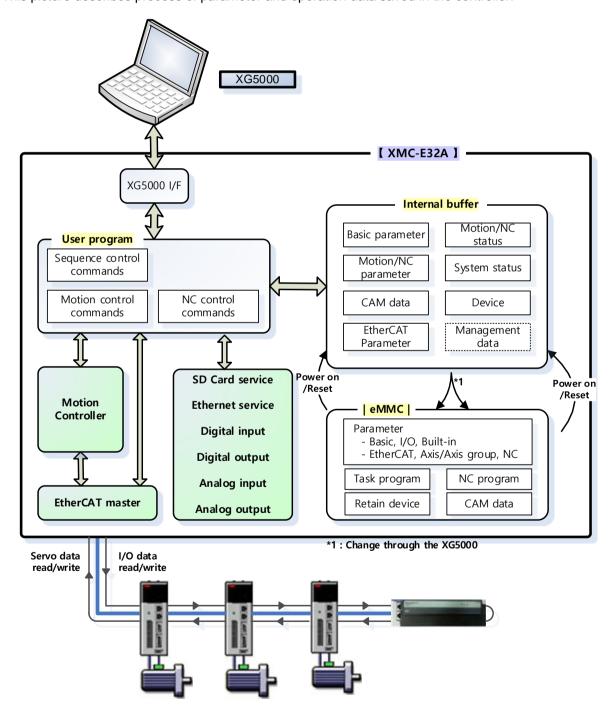
Condition	Cause	Corrective Actions
Input signal doesn't turn off.	Leakage current of external device (Such as a drive by non-contact switch)	Connect an appropriate register and capacity, which will make the voltage lower across the terminals of the input module.
	AC input C Leakage current External device	AC input
Input signal doesn't turn off (Neon lamp may be still on)	Leakage current of external device (Drive by a limit switch with neon lamp) AC input External device	 CR values are determined by the leakage current value. Recommended value C: 0.1 ~ 0.47 μF R: 47 ~ 120 Ω (1/2W) or make up another independent display circuit.
Input signal doesn't turn off.	Leakage current due to line capacity of wiring cable. AC input	Locate the power supply on the external device side as shown below. AC input
	Leakage current External device	External device
Input signal doesn't turn off.	Leakage current of external device (Drive by switch with LED indicator)	Connect an appropriate register, which will make the voltage higher than the OFF voltage across the input module terminal and common terminal.
	Leakage current External device	DC input

3.7.5 Output Circuit and Corrective Actions

The following describes possible troubles with output circuits, as well as their corrective actions.

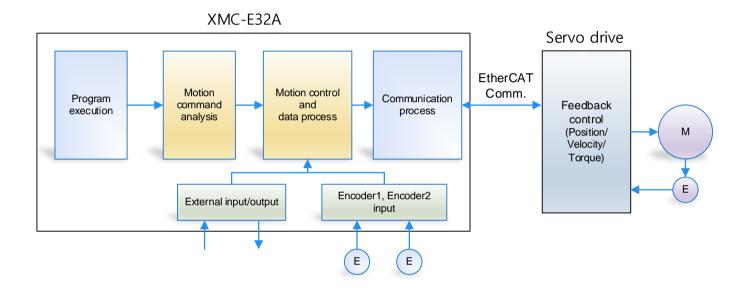
Condition	Cause	Corrective Action
Condition When the outp ut is off, exces sive voltage is applied to the I oad.	Load is half-wave rectified inside (in some cases, it is true of a solenoid) When the polarity of the power supply is as shown in ①, C is charged. When the polarity is as shown in ②, the voltage charged in C plus the line voltage are applied across D. Max.	Corrective Action • Connect registers of tens to hundreds KΩ across the load in parallel.
	voltage is approx. 2√2. C Load Load	
	*) If a resistor is used in this way, it does not	
	pose a problem to the output element. But it may make the performance of the diode (D), which is	
	built in the load, drop to cause problems.	

Condition	Cause	Corrective Action
The load doesn't turn off	Leakage current by surge absorbing circuit, which is connected to output element in parallel. Output Load Leakage current C Leakage current C	• Connect C and R across the load, which are of registers of tens $K\Omega$. When the wiring distance from the output module to the load is long, there may be a leakage current due to the line capacity.
When the load is C-R type timer, time constant fluctuates	Leakage current by surge absorbing circuit, which is connected to output element in parallel. Output Load Leakage current C Leakage current	Drive the relay using a contact and drive the C-R type timer using the since contact. Use other timer than the C-R contact some timers have half-ware rectified internal circuits therefore, be cautious. Timer Outpu
The load does not turn off	Sneak current due to the use of two different power supplies. Output Load E1 <e2, (e2="" e1="" is="" off="" on),="" sneaks.="" sneaks.<="" td=""><td>Use only one power supply. Connect a sneak current prevention diode. Output Load If the load is the relay, etc, connect a counterelectromotive voltage absorbing code as shown by the dot line.</td></e2,>	Use only one power supply. Connect a sneak current prevention diode. Output Load If the load is the relay, etc, connect a counterelectromotive voltage absorbing code as shown by the dot line.


Condition	Cause	Corrective actions
The load off response time is long	Over current at off state [The large solenoid current fluidic load (L/R is large) such as is directly driven with the transistor output.	Insert a small L/R magnetic contact and drive the load using the same contact.
	• The off response time can be delayed by one or more second as some loads make the current flow across the diode at the off time of the transistor output.	Outpu 0 0 Load
Output transistor is destroyed.	Surge current of the white lamp on. Output E1 A surge current of 10 times or more when turned on.	• To suppress the surge current make the dark current of 1/3 to 1/5 rated current flow. Outpu Sink type transistor output Source type transistor output

Chapter 4 Motion Control Operation

This chapter describes structure, parameter and device of motion controller.


4.1 Structure of Motion Controller

This picture describes process of parameter and operation data saved in the controller.

4.2 Configuration of Motion Control

Motion controller can control up to 32 axes of actual motor axis and 4 virtual axes through EtherCAT. Among 32 axes, you can control the axes that are not connected to the slave by setting them as virtual axes and 4 axes are provided for the virtual axes only. In addition to the built-in 8-point input and 16-point output, up to 64 EtherCAT I/O(including the axes) can be controlled. Motion control block diagram of motion controller is shown below.

4.3 Motion Control Tasks

The following describes tasks of the motion controller.

4.3.1 Types of Tasks

There are 3 types of motion control tasks: main task, periodic task and initialization task.

The main task completes the motion within the period set by the user, and it performs I/O refresh, program process, motion control and processes EtherCAT synchronous communication. The set period of the main task is 1/2/4ms, and it can be set in the basic parameter of the motion controller.

The period of the periodic task can be set in multiples of the main task's period set by the user, and the periodic task is processed in the remaining time after the main task is completed during the period of each task.

Therefore, the periodic task can be performed over a number of main task periods.

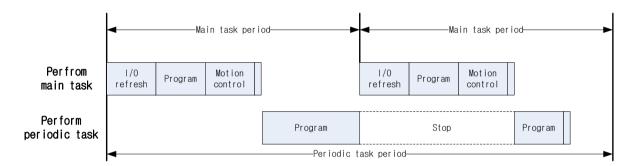
The initialization task is only performed once at the beginning when the motion controller is entering the RUN mode,

and it is normally used for setting the initial data of the system and the parameter.

Types of Tasks	Number of Programs	Motions
Main task	· • • • • • • • • • • • • • • • • • • •	 It performs I/O refresh, processing of programs assigned to main task and motion control. It performs the above tasks at a time for each of the established control period (main task cycle). It has higher priority than periodic task. It uses programs that require synchronized control and high-speed operation processing through allocation since it is possible to process program fast. Period possible to be set: 1ms, 2ms, 4ms
Periodic task	Up to 256	 It performs processing of programs assigned to main task. It is performed for the remaining time after implementation of main task operation within the control period, and can be performed over multiple cycles. Since it has lower priority than main task in the execution of motion control commands within main task program, the motion control commands executed in the main task program are processed first. It uses programs of processing other monitoring data and control of device that doesn't require high-speed processing through allocation. Period possible to be set: 1ms ~ 100ms (Set to a multiple of the main task cycle)
Initialization task		 It performs processing of programs assigned to the initialization task after implementing I/O refresh. It is performed only once at the time of entering the RUN mode. It is executed first when entering RUN mode. If the initial task completion (_INIT_DONE) flag is set by the initialization task program, the task is completed, and the execution of the main task and periodic task program starts.

Note

If the main task cycle is set outside the setting range, an error 0x0260 occurs.

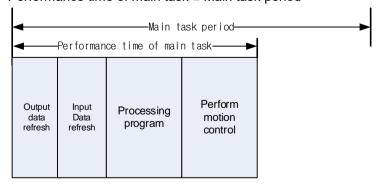

If the periodic task cycle is not set to the multiple of the main task, an error 0x0261 occurs.

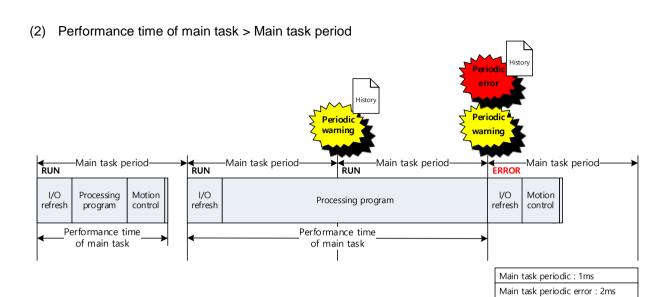
If the error occurs, check the task cycle.

4.3.2 Task Operation

1. Overall task operation

The task is composed of the main task and periodic task. The main task performs I/O refresh and processes program as well as motion control motion according to the processing of the program during the control period. The periodic task is performed in the control period in the remaining time after the main task is completed and it can be completed after going through many control periods.

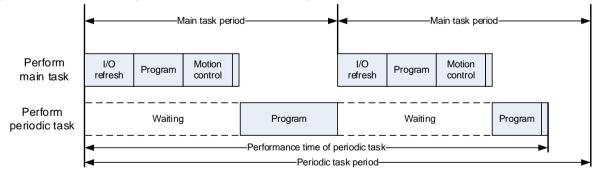



2. Main task operation

The main task must be performed in the set task period, and if the performance of the main task exceeds the set main task period, an error occurs and if motion controller is in RUN state, it is changed to STOP state.

If the main task execution is not completed during the 'main task cycle error' detection time, the operation is stopped immediately, and an error is generated if the motion controller is in the RUN state. The motion controller enters the ERR state.

(1) Performance time of main task ≤ Main task period



3. Periodic task operation

The periodic task is performed in the remaining time after performing the main task in the set control period and it can be performed over many control periods depending on the performance time of the task

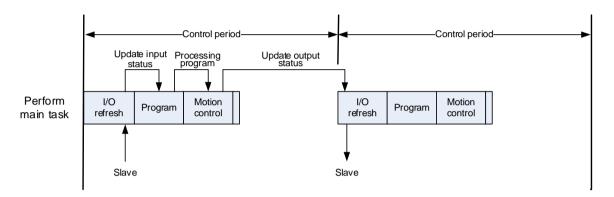
If the execution of periodic task exceeds the set periodic task cycle, a warning occurs. If the periodic task execution is not completed during the 'periodic task cycle error' detection time, the operation is stopped immediately, and an error is generated if the motion controller is in the RUN state. The motion controller enters the ERR state.

(1) Performance time of periodic task ≤ Periodic task period

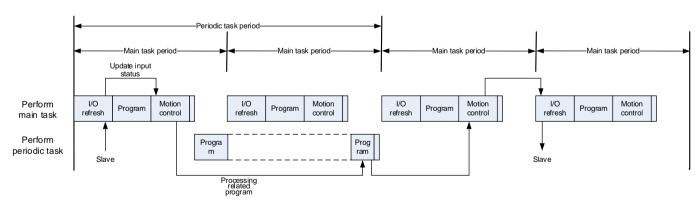
4. Initialization task operation

The initialization task is a task performed only once at the beginning when motion controller is entering the RUN mode. It is mainly used to set the initial data of the system and the parameter. The initialization task must be also performed in the set task period like the main task, and an error will occur if the performance of the initialization task exceeds the set period of the main task, and it is changed to stop state.

When using the basic function block and motion function block in the initialization task program, the function of the relevant function block may be limited. This is because it is only performed once when it enters the RUN mode due to the characteristic of the initialization task, and in the case of function block, the output parameter is not updated. Therefore, when using the basic function block and motion function block in the initialization task program, the output of the relevant function block may be different to its real function, so please take caution when in use.


Р

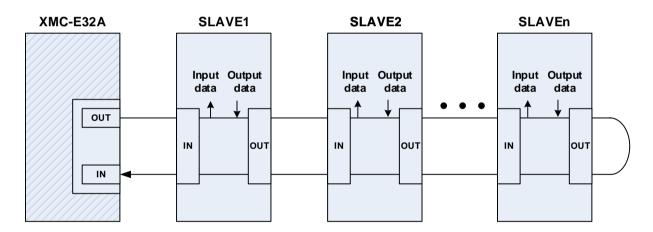
4.3.3 Execution of Motion Commands


1. Execution of motion commands in the main task

Execution of motion instruction of the main task is shown in the figure below. The input value of the slave and the system parameters are updated by the I/O refresh motion of the main task, and based on this information, the program is processed and motion control motion is performed. The outcome of the performance is output in slave module at the I/O refresh time of the next control period.

2. Execution of motion commands in the periodic task

Execution of motion instruction in the periodic task is shown in the figure below. According to the I/O refresh motion of the main task, the input value of slave and the system parameters are updated and motion control is performed in the main task based on this information. The program of the periodic task is performed by this result, and motion control is performed with this result while the main task is being performed in the control period after the performance of the periodic task. Also the outcome of this motion control performance is output in slave at the I/O refresh time of the next control period



4.4 EtherCAT Communication

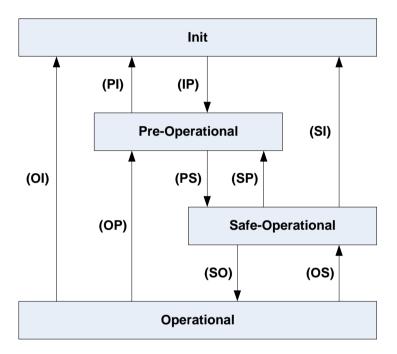
The communication of EtherCAT(Ethernet for Control Automation Technology) is explained here.

4.4.1 What is EtherCAT

EtherCAT is a high-performance industrial network system which uses Real-Time Ethernet based on the Ethernet developed by Beckhoff Company in Germany. EhterCAT is a communication between the master and the slave, and it provides a short communication cycle time by transmitting Ethernet Frame at a high speed between each nodes. When data Frame transmitted from the master to the slave passes through the slave, EtherCAT communication sends the received data to the relevant data Frame at the same time as the slave receives the transmission data. In other words, EtherCAT does not transmit data to each slave nodes of the network but passes one communication Frame to every slave in order, and each slave reads and writes Data in its relevant area in the Frame when the communication Frame passes through each slave. The communication Frame performs high speed data transmission with a structure where after going through the last slave, it turns back and passes through every slave and is transmitted to the master.

4.4.2 CoE(CANopen over EtherCAT)

Motion controller uses the slave and EtherCAT to communicate and uses CoE(CANopen over EtherCAT) as the protocol for information exchange.

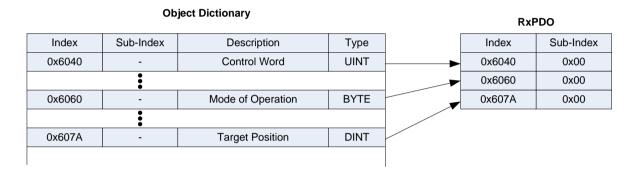

In CoE, parameter and data information of the slave are composed of Object Dictionary. Object Dictionary contains the information used in the configuration of the device and communication, and it is a group of the object (parameter) which can be accessed through the network. In the communication between master-slave using CoE, there are a communication which uses Process Data Object (PDO) and synchronously transmits information, and a Service Data Object (SDO) communication which occurs asynchronously.

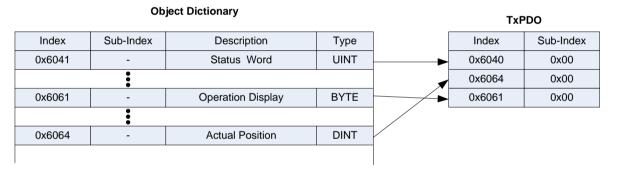
Motion controller regularly performs process data communication to receive and send input/output signal and to control the position of EtherCAT slave (servo drive). It also performs service data communication in terms of an error state in the slave and the parameter reading/writing whenever there is a request.

Types of communication	Communication time	Contents
Process Data Communication	Synchronous	servo drive position control data, input/output
(PDO Communication)	(main task period)	of data, etc.
Service Data Communication	Asynchronous	servo parameter reading/writing, servo error
(SDO Communication)	(in request)	information reading, etc.

4.4.3 EtherCAT State Machine

The state and motion between states of EtherCAT communication are shown in the figure below.




The communication between the master-slave of EtherCAT communication begins from the Initial state and progresses to the Operational state. In the motion controller, the slave servo drive can be controlled with a normal process data communication when it is in operational state.

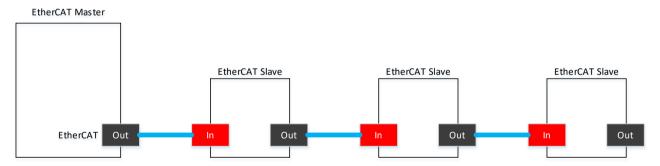
If a communication error occurs while the motion controller performs the slave and EhterCAT communication at operational state, the communication state is changed to the Initial state and the communication between the slaves is discontinued. In this case, the factor of communication error should be removed and reconnect with the slave to restart the communication.

4.4.4 EtherCAT Process Data Objective(PDO)

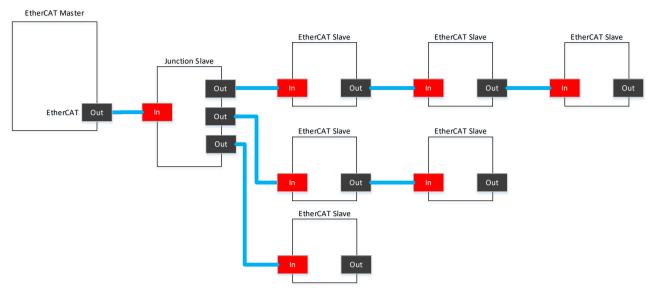
The synchronous data communication in EtherCAT communication of motion controller occurs through process data object (PDO). There are two types of process data: TxPDO which is transmitted from the slave to motion controller, and RxPDO which is transmitted from motion controller to the slave. In RxPDO and TxPDO, data which are going to be synchronous communication can be put together to be set as the example of the figure below shows among the data defined in the Object Dictionary.

Slave manufacturers sometimes set many RxPDO and TxPDO in advance and provide Slave Information File including this information in xml format. When initially setting and test operating this slave information file, it should be transmitted to the motion controller using the XG5000. This slave information file should be analyzed and communicated to the PDO data which is optimized for controlling.

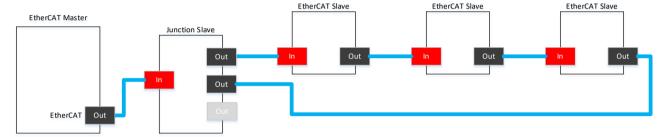
4.4.5 Specification of Motion Controller EtherCAT Communication


Item	Specification
Communication protocol	EtherCAT
Support specification	CoE(CANopen over EtherCAT)
Physical layer	100BASE-TX
Communication speed	100Mbps
Topology	Daisy Chain
Communication cable	Over Cat. 5 STP(Shielded Twisted-pair) cable
Number of maximum slave	64(Able to mapping Max. 32 drive to motion axis)
Communication period	0.5ms/1ms/2ms/4ms
Synchronous Jitter	0.5ms/1ms/2ms/4ms
Synchronous communication	PDO(Process Data Object) Mapping through CoE
Non-synchronous communication	SDO(Service Data Object) communication through CoE
Communication setting	Set the communication configuration using XG5000

4.4.6 EtherCAT Network Connection

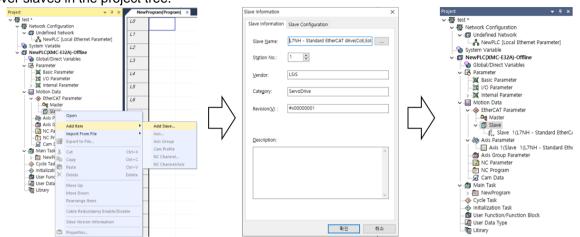

(1) Supported Topology

XMC generally constitutes a network using a daisy chain connection. It can constitute branches using junction slaves. XMC also can use cable duplication by constituting a network with rings using junction slaves.

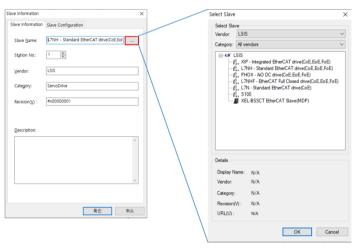

1) Not-using Branches

2) Using Branches

3) Cable Duplication Configuration

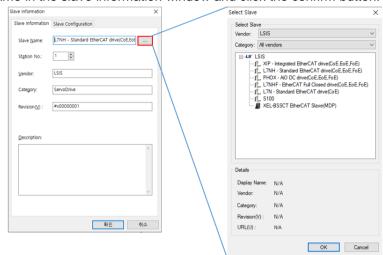


(2) Notes


- 1) When connecting to EtherCAT slaves, be careful of not connecting to In/Out in reverse.
- 2) Equipment with several junction slaves is not allowed.
- 3) When using cable duplication with junction slaves, do not use the remaining ports of the junction slave.
- 4) Junction slaves must use products that provide the EtherCAT reference clock.
- 5) When connecting to EtherCAT, configuration of the slave setting should be identical with the real configuration.

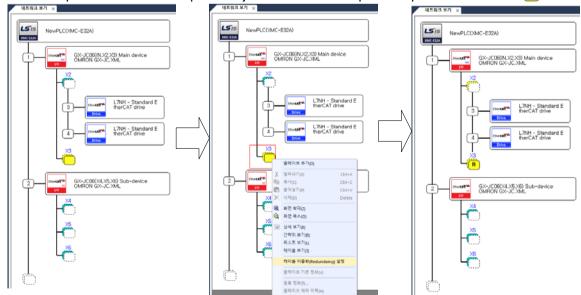
4.4.7 EtherCAT Network Setting

- (1) Set Network in the Project Tree
 - 1) To add slaves on the EtherCAT network, select "Add Items Add Slaves" by clicking on the right mouse button over slaves in the project tree.


- 2) When the slave information window displays, check a slave name, select the confirmation button and add slaves.
- 3) If adding other slaves, select slaves in the slave selection window by clicking the "..." button next to a slaves name.

- 4) Check if slaves are correctly added in the project window.
- (2) Set Network in the EtherCAT Network Screen
 - 1) Select View-EtherCAT Network from the menu.

2) Double-click in the EtherCAT Network Screen.


3) Confirm a slave name in the slave information window and click the confirm button.

- 4) When adding other slaves, click the "..." button in the slave information window.
- 5) Confirm if a slave is correctly added in the network view screen.

(3) Set Cable Duplication in the EtherCAT Network Screen

A single motion controller supports cable duplication that uses junction slaves. To use the cable duplication function, the cable duplication setting is needed for EtherCAT network parameters when supporting EtherCAT Network cable duplication.

- 1) Click and add the junction slave by clicking in the EtherCAT Network Screen.
- 2) Click that represents the port of a junction slave and add slaves to the port 2 (X2) of a junction slave.
 - 3) When adding slaves to the port 2, the display of the port changes into (, which signifies the duplication setting is possible.
- 4) Select the port 3 (X3) or the port 5 (X5) of the junction slave and click the right mouse button.
- 5) Select the Cable Duplication Setting Menu.
- 6) Confirm if duplication is set to the port of a junction slave. A duplication port is marked as (R).

4.4.8 CiA 402 Operation Mode Supported

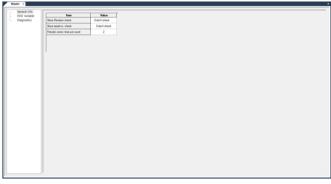
The CiA402 profile is a profile of drives and motion controllers in the Can open specification. Single motion controller

supports the CiA402 profile that supports operation modes such as CSP/CSV/CST/Homing/Velocity. To use operation modes, slaves should support the corresponding operation mode and the corresponding essential PDO should be included in the operation mode that you want to use in the slave PDO setting.

1) Essential PDO by Operation Mode

Velocity Mode	
Index	Name
6040h	Control word
6041h	Status word
6042h	vl target velocity
6044h	vl velocity actual value
CSV Mode	
Index	Name
6040h	Control word
6041h	Status word
6064h	Position actual value
60FFh	Target velocity
CST Mode	
Index	Name
6040h	Control word
6041h	Status word
6071h	Target torque
6077h	Torque actual value

Homing Mode	
Index	Name
6040h	Control word
6041h	Status word
6098h	Homing method


CSP Mode	
Index	Name
6040h	Control word
6041h	Status word
607Ah	Target position
6064h	Position actual value

2) Confirm the Supported Mode of Slaves

A Single Motion Controller provides the function that users can confirm whether to support the CiA402 profile of the connected slave. For more information see Appendix 8 EtherCAT Diagnosis Function.

4.4.9 EtherCAT Master Setting

The EtherCAT Master Setting consists of General Information/PDO Variable Information/Diagnosis Information. In the General Information Tab you can set Check Revision of Slaves when connecting to EtherCAT/Check Serial Numbers/the Number of the fixed-cycle communication timeout. In the PDO Variable Information Tab you can see all objects mapped to the PDO of the current slave at a glance and monitor a real value while on-line. In the Diagnosis Information Tab you can see status diagnosis flags of slaves at a glance. For more information about the EtherCAT Master Setting see Chapter 5 Memory, Parameter and I/O Signal - (4) EtherCAT Parameter. For more information about EtherCAT Diagnosis Information see Appendix 8 EtherCAT Diagnosis Function.

In the EtherCAT Slave Setting you can perform Whether to Use the DC of Slaves/PDO Setting/Market Demand Setting. For more information see Chapter 5 Memory, Parameter and I/O Signal - (4) EtherCAT Parameter.

4.4.10 EtherCAT Slave Setting

The EtherCAT Slave Setting consists of General Information/PDO Setting/SDO Parameter/Start Command/On-line Service. In the General Information Tab you can set Whether to Use the DC of Slaves/DC Shift Time/Whether to Use the Replace Function during Connection. The PDO Setting Tab provides the function that modifies the PDO mapping information of slaves. The SDO Parameter Tab shows objects registered with the object dictionary of slaves and provides an EEPROM storage function and a modification function during operation. In the Start Command Tab, you can set the initial operation when connecting by specifying the SDO write operation according to the transition of slave status. For more information see Chapter 5 Memory, Parameter and I/O Signal - (4) EtherCAT Parameter.

4.4.11 EtherCAT Error Information Flags

A single motion controller sets error flags when an error occurs during connecting to the EtherCAT. It also provides

detailed error information by giving error information flags.

Variable	Туре	Memory Allocation	Description
_EC_COMM_ERR	BOOL	%FX65602	Command timeout error
_EC_ERR_INFO1	STRING	%FB8272	EtherCAT error information 1
_EC_ERR_INFO2	STRING	%FB8304	EtherCAT error information 2

(1) If the network setting is different from the number of slaves while connecting to EtherCAT

Variable	Error Message		
_EC_ERR_INFO1	NetConfig SlaveQtyxx Actualxx		

(2) If the network setting is different from real slaves while connecting to EtherCAT

Variable	Error Message
_EC_ERR_INFO1	Check Slave xx VendorID

(3) If the network setting is different from real slaves while connecting to EtherCAT

Variable	Error Message
_EC_ERR_INFO1	Check Slave xx Product Code

(4) If the network cables are connected differently from the setting while connecting to EtherCAT

Variable	Error Message
_EC_ERR_INFO1	Slave xx DL Statusxx

(5) If the PDO working counter error occurs while connecting to EtherCAT

Variable	Error Message
_EC_ERR_INFO1	PDO Communication Error

(6) If a slave does not respond while connecting to EtherCAT

Variable	Error Message
_EC_ERR_INFO1	ECAT Communication Error

(7) If the slave error occurs while connecting to EtherCAT

Variable	Error Message
_EC_ERR_INFO1	PDO Communication ALStatus Error
_EC_ERR_INFO2	Slave xx AL Status Codexx

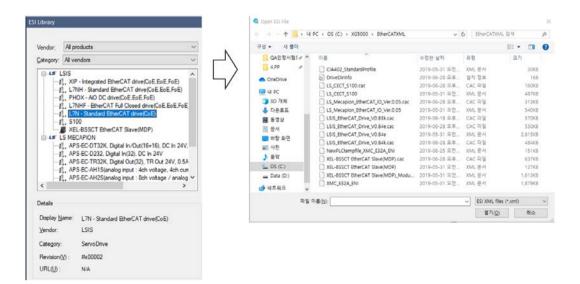
4.4.12 EtherCAT Master Status Diagnosis Flag

A single motion controller provides flags to diagnose the EtherCAT status.

Variable	Туре	Memory Allocation	Description	Cause
_EC_TRANSMITTED_OK	UDINT	%FD2084	Number of Transmitted Frames	The EtherCAT frame is damaged due
_EC_RECEIVED_OK	UDINT	%FD2085	Number of Received Frames	to noise
_EC_CRCERR_CNT	UDINT	%FD2086	CRC error frame reception	The EtherCAT frame is damaged
_EC_CARRIER_SENSE_ERR	UDINT	%FD2088	Carrier Sensor Error	Another device rather that the EtherCAT device is connected
_EC_COLLISION_CNT	UDINT	%FD2087	Number of Collision Frames	The repeater hub is connected
_EC_LINKOFF_CNT	UDINT	%FD2089	Number of Links Off	The EtherCAT cable is not connected
_EC_OVERSIZE_FRAME	UDINT	%FD2090	Oversize frame reception	The EtherCAT frame is damaged Another device rather that the EtherCAT device is connected
_EC_UNDERSIZE_FRAME	UDINT	%FD2091	Undersize frame reception	The EtherCAT frame is damaged Another device rather that the EtherCAT device is connected
_EC_JABBER_FRAME	UDINT	%FD2092	Jabber frame reception	The EtherCAT frame is damaged Another device rather that the EtherCAT device is connected
_EC_PDO_ERR_CNT_TOTAL	UDINT	%FD2097	PDO Error Count (Accumulated)	An error has occurred during PDO communication
_EC_PDO_ERR_CNT_MAX	UDINT	%FD2099	PDO Error Count (Max.)	An error has occurred during PDO communication
_EC_LOST_FRAME	UDINT	%FD2098	Number of Damaged Frames	The EtherCAT frame is damaged due to noise

4.4.13 EtherCAT Slave Status Diagnosis Flag

A single motion controller provides flags to diagnose the EtherCAT status of slaves. When errors occurred during EtherCAT communication, the diagnosis information of slaves can detect the slave with problems. For more information see Appendix 8 EtherCAT Diagnosis Function.


Variable	Description
_SLVxx_ALStatus	Shows the AL status of slave applications.
_SLVxx_ALStatusCode	Shows the error code of slave applications.
_SLVxx_DLStatus	Shows the link status information of slaves.
_SLVxx_LinkLostCount	Shows the link stop event counter for each port of slaves.
_SLVxx_InValidFrameCounterA/B/C/D	The count increases if there are errors in frame formats such as Preamble, SFD and CRC. The whole bit sequence corresponds to the damaged frame.

Variable	Description		
	Errors can occur in frames.		
_SLVxx_RxErrorCounterA/B/C/D	The count increases if individual symbols are not valid.		
	Errors can occur both in and out of frames.		
_SLVxx_ForwardedRXErrCounter	Abnormal frames detected through the previous slaves show the received		
	count.		

4.4.14 Using the Third Party EtherCAT Slave

To use the third party EtherCAT slave other than the slave basically provided by a single motion controller, the EtherCAT Slave Information (ESI) is needed first. A manufacturer of EtherCAT slaves provides the ESI file that is defined as the EtherCAT standard. Users can directly register the ESI file given by a manufacturer with XG5000. To register the ESI file there are two ways: one way that XG5000 automatically identify the ESI file and the other way that user directly registers it.

- (1) Automatic Identification of the ESI File
 - 1) End XG5000 if executing it.
 - 2) Put the ESI file in the EtherCATXML folder of the XG5000 installation folder.
 - 3) Execute XG5000.
- (2) Direct Registration of the ESI File
 - 1) Click the right mouse button in the ESI library window of XG5000.
 - 2) Select 'Add the ESI File' from the shortcut menu.
 - 3) Select the ESI file in the dialog box, 'Open the ESI File' and select the button, 'Open'.

4.5 Motion Control Program

4.5.1 Program Execution

1. Configuration of the program

Motion control program is composed of functional elements needed in performing certain controls and it is performed in the internal RAM of motion controller. The program is backed up in the flash memory.

Programs with these functional elements are classified as follows.

Program	Processing information
Main task program	Process the command which is executed in every 'main task period'.
Periodic task program	Process the command which is executed in every 'periodic task period'.
Initialization task program	Execute the command which is executed once in case of motion controller RUN.

Note

Since the motion control program is stored in eMMC when the power is off, the number of program writes is limited to 100,000 times.

Please be careful when using the program.

4.5.2 Operation Modes

1. RUN mode

This is a mode which normally performs the motion program calculation.

- (1) Processing when changing the mode
 Initialization is performed in the data area at the beginning, and possibility of performance is decided by examining the validity of the motion program.
- (2) The contents of calculation processing

 Motion program, motion command calculation, input/output data processing, and EtherCAT communication
 are performed.

2. STOP mode

This is a mode in stop state which does not perform the motion program calculation.

- (1) Processing when changing the mode Every output data is in Off state.
- (2) The contents of operation processing
 This performs EtherCAT communication.
- (3) You can execute the command executed in the command window without motion program operation. The command executed in the command window is performed, and EtherCAT communication is executed.

3. Change in operation modes

Operation mode of motion controller can be changed as follows.

Operation Mode	Remarks
In RUN	Motion controller performs program.
STOP → RUN	Motion controller changes from STOP mode to RUN mode.
STOP → RUN	Motion controller changes from RUN mode to STOP mode.
In STOP	TEST command can be performed only in case motion controller is in STOP mode in XG5000.

Chapter 5 Memory and Parameter

5.1 Memory

5.1.1 Program and Data Memory

1. Memory for the program

The configuration of the memory related to the program embedded in the motion controller is as follows.

Туре	Size	Description
Parameter	9,251KB	User parameter area
Motion program	10,240KB	User program related to motion
NC program	10,240KB	User program related to NC
Program operation table	4,478KB	Table area related to the program
System operation	47,104KB	System OS area

2. Memory for the data

The details and size of the data memory embedded in the motion controller are as follows.

	Туре		Description
	Automatic variable (A)	4,096KB	Automatic variable area
	Direct variable (M)	2,048KB	Internal device area
	Input variable (I)	16KB	Built-in digital input, TxPDO data of the EtherCAT slave
	Output variable (Q)	16KB	Built-in digital output, RxPDO data of the EtherCAT slave
User	System variable(F)	128KB	Variables related to motion control status and module operation status
device	Special variable(U)	1KB	Built-in analog operations and state variables
	Special variable(K)	18KB	SD memory, data log and encoder flag area
	Communication variable(L)*1)	22KB	P2P operation and status variable of communication module
	Communication variable (N)*1)	49KB	P2P service address area of communication module
	Others	456KB	UDF/B Internal purposes and NC Local variables
History	History		User history (error / mode / system / power / motion error)
System operation-		43,008KB	Internal operating area of the system and other functions

¹⁾ L area and N area are supported by XMC-E32C only.

5.1.2 Device

1. Types of devices

Types of device supported in motion control module are shown in the Table below.

Туре	Size	Description
Automatia variable (A)	4 00CL/D	Automatic variable area
Automatic variable (A)	4,096KB	(able to set 2,408KB of retain)
Direct veriable (C)	2,048KB	Internal device area
Direct variable (G)		(able to set 1,024KB of retain by selecting in the area of basic parameter)
Input variable (I)	16KB	Built-in digital input, TxPDO data of the EtherCAT slave
Output variable (Q)	16KB	Built-in digital output, RxPDO data of the EtherCAT slave
System variable (F)	128KB	Variables related to motion control status and module operation status
Special variable (U)	1KB	Built-in analog operations and state variables
Special variable (U)	18KB	SD memory, data log and encoder flag area
Communication variable(L)*1)	22KB	P2P operation and status variable of communication module
Communication variable (N)*1)	49KB	P2P service address area of communication module

¹⁾ L area and N area are supported by XMC-E32C only.

(1) Automatic variable

- (a) This is a variable to be automatically assigned the position of variables by compiler; user does not need to specify the position of internal variable. The variables, which user sets but does not assign specific position, are assigned to automatic variable.
- (b) The automatic variables that do not have Retain Settings are initialized to 0 when power is applied again or at Stop-to-Run.

(2) Direct variable

(a) This is a variable which user forces the position of memory to be assigned by using the name and number of a device directly.

(b) The range of address assignment where direct variable is available is as follows.

Size of Variable	Designated range of Variable address
X(Bit)	%MX0 ~ %MX16777215
B(Byte)	%MB0 ~ %MB2097151
W(Word)	%MW0 ~ %MW1048575
D(Double Word))	%MD0 ~ %MD524287
L(Long Word))	%ML0 ~ %ML262143

(3) Input variable

- (a) This is a variable assigned to built-in digital input and TxPDO of EtherCAT slaves.
- (b) Built-in digital input is 8 points.
- (c) Input variable is expressed as follows.

%l[size prefix]n

Number	Description
Size prefix	X(1 bit), B(1 byte), W(1 word), D(1 double word), L(1 long word)
n	n data based on [size prefix] among data

%I[size prefix]n1.n2.n3

Number	Description
Size prefix	X(1 bit), B(1 byte), W(1 word), D(1 double word), L(1 long word)
n1	0~127 block assigned
n2	0~15 block assigned
n3	64 bit assigned. n3 data based on [size prefix]

Example) %IW64 = %IB128 = %IW1.0.0 = %IB1.0.0, %IW1 = %IB2 = %IW0.0.1 = %IB0.0.2

(d) Device depending on the input variable expression is assigned as follows.

Device	Description
%IX0	Built-in digital input 0
%IX1	Built-in digital input 1
%IX2	Built-in digital input 2
%IX3	Built-in digital input 3
%IX4	Built-in digital input 4
%IX5	Built-in digital input 5
%IX6	Built-in digital input 6
%IX7	Built-in digital input 7
%IW64~	TxPDO mapping data of EtherCAT slaves

(4) Output variable

- (a) This is a variable assigned to built-in digital output and RxPDO of EtherCAT slaves.
- (b) Built-in digital output is 16 points.
- (c) Input variable is expressed as follows.

%Q[size prefix]n

Number	Description
Size prefix	X(1 bit), B(1 byte), W(1 word), D(1 double word), L(1 long word)
n	n data based on [size prefix] among data

%Q[size prefix]n1.n2.n3

Number	Description
Size prefix	X(1 bit), B(1 byte), W(1 word), D(1 double word), L(1 long word)
n1	0~127 block assigned
n2	0~15 block assigned
n3	64 bit assigned. n3 data based on [size prefix]

Example) %QW64 = %QB128 = %QW1.0.0 = %QB1.0.0, %QW1 = %QB2 = %QW0.0.1 = %QB0.0.2

(d) Device depending on the output variable expression is assigned as follows.

Device	Description
%QX0	Built-in digital output 0
%QX1	Built-in digital output 1
%QX2	Built-in digital output 2
%QX3	Built-in digital output 3
%QX4	Built-in digital output 4
%QX5	Built-in digital output 5
%QX6	Built-in digital output 6
%QX7	Built-in digital output 7
%QX8	Built-in digital output 8
%QX9	Built-in digital output 9
%QX10	Built-in digital output 10
%QX11	Built-in digital output 11
%QX12	Built-in digital output 12
%QX13	Built-in digital output 13
%QX14	Built-in digital output 14
%QX15	Built-in digital output 15
%QW64~	RxPDO mapping data of EtherCAT slaves

(5) Special variable

- (a) This is a variable assigned to built-in analog input and output.
- (b) Built-in analog input is 2 channels, and built-in analog output is 2 channels.
- (c) Built-in analog variable is expressed as follows.

%I[size prefix]n1.n2.n3

Number	Description
Size prefix	X(1 bit), B(1 byte), W(1 word), D(1 double word), L(1 long word)
n1	0: Motion controller
n2	1: Built-in analog
n3	n3 data based on [size prefix] among n2 data

(d) Device depending on the analog variable expression is assigned as follows.

Built-in analog input

Variable	Туре	Device	Description
_01_AD0_ACT	BOOL	%UX0.1.16	Channel 0 Active
_01_AD0_AVGTYPE	BYTE	%UB0.1.34	Channel 0 Average type
_01_AD0_AVGVAL	WORD	%UW0.1.18	Channel 0 Average value
_01_AD0_DATA	WORD	%UW0.1.5	Channel 0 Output data
_01_AD0_DATATYPE	BYTE	%UB0.1.26	Channel 0 Output data type setting
_01_AD0_ERR	BOOL	%UX0.1.32	Channel 0 Error
_01_AD0_FILTCONST	WORD	%UW0.1.15	Channel 0 Filter constant
_01_AD0_HOLDVAL	BOOL	%UX0.1.320	Channel 0 Hold effective conversion value setting
_01_AD0_HOOR	BOOL	%UX0.1.48	Channel 0 Alarm (Upper limit)
_01_AD0_IDD	BOOL	%UX0.1.72	Channel 0 Input disconnection flag
_01_AD0_LOOR	BOOL	%UX0.1.56	Channel 0 Alarm (Lower limit)
_01_AD0_RANGE	BYTE	%UB0.1.22	Channel 0 Range setting
_01_AD0_RUN	BOOL	%UX0.1.160	Channel 0 Operation setting
_01_AD1_ACT	BOOL	%UX0.1.17	Channel 1 Active
_01_AD1_AVGTYPE	BYTE	%UB0.1.35	Channel 1 Average processing
_01_AD1_AVGVAL	WORD	%UW0.1.19	Channel 1 Average value setting
_01_AD1_DATA	WORD	%UW0.1.6	Channel 1 Output data
_01_AD1_DATATYPE	BYTE	%UB0.1.27	Channel 1 Output data type setting
_01_AD1_ERR	BOOL	%UX0.1.33	Channel 1 Error
_01_AD1_FILTCONST	WORD	%UW0.1.16	Channel 1 Filter constant
_01_AD1_HOLDVAL	BOOL	%UX0.1.321	Channel 1 Hold effective conversion value setting
_01_AD1_HOOR	BOOL	%UX0.1.49	Channel 1 Alarm (Upper limit)
_01_AD1_IDD	BOOL	%UX0.1.73	Channel 1 Input disconnection flag

Variable	Туре	Device	Description
_01_AD1_LOOR	BOOL	%UX0.1.57	Channel 1 Alarm (Lower limit)
_01_AD1_RANGE	BYTE	%UB0.1.23	Channel 1 Range setting
_01_AD1_RUN	BOOL	%UX0.1.161	Channel 1 Operation setting
_01_AD_ACT_ARY	ARRAY[01] OF BOOL	%UX0.1.16	Active per channel (Array)
_01_AD_AVGTYPE_ARY	ARRAY[01] OF BYTE	%UB0.1.32	Average type per channel (Array)
_01_AD_AVGVAL_ARY	ARRAY[01] OF WORD	%UW0.1.18	Average value per channel (Array)
_01_AD_DATATYPE_ARY	ARRAY[01] OF BYTE	%UB0.1.26	Data type setting per channel (Array)
_01_AD_DATA_ARY	ARRAY[01] OF WORD	%UW0.1.5	Output data per channel (Array)
_01_AD_ERR_ARY	ARRAY[01] OF BOOL	%UX0.1.32	Error per channel (Array)
_01_AD_FILTCONST_ARY	ARRAY[01] OF WORD	%UW0.1.15	Filter constant per channel (Array)
	ADDAY(0, 41 OF DOOL	0/11/04 000	Hold effective conversion value per channel
_01_AD_HOLDVAL_ARY	ARRAY[01] OF BOOL	%UX0.1.320	(Array) setting
_01_AD_HOOR_ARY	ARRAY[01] OF BOOL	%UX0.1.48	Alarm (Upper Limit) per channel (Array)
_01_AD_IDD_ARY	ARRAY[01] OF BOOL	%UX0.1.72	Input Disconnection flag per channel (Array)
_01_AD_LOOR_ARY	ARRAY[01] OF BOOL	%UX0.1.56	Alarm (Lower Limit) per channel (Array)
_01_AD_RANGE_ARY	ARRAY[01] OF BYTE	%UB0.1.22	Range setting per channel (Array)
_01_AD_RUN_ARY	ARRAY[01] OF BOOL	%UX0.1.160	Operation setting per channel (Array)

Built-in analog output

Variable	Туре	Device	Description
_01_DA0_ACT	BOOL	%UX0.1.24	Channel 0(Voltage) Active
_01_DA0_DATA	WORD	%UW0.1.8	Channel 0(Voltage) Input data
_01_DA0_DATATYPE	BYTE	%UB0.1.28	Channel 0(Voltage) Input data type
_01_DA0_ERR	BOOL	%UX0.1.40	Channel 0(Voltage) Error
_01_DA0_INTP	BOOL	%UX0.1.64	Channel 0(Voltage) Interpolation enabled
_01_DA0_INTPMTHD	BYTE	%UB0.1.46	Channel 0(Voltage) Interpolation method
_01_DA0_INTPTIME	BYTE	%UB0.1.48	Channel 0(Voltage) Interpolation time setting
_01_DA0_INTPVAL	WORD	%UW0.1.25	Channel 0(Voltage) Interpolation value
_01_DA0_OUTEN	BOOL	%UX0.1.112	Channel 0(Voltage) Output enable
_01_DA0_OUTSTAT	WORD	%UW0.1.21	Channel 0(Voltage) Output status setting
_01_DA0_RANGE	BYTE	%UB0.1.24	Channel 0(Voltage) Range setting
_01_DA0_RUN	BOOL	%UX0.1.168	Channel 0(Voltage) Operation setting
_01_DA1_ACT	BOOL	%UX0.1.25	Channel 1(Voltage) Active
_01_DA1_DATA	WORD	%UW0.1.9	Channel 1(Voltage) Input
_01_DA1_DATATYPE	BYTE	%UB0.1.29	Channel 1(Voltage) Input data type setting
_01_DA1_ERR	BOOL	%UX0.1.41	Channel 1(Voltage) Error
_01_DA1_INTP	BOOL	%UX0.1.65	Channel 1(Voltage) Interpolation enabled
_01_DA1_INTPMTHD	BYTE	%UB0.1.47	Channel 1(Voltage) Interpolation method
_01_DA1_INTPTIME	BYTE	%UB0.1.49	Channel 1(Voltage) Interpolation time setting
_01_DA1_INTPVAL	WORD	%UW0.1.26	Channel 1(Voltage) Interpolation value
_01_DA1_OUTEN	BOOL	%UX0.1.113	Channel 1(Voltage) Output enable
_01_DA1_OUTSTAT	WORD	%UW0.1.22	Channel 1(Voltage) Output status setting

_01_DA1_RANGE	BYTE	%UB0.1.25	Channel 1(Voltage) Range setting	
_01_DA1_RUN	BOOL	%UX0.1.169	Channel 1(Voltage) Operation setting	
_01_DA_ACT_ARY	ARRAY[01] OF BOOL	%UX0.1.24	Active stats per channel (Array)	
_01_DA_DATATYPE_ARY	ARRAY[01] OF BYTE	%UB0.1.28	Input data type per channel (Array)	
_01_DA_DATA_ARY	ARRAY[01] OF WORD	%UW0.1.8	Input data per channel (Array)	
_01_DA_ERR_ARY	ARRAY[01] OF BOOL	%UX0.1.40	Error per channel (Array)	
_01_DA_INTPMTHD_ARY	ARRAY[01] OF BYTE	%UB0.1.46	Interpolation method setting per channel (Array)	
_01_DA_INTPTIME_ARY	ARRAY[01] OF BYTE	%UB0.1.48	Interpolation time setting per channel (Array)	
_01_DA_INTPVAL_ARY	ARRAY[01] OF WORD	%UW0.1.25	Interpolation value per channel (Array)	
_01_DA_INTP_ARY	ARRAY[01] OF BOOL	%UX0.1.64	Interpolation enabled per channel (Array)	
_01_DA_OUTEN_ARY	ARRAY[01] OF BOOL	%UX0.1.112	Output enable setting per channel (Array)	
_01_DA_OUTSTAT_ARY	ARRAY[01] OF WORD	%UW0.1.21	Output status setting per channel (Array)	
_01_DA_RANGE_ARY	ARRAY[01] OF BYTE	%UB0.1.24	Range setting per channel (Array)	
_01_DA_RUN_ARY	ARRAY[01] OF BOOL	%UX0.1.168	Operation setting per channel (Array)	

Built-in analog common

Variable	Туре	Device	Description
_01_ERR	BOOL	%UX0.1.0	Motion controller error
_01_RDY	BOOL	%UX0.1.15	Motion controller ready
_01_SETTINGERR	WORD	%UW0.1.27	Setting error information

(6) Special variable

- (a) These variables are assigned to the SD memory, data log and embedded encoder flag area.
- (b) The built-in encoder input is 2 channels.
- (c) For the memory allocated to the Special Variable, please refer to the Appendix 1 Flag List 7) SD memory Flag ~ 9) Encoder Flag.

(7) System variable

- (a) These variables are assigned to the status variable of motion control status and system statues.
- (b) For details on the kinds of flags, please refer to the Appendix 1 Flag List 1) System Flag.

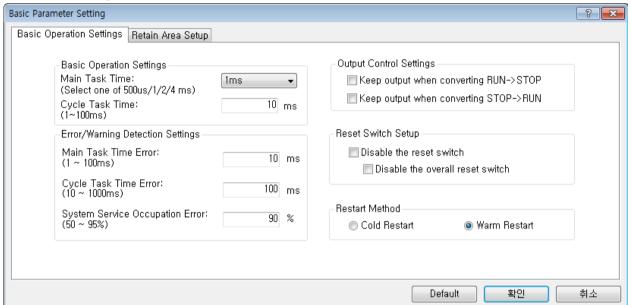
(8) Communication variable

- (a) P2P operation and status variable of communication module
- (b) For detailed flag types, refer to Appendix 1, Flag List 10) P2P Flag

2. Retain setting

Default (automatic) variable retain is used when wanting to keep and use the data that occurs while operating or the data required for an operation even in the case of restarting after the motion controller has stopped, and a certain part of the device in M area can be used as retain area by setting the basic parameter.

Characteristic table of the device which is available to set retain is shown below.


Device	Retain setting	Characteristic
Default	0	Enable retain setting when adding variable to automatical variable area
М	0	It is built-in contact area and enable retain setting at parameter
I	Х	Built-in digital input, TxPDO data of EtherCAT slaves
Q	Х	Built-in digital output, RxPDO data of EtherCAT slaves

5.1.3 Parameter

1. Basic parameter

Explain Basic parameter of the motion control module.

(1) Basic motion setting

(a) Main task cycle

- Set the motion period of the main task. The period can be set by selecting one in 0.5ms/1ms/2ms/4ms.
- Set the control time of performing in the main task of motion controller considering the execution time of program.
- When the execution time of the main task exceeds the main task period, an error occurs and if motion control module is in RUN state, it is changed to STOP state, the operation of the motion controller is stopped immediately, and an error is generated.

(b) Periodic task cycle

- Set the motion period of the periodic task. The period can be set in multiples of the main task between 1 ~ 100ms.
- The periodic task is performed in the remaining time after performing the main task in the control period, and therefore, it can be performed through a number of control periods.
- (c) Detecting cycle errors of the main task
 - It sets the run time of the main task that causes errors when the task runs beyond the set time. The setting range is 1~100ms.
- (d) Detecting cycle errors of the periodic task
 - It sets the run time of the periodic task that causes errors when the task runs beyond the set time. The setting range is 10~100ms.

(e) Task program occupancy rate warning

- If the task program occupancy rate exceeds the set value because there are many main task programs or periodic task programs, the task program occupancy rate warning occurs. It can be set in the range of 50~95%. If the task program occupancy rate exceeds 100%, the task program occupancy rate error occurs, and it changes to the ERROR state.

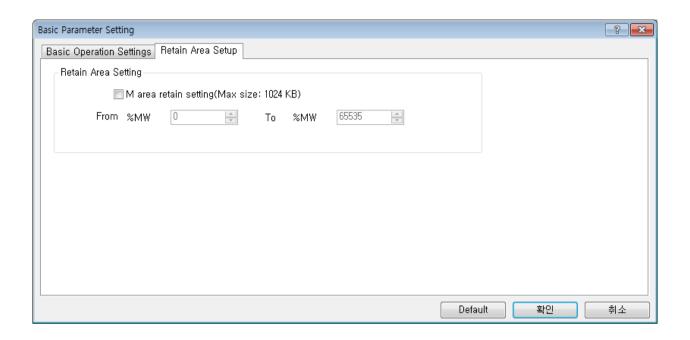
(f) Output control setting

When an error occurs in module or changing the motion mode, decide whether to maintain the data output or not.

Selection	Operation
Maintain the output when switching from	Decide whether to output the data normally during the operation mode
RUN to STOP	of motion controller is switching from RUN to STOP.
Maintain the output when switching from	Decide whether to output the data normally during the operation mode
STOP to RUN	of motion controller is switching from STOP to RUN.

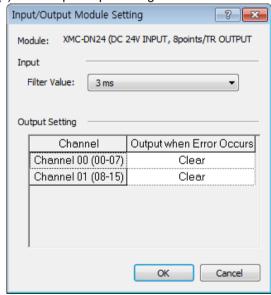
(g) Setting whether or not to turn off the Reset switch

- It sets whether or not to 'Reset' with the switch on the front panel of the product. The item can be set to 'Allowed' or 'Prohibited'.


(h) Restart mode

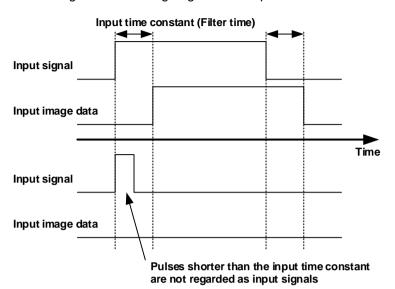
- Restart by motion controller reset or turning on the power after turning off is divided into cold restart and warm restart. With regard to restart mode, variables can be set in 3 different types such as default, initialization, and retain; and the initialization of variables set by restart mode is as follows.

Variable	Cold restart	Warn Restart
Default	Initialize to '0'	Initialize to '0'
Retain	Initialize to '0'	Retain previous value
Initialization	Initialize to user defined value	Initialize to user defined value
Retain & Initialization	Initialize to user defined value	Retain previous value


(2) Memory area setting

This is a parameter item which sets the retain area. Retain area can be set by checking the "M Area retain set" to activate retain setting. Retain can be set up to 1,024Kbyte, and if the beginning and ending addresses are set to be retain in M area, the value of relevant area is maintained even when turning off the power.

2. I/O Parameter


(1) Built-in input/output setting

(a) Input filter function

The built-in input part of the motion controller has an input filter function to prevent the external noise signal flowing into the input signal. In environments where there is a lot of noise or in the case of the equipment where the pulse width of the input signal acts as an important factor, the system may be subjected to incorrect input depending on the state of the input signal. In order to prevent such mistaken input, the input filter function does not accept the signal that is shorter than the time set by the user as input.

The input filter time can be set 1ms~100ms.

The following shows the timing diagram of the input filter function.

(b) Emergency output function

The built-in output part of the motion controller provides the emergency output function to determine whether the output state is maintained or cleared when the operation is stopped due to errors.

When the emergency output is set to 'No'(Clear), the output is turned off when the operation is stopped due to errors of the motion controller; and the output status is maintained by selecting 'Hold'.

(c) Built-in analog setting

For more details on the built-in analog, refer to Chapter 13 Built-in Analog Function.

3. Internal parameter

(1) Data log

For more details on the data log, refer to Chapter 11 Data Log Function.

(2) Encoder

Encoder parameter is explained as follows.

Item	Description	Settings	Initialize value
		0: pulse	
Encoder1 Unit Set display u	Cat display white of annual arrapaition	1: mm	0: pulse
	Set display unit of encoder position.	2: inch	
		3:degree	
Encoder1 Pulses per rotation	Set Encoder1 pulses per rotation	1 ~ 4294967295	8192 pls
	Set the movement amount of the load side	0.00000001 ~	
Encoder1 Travel per rotation	moved per encoder 1 rotation.	4294967295	10 pls

ltem	Description	Settings	Initialize value
Encoder1 Pulse input	Set the input mode in accordance with the output shape of encoder.	0: CW/CCW (x1) 1: PULSE/DIR (x1) 2: PULSE/DIR (x2) 3: PHASE A/B (x1) 4: PHASE A/B (x2) 5: PHASE A/B (x4)	3: PHASE A/B (x1)
Encoder1 Max. value		. D. W.DEAL)	2147483647 pls
Encoder1 Min. value	Set position display range of encoder.	Long Real(LREAL)	-2147483648 pls
Encoder1 speed unit	Set the encoder speed display unit.	0: Unit/sec 1: Unit/min 2: rpm	0: Unit/sec
Encoder1 input filter value	Limit the frequency of pulse input to encoder.	0: No use 1: 500kPPS 2: 200kPPS 3. 100kPPS 4: 10kPPS 5: 1kPPS 6: 0.2kPPS	0: No use
Encoder1 position filter time constant	Set the time constant (in hours) of the filter to calculate the encoder's position average.	0 ~ 1000	0 ms
Encoder 1 Position Latch	Set whether to use the Encoder 1 Position Latch function using the input contact (%IX0.0.0).	0: Disable 1: Enable	0: Disable
Encoder2 Unit	Set display unit of encoder position.	0: pulse 1: mm 2: inch 3:degree	0: pulse
Encoder2 Pulses per rotation	Set Encoder2 pulses per rotation	1 ~ 4294967295	8192 pls
Encoder2 Travel per rotation	Set the movement amount of the load side moved per encoder 1 rotation.	0.000000001 ~ 4294967295	10 pls
Encoder2 Pulse input	Set the input mode in accordance with the output shape of encoder.	0: CW/CCW (x1) 1: PULSE/DIR (x1) 2: PULSE/DIR (x2) 3: PHASE A/B (x1) 4: PHASE A/B (x2) 5: PHASE A/B (x4)	3: PHASE A/B (x1)
Encoder2 Max. value		Long Real(LREAL)	2147483647 pls
Encoder2 Min. value	Set position display range of encoder.		-2147483648 pls
Encoder2 speed unit	Set the encoder speed display unit.	0: Unit/sec 1: Unit/min	0: Unit/sec

Item	Description	Settings	Initialize value
		2: rpm	
		0: No use	
		1: 500kPPS	
		2: 200kPPS	
Encoder2 input filter value	Limit the frequency of pulse input to encoder.	3. 100kPPS	0: No use
		4: 10kPPS	
		5: 1kPPS	
		6: 0.2kPPS	
Encoder2 position filter time	Set the time constant (in hours) of the filter to	0 4000	0.000
constant	calculate the encoder's position average.	0 ~ 1000	0 ms
	Set whether to use the Encoder 2 Position	O. Disable	
Encoder 2 Position Latch	Latch function using the input contact	0: Disable	0: Disable
	(%IX0.0.1).	1: Enable	

(a) Encoder unit

This is to set the display unit of encoder position, and each control target can be set by pulse, mm, inch, and degree. In case of the synchronous operation having the encoder as a center, the unit must be set by the same unit with it of the synchronous operation axis.

Remark

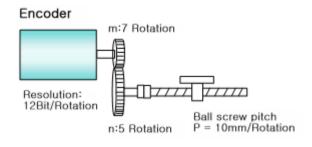
When the encoder unit is different from the synchronous operation axis, it operates by the synchronous ratio regardless of the unit.

[Setting example]

- Encoder unit: pulse
- Encoder resolution: 4096 pulse
- Unit of Synchronous operation axis: mm
- Master axis : Slave axis = 2 : 1

Encoder1 travelof synchronous operation axis per rotation = $4,096 \times 1/2 = 2,048 \text{ [mm]}$

(b) Encoder Pulses per rotation


When using mm, inch, and degree for the encoder unit, set the number of purses per encoder rotation.

(c) Encoder Travel per rotation

When using mm, inch, and degree for the encoder unit, set the amount of movement of the load side moved per encoder rotation.

[Setting Example]

When the machine which is moved by ball screw is connected to the encoder with gear, the setting of the encoder unit / Encoder Pulses per rotation / Encoder Travel per rotation is as follows.

- · Encoder unit: mm
- Encoder Pulses per rotation = Encoder resolution x

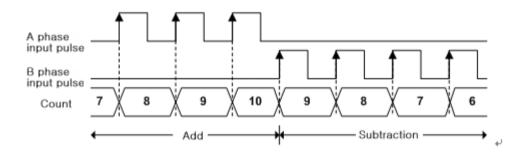
 Encoder side gear ratio

 $= 4096 \times 7$ = 28672 pls

 Encoder Travel per rotation = Ball screw pitch x Machine side gear ratio

 $= 10.0 \,\text{mm} \times 5$ $= 50.0 \,\text{mm}$

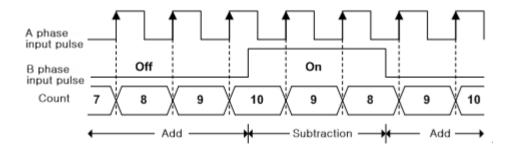
(d) Encoder Pulse input


When wanting to use the encoder signal of servo drive or manual pulse generator as an input, the signal, which is right to the output form of the encoder or manual pulse generator, can be selected to be used.

One among CW/CCW (x1), PULSE/DIR (x1), PULSE/DIR (x2), PHASE A/B (x1), PHASE A/B (x2), and PHASE A/B (x4) must be selected and set for the encoder input signal.

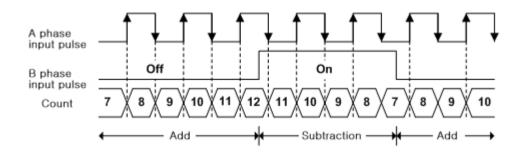
1) CW/CCW (x1)

Count operation is performed when A phase input pulse increases or B phase input pulse increases; and adding operation is performed when A phase input pulse increases in the Low input of B phase input pulse; and subtraction operation is performed when B phase input pulse increases in the Low input of A phase input pulse.

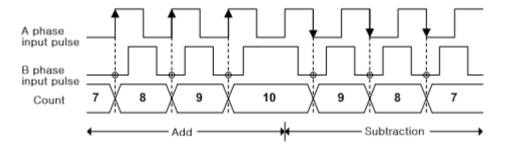

Add/Subtraction	Add/Subtraction A phase input pulse High	
B phase input pulse High	-	Subtraction count
B phase input pulse Low	Add count	-

2) PULSE/DIR (x1)

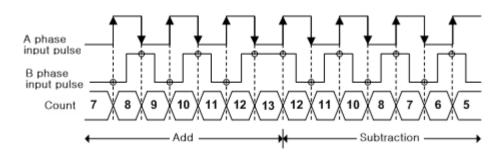
Count operation is performed when A phase input pulse increases, whether to be added or subtracted is decided by B phase.


Add/Subtraction	A phase input pulse High	A phase input pulse Low
B phase input pulse Off	Add count	-
B phase input pulse On	Subtraction count	-

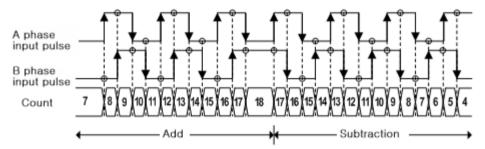
3) PULSE/ DIR (x2)


Count operation is performed when A phase input pulse increases and decreases, and whether to be added or subtracted is decided by B phase.

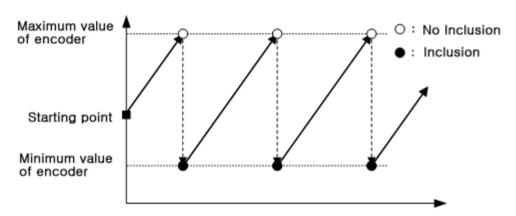
Add/Subtraction	A phase input pulse High	A phase input pulse Low
B phase input pulse Off	Add count	Add count
B phase input pulse On	Subtraction count	Subtraction count


4) PHASE A/B (x1)

Add operation is performed in case of the increase in A phase pulse when the phase of A phase input pulse is ahead of B phase input pulse, and subtraction operation is performed in case of the decrease in A phase pulse when the phase of B phase input pulse is ahead.


5) PHASE A/B (x2)

Count operation is performed when both increase and decrease in A phase input pulse. Add operation is performed when the phase of A phase is input ahead of B phase, and subtraction operation is performed when the phase of B phase is input ahead of A phase.


6) PHASE A/B (x4)

Count operation is performed in case of the increase/decrease in A phase input pulse and the increase/decrease in B phase; and add operation is performed when the phase of A phase is input ahead of B phase; and subtraction operation is performed when the phase of B phase is input ahead of A phase.



(e) Maximum and minimum values of encoder

- 1) The range of the encoder value is set to the maximum and minimum values of encoder when counting the input pulse from the encoder signal of servo drive or manual pulse generator and indicating it to encoder value.
- 2) Operations are as shown in the figure below.
 - In case of the increase in the encoder value

- In case of the decrease in the encoder value

Chapter5 Memory and Parameter

(f) Encoder speed unit

This is used to set the speed display unit of the encoder and sets the reference unit of the speed value.

When set to '0: Unit/sec', it is applied as the rate of change per second of the unit position set in 'Unit' parameter. For example, if the 'Unit' setting is mm, the speed display unit is 'mm/s'.

When set to '1: Unit/min', it is applied as the rate of change per minute of the corresponding unit position set in 'Unit' parameter. For example, if the 'Unit' setting is mm, the speed display unit is 'mm/min'.

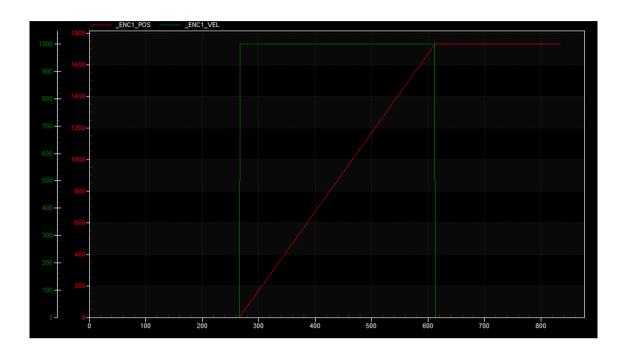
When set to '2: rpm', it is applied as the rpm. To display the rpm, it is used the values set in the 'Number of pulses per rotation' and 'Travel distance per rotation' parameter.

(g) Encoder input filter value

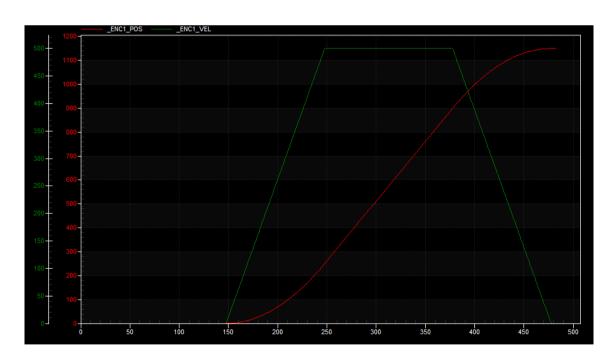
Set the filter value to limit the frequency of the pulse input to the encoder.

Possible values are 0 ~ 6 and the meaning of each value is as follows.

- 0: Does not limit the frequency of pulses input to the encoder.
- 1: Limit the frequency of the pulse input to the encoder to 500 kPPS.
- 2: Limit the frequency of the pulse input to the encoder to 200kPPS.
- 3: Limit the frequency of the pulse input to the encoder to 100kPPS.
- 4: Limit the frequency of the pulse input to the encoder to 10kPPS.
- 5: Limit the frequency of the pulse input to the encoder to 1kPPS.
- 6: Limit the frequency of the pulse input to the encoder to 0.2kPPS.


(h) Encoder position filter time constant

Set the time for calculating the position average of the encoder input from the outside. (Unit: ms) When set to '0', the position filter time constant is not applied.


If the deviation of the current position is severe, such as when the 'Unit' setting of the encoder is '0: pulse', a stable position can be obtained by applying the position average to the current position.

The following is the trace of the current position input from the external encoder. You can check the difference of the trace position according to the position filter time constant value.

1) Position filter time constant = 0 ms

2) Position filter time constant = 1,000 ms

4. EtherCAT parameter

It describes the items related to EtherCAT network settings. When modifying the EtherCAT parameters, make sure to write the EtherCAT parameters in the Project Write menu.

(1) Master

It sets the master functions related to the EtherCAT slave connection when connecting to the network.

The items for master setting are as follows.

(a) Registration Information

ltem	Description	Setting range	Initial value
Slave Revision Check	Specify whether to check the revision information of the parameter matches the revision value of the actual slave when connecting to the network.	0: Do not check 1: Check	0: Do not check
Slave Serial Number Check	Specify whether to check the serial number information of the parameter matches the serial number value of the actual slave when connecting to the network.	0: Do not check 1: Check	0: Do not check
Count of periodic communication time-out	Specify the basic number of times to generate periodic communication time-out errors	1~8	2

1) Slave Revision Check

When connecting to the network, it determines whether to proceed with the connection by comparing the revision information set in the slave parameter with the one of the actual connected slave.

The operations according to the set values are as follows.

- '0: Do not check'

The communication connection process is continued without comparing the revision information set in the slave parameter and the one in the connected slave.

- '1: Check

It compares the revision information set in the slave parameter with the one in the connected slave, and if a discrepancy is found, the network configuration mismatch error (error code: 0x0F1F) occurs and the communication connection process is terminated.

When the criteria of 'Slave Revision Check' are set to '0: Do not check', if the slave that is incompatible with the Revision of the slave parameter is connected, it may not operate normally. Therefore, make sure to check the compatibility between the Revisions before use.

2) Slave Serial Number Check

When connecting to the network, it determines whether or not to continue the connection process by comparing the serial number information set in the slave parameter and the one of the actual connected slave.

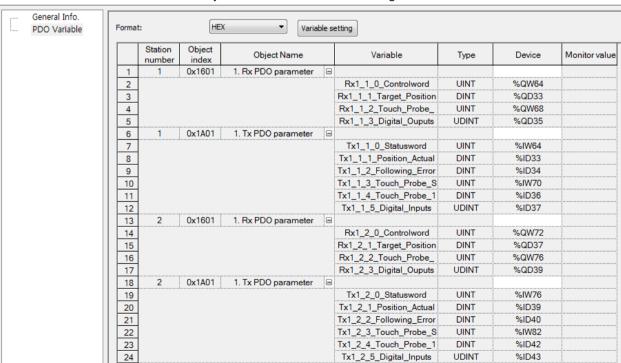
The operations according to the set values are as follows.

- '0: Do not check'

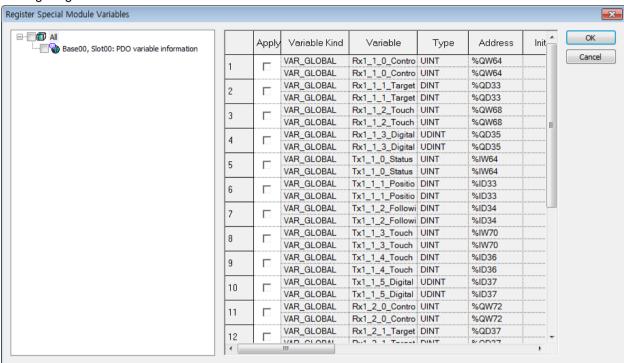
The communication connection process is continued without comparing the serial number information set in the slave parameter and the one in the connected slave.

- '1: Check'

It compares the serial number information set in the slave parameter with the one in the connected slave, and if a discrepancy is found, the network configuration mismatch error (error code: 0x0F1F) occurs and the communication connection process is terminated.


If the 'Slave Serial Number Check' is set to 1: Check', you can see the changes of the network when the network configuration order is changed or the slave is replaced so it is useful for maintenance such as resetting the slave parameters, etc. You need to reset the serial number in XG5000 to connect to the changed network configuration.

3) Count of periodic communication time-out


It specifies the basic number of times to generate time-out errors if the periodic data is not received during the periodic communication between the motion control module and the slave device. When the communication time-out error occurs frequently in various noise environments (power surges, inductive noise or noise interference between the motion control module and the slave devices' wiring, etc.), set the set value higher. The available setting range is between 1 to 8 times.

(b) PDO variable information

It shows the information on the memory allocation of PDO data of the registered slave.

If you want to register the variable name and use it in the program, you can register the variable to be used in the program by selecting "Register Variable".

(1) Slave

(a) General information

Check the information of EtherCAT slave to be used for network connection. It can be identified on the Slave Information tab displayed after executing 'Open' of each slave connected to the sub-trees of [EtherCAT parameters]-[Slave] on the XG5000 project tree. To add slaves(servo drive, EtherCAT I/O, etc.), the EtherCAT parameters should be written in the Project Write. The general information items of the slave are as follows

Item	Description	Setting range	Initial value	
Slave name	Select the slave and displays the name of	XML		
Slave name	the selected slave	AIVIL	-	
Station number	Display the station number to be applied		1(Increases automatically	
Station number	to the selected slave.	-	when adding the slave)	
Vendor	The name of the selected slave supplier	Not configurable		
vendor	is automatically displayed.	Not configurable	-	
Version	The revision of the selected slave is	Not configurable		
version	automatically displayed.	Not configurable	-	
Serial number	The serial number of the selected slave is	Not souf an makela	0x1600 PDO map	
Serial number	displayed.	Not configurable	information	
Whether DC is used	Set whether or not to use the DC of the	0: Unused	A. Head	
	slave.	1: Used	1: Used	
Replacement function Set whether the slave can be replaced 0: Unused				
during connection	during the EtherCAT communication.	1: Used	0: Unused	

1) Slave Name

It selects the slave to be connected to the motion control module and displays the name of the selected slave. L7NH servo drive is selected as the initial value when adding the slave to the slave data.

When selecting the slave, the slave information is retrieved from the XML file in the folder below to display the available list.

→ \EtherCATXML folder in XG5000 installation folder'

If there is a slave to be newly added, copy the corresponding XML file to the above folder and then, restart XG5000 or execute the 'ESI Rescan' menu which is activated by right-clicking in the 'ESI Library' window.

2) Station number

It displays the station number applied to the selected slave. The display range is from 1 to 64 and it cannot be arbitrarily changed by a user. To change the slave station number, select the slave in the project tree and among menus by right-clicking, execute the 'Properties' menu and then, change the station number on the slave information.

However, the station number is automatically set according to the order of connection when the slave is connected automatically.

3) Vendor

The vendor name of the selected slave is automatically displayed. The user cannot change it arbitrarily.

4) Version

The Revision information of the selected slave is displayed automatically. The user cannot change it arbitrarily.

5) Serial number

The serial number of the selected slave is displayed. When "Read Serial Number" is executed during EtherCAT communication, serial number of the current product is displayed.

6) Whether DC is used

If the slave supports the DC function, it is automatically set form the XML file. If you do not want to use the DC function, select '0: Unused'.

Notes

DC(Distributed Clock): It is used to synchronize the EtherCAT master with the EtherCAT slave, enabling high-precision synchronous control between the EtherCAT slaves.

The DC shares the time information between the EtherCAT master and EtherCAT slave to synchronize each slave. In order to share the time information, the first slave connected to the motion control module provides the Reference Clock. The Reference Clock distributes the time information to each slave in every communication cycle.

7) Replacement function during connection

If the slave which has been stopped due to network disconnection or abnormal operation using the cable redundancy function is recovered from the error and connected to the network, it will detect the connection. Then, it provides the connection with the network of the individual slave without reconnection of the whole network.

For more details on the function, refer to 8.3.6 'Replacement during connection'.

Chapter5 Memory and Parameter

(b) PDO settings

RxPDO sets the synchronous data which is transmitted from the motion controller to the slave in every communication cycle. The RxPDO items supported by the relevant slave are automatically set when selecting the slave. You can use the 'Edit' function to add or delete objects you want.

Notes

For the slave used as the motion axis, when editing the RxPDO object, the following objectives must be included as they are essential items used in the motion control module.

0x6040:0 Controlword 0x607A:0 Target position

The synchronous data allocated here is automatically assigned to I/O devices and it can be registered as I/O variables and referred in the user program. For example, the 'Controlworld' object of RxPDO synchronous data of L7N servo drive connected to the slave 1 is registered as I/O flag Rx1_1_0_ControlWorld (%QW64).

TxPDO sets the synchronous data read from the slave of the motion controller in every communication cycle. When selecting the slave, the TxPDO items supported by the relevant slave are set automatically. You can use the 'Edit' function to add or delete objects you want.

When editing the PDO object, the following objects must be included as they are essential items used in the motion control module.

Notes

For the slave used as the motion axis, when editing the TxPDO object, the following objectives must be included as they are essential items used in the motion control module.

0x6041:0 Statusword 0x6064:0 Actual position

The synchronous data allocated here is automatically assigned to I/O devices and it can be registered as I/O variables and referred in the user program. For example, the "Statusword" object of TxPDO synchronous data of L7N servo drive connected to the slave 2 is registered as I/O flag Tx_1_2_0_StatusWord(%IW68).

(c) SDO parameters

- Set the SDO (Service Data Object) parameters operated in the slave.
- The parameters are not stored on the motion controller but are operated on the slave.
- For the setting and operation of the parameters, refer to the Appendix 3 Setting Example.

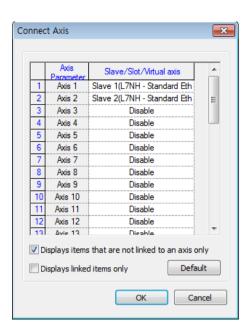
(d) 'Start' command

- It is the function to set the specific object during transition of the slave during EtherCAT connecting operation.
- It is used for initialization of the slave parameters as well as slave Rx and TxPDO address assignment and item settings.
- It is provided up to 50 per a slave.

ltem	Description	Setting range	Initial value
Transition	Set the transition process in which the object setting function operates. IP, PS, SO, SP, OP, OS		None
Index	Set the index and sub-index of the object. XML -		-
Data	Set the data to be configured for the object.	Variable depending on data type	-
Statement	Add the statement for the object you want to set.		-
Flag	Display the flag of the relevant 'Start' command.	Fixed	-

Notes The configuration of the transition follows the below EtherCAT state transition diagram. Init (IP) (PI) (SI) (IB) (BI) Bootstrap **Pre-Operational** (OP) (PS) (SP) Safe-Operational (OS) (SO) Operational

(e) Online service


- For more information on the online service, refer to Chapter 08 Motion Control Functions -8.5.FoE Functions.

5. Axis Parameter

(1) Axis/Slave connection

There are two types of axes that can be controlled by the motion controller; a real axis and a virtual axis. The actual axis is the axis allocated to the actual EtherCAT slave, and the virtual axis is arbitrarily generated and controlled within the motion controller. The slave registered as the EtherCAT slave can be assigned as the axis that can be controlled by the motion controller.

You can set the axis in the project tree by selecting [Axis parameters] - [Add item] - [Axis], or [Axis parameters] - [Axis / slave connection].

The axes can be set to "Slave", "Virtual axis", "Disabled". The axis that is set to 'Disabled' is not included in the axis parameters.

(2) Axis parameter

(a) Basic setting

Basic parameter among basic settings is explained as follows.

Item	Description	Settings	Initial value	
	Set the command position unit of the axis.	0: pulse	0: pulse	
Unit		1: mm		
Offic		2: inch	0. puise	
		3:degree		
Pulses per rotation	Set the number of pulses per rotation of motor	1 ~ 4294967295 524288 pls		
r dises per rotation	which corresponds encoder resolution.	1 ~ 4294907293	324200 pis	
Travel per rotation	Set the movement amount of the load side	ide 0.000000001 ~		
Traver per rotation	moved per rotation of motor.	4294967295	10 pls	
Speed command	Set the command around unit of the evic	0: Unit/Time	0: Unit/Time	
unit	Set the command speed unit of the axis.	1: rpm	0: Unit/Time	
Speed limit	Set the maximum speed in case of the speed	Long real(LREAL)	20000000 pls/s	
эреей шти	command of each axis.	Positive number		
Emergency stop	Set the deceleration used in the sudden stop	0 or Long real(LREAL)	0 pls/s ²	
deceleration	conditions.	Positive number	0 pla/a	
Encoder select	Set the type of encoder to be used.	0: Incremental Encoder	0: Incremental Encoder	
Elicodel select	Set the type of encoder to be used.	1: Absolute Encoder	U. Incremental Encoder	
Gear ratio(Motor)	Set the gear ratio between motor and load.	1~65535	1	
Gear ratio(Machine)	Set the year ratio between motor and load.	1~65535	1	
Operation mode of the reverse rotation	Specify the operation method in case operation direction is reversed in the input conditions of newly executed command.	0: E.Stop 1: Stop	0: E.Stop	

Item	Description	Settings	Initial value
Position Control Range Expansion	Set whether to use the used function by expanding a controllable position range when controlling positions.	I (), I)ISADI C	0: Disable

1) Unit

This is used to set the command unit during motion control, and depending on the control target, the unit of pulse, mm, inch, and degree can be set for each axis.

When changing the setting of the unit, other parameters or variable values are not changed. Therefore, when changing the units, the relevant parameters must be reset so that they can be adjusted to the setting range of the relevant unit.

2) Pulses per rotation

When using mm, inch, and degree for the motion control command units and indicating the speed in rpm, the number of pulses required per motor rotation is set to be used.

3) Travel per rotation

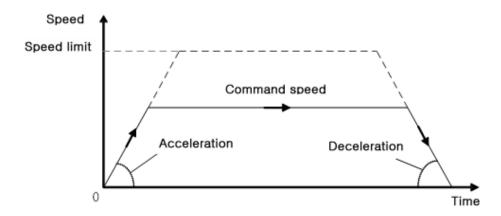
Set the movement amount of the load side per motor rotation when using mm, inch and degree for motion control command unit.

How the machine moves from a rotation of motor is determined by the structure of the machine.

4) Speed command unit

The base unit of the value of the speed used for the motion control command is set.

If it is set to '0: unit/time', it is applied by the rate of change per second form the position of the relevant unit set in the <code>\Gammaunit_unit_\]</code> parameter. For example, if the setting of the <code>\Gammaunit_unit_\]</code> is in mm, the unit of the speed command is 'mm/s'.


If it is set to '1: rpm', rpm is applied to the speed command unit. If the speed command unit is rpm and it is internally changed to the unit speed, values set in the 「Pulses per rotation」 and 「Travel per rotation」 parameters are used.

When changing the setting of the speed command unit, other parameters or variable values are not changed. Therefore, the related parameters must also be reset according to the setting range of the relevant unit.

5) Speed limit

Speed limit refers to the maximum rate of the available setting of motion control operation.

When operating the relevant axis, the operation speed should be set below the speed limit set.

6) Emergency stop deceleration

Deceleration in the event of a sudden stop sets the deceleration for situations where a sudden stop needs to be made while operating the axis due to internal or external factors.

Conditions for a emergency stop are as follows.

- In case the software upper limit/lower limit is detected
- In case the operation speed of the serve axis exceeds the speed limit in synchronized operation (gear, cam)
- In case the setting for Ferror level of tracking error is '1: alarm' and the error of tracking error occurs
- In case the emergency stop command is executed during the test operation in XG-PM
- In case an error occurs in the command executed while axis is currently operating during the checking of execution conditions (Except for occasions when restarting the command or ContinuousUpdate is activated.)

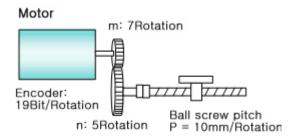
7) Encoder select

Set the type of encoder that is going to be used. When using the absolute position system, select 1: absolute encoder.

The following shows the setting of "Encoder select"

Item	Settings	Description
		After power on/off, the previous location of servo motor is not
	0: Incremental Encoder	maintained.
Encoder		After power of/off, origin fix state is off.
select		The absolute position system is activated.
	1: Absolute Encoder	After power on/off, the previous location of servo motor is maintained.
		Origin fix state maintain last condition before power on/off.

8) Gear ratio(Motor, Machine)


Set gear ratio between the motor and the load. If it is a structure that the load side rotates n times when the motor side rotates m times, set the gear ratios as below.

- Motor side gear ratio = m
- Machine side gear ratio = n

If the 「unit」 setting is '0: pulse', this parameter is invalid.

[Setting Example]

When the machine which is moved by ball screw is connected to the encoder with gear, the setting of the encoder unit/ Pulses per rotation/ travel per rotation is as follows.

- · Unit: mm
- · Pulses per rotation = 524288 (19Bit Encoder)
- Travel per rotation = Ball screw pitch = 10.0 mm

10.0

- Gear ratio(Motor) = 7
- Gear ratio(Machine) = 5

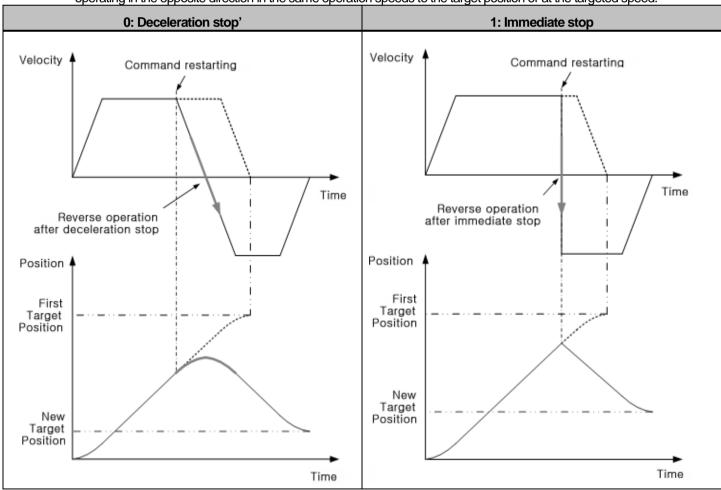
Note

If [Unit]is set to '0: pulse' in the above [Setting example], it will move to the position corresponding to the number of encoder pulses without regards to the motor side gear ratio or machine side gear ratio.

That is, the instructions of 524,288 * 7/5 = 734,003 pulse should be issued in order to move 10mm.

9) Operation mode of the reverse rotation

Specify the method of motion when the operation direction is reversed in the input conditions of newly executed commands. When starting or restarting the command which the BufferMode is Aborting, or activating ConinuousUpdate, in case where the command condition and the current operating direction are in reverse of each other, stop it by following the method set in the parameter, and start operation in the set speed.


If the BufferMode is not Aborting, it is run in the specified continuous running method in the BufferMode rather than the method set in the parameter.

- '0: Deceleration stop'

When the operation direction is reversed by the condition of newly executed command, make a deceleration pause to 0 speed and continue accelerating to the target position or operate at the targeted speed.

- '1: Immediate stop'

When the operation direction is reversed by the condition of newly executed command, stop immediately and continue operating in the opposite direction in the same operation speeds to the target position or at the targeted speed.

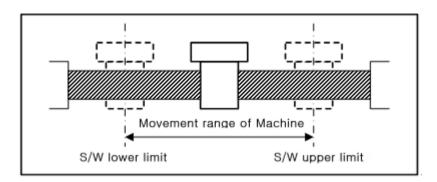
Chapter5 Memory and Parameter

10) Position Control Range Expansion

Set whether to use the used function by expanding a controllable position range when controlling positions. An error occurs when a position exceeds the position control range after converting the unit position set to LREAL into the pulse unit when specifying the target position in motion control commands.

The position control range according to the parameter setting is as follows:

Item	Setting Value	Position Control Range
Desition Control Dongs	0: Disable	Integer type 32 bits, -231 ~ 231-1 (-2,147,483,648 ~ 2,147,483,647)
Position Control Range Expansion	4. Enable	Integer type 48 bits, -247 ~ 247-1 (-140,737,488,355,328 ~
	1: Enable	140,737,488,355,327)


(b) Extended parameter

The following explains extended parameter of operation parameter

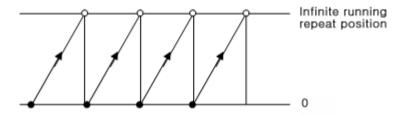
Item	Description	Settings	Initial value
S/W upper limit	Catala a managa af the a afterna line it for a time		2147483647 pls
S/W lower limit	Set the range of the software limit functions.	Long real(LREAL)	-2147483648 pls
Infinite running repeat position		Long real(LREAL) Positive number	360 pls
Infinite running repeat	Set the allowable status of infinite length repetitive operation functions.	0: Disable 1: Enable	0: Disable
Command inposition range	Set the range where inposition signal is On before completion of positioning.	0 or Long real(LREAL) Positive number	0 pls
Tracking error over-range value	Set the value to detect more than position deviation.	0 or Long real(LREAL) Positive number	0
Tracking error level	Set the error level more than deviation.	0: Warning 1: Alarm	0: Warning
Current position compensation amount	Set the compensation threshold to indicate the current position value as the target position value.	0 or Long real(LREAL) Positive number	0
Current speed filter time Set the time to calculate movement average of the current speed.		0~100	0
Error reset monitoring time	Set the monitoring time when resetting error occurred in servo drive.	1 ~ 1000	100
Software limit during speed control	Set whether the soft limit is detected during the speed control.	0: Don't detection 1: Detect	0: Don't detection
Override mode	Set the method of applying the input value, when override command is executed.	0: Ratio 1: Unit value	0: Ratio
JOG high speed		Long real(LREAL) Positive	100000 pls/s
JOG low speed	Set the values of speed / acceleration /	number	10000 pls/s
JOG Acceleration	deceleration / jerk which is referred in jog	0 or	100000 pls/s ²
JOG Deceleration	operation command	Long real(LREAL) Positive	100000 pls/s ²
JOG Jerk		number	0 pls/s ³

1) Software upper limit / Software lower limit

This is a function which sets the available range of the movement of the machine in the way of software by setting the upper limit & lower limit and allows the machine not to be operated beyond the set range. In other words, this is used to prevent a breakaway due to an error from setting the operation position and false operation that occurs from the user program error. Set the external input upper limit and lower limit beyond the range of the software upper limit and the software lower limit.

The range check of the software upper limit and lower limit is conducted at the beginning of operation and during the operation.

If the soft upper limit and lower limit is detected, an error occurs and the module suddenly stops a motor. Therefore, check the cause of the error and use it after resetting the error when restarting the operation.


If you set the software upper limit and lower limit to be the initial value (upper limit: 2,147,483,647, lower limit: -2,147,483,648) or the same value, the soft upper limit and lower limit is not be detected.

2) Infinite running repeat position

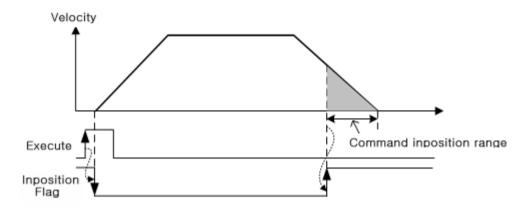
When using in infinite running repeat mode, set the position value which is repeated.

This is applied when the setting of extended parameter, Infinite running repeat parameter, is '1:Enable'.

When the 「Infinite running repeat」 parameter is '1:Enable', the command position and current position is indicated as "0~ (infinite running repeat position of -1). (「Unit」 = 0: pulse based)

3) Infinite running repeat

Set the function availability of infinite running repeat operation.


If this parameter is set to '1: Enable', the display of the command position and current position is updated periodically and automatically in the range set in the infinite length repetition position.

You must set it to '0: Disable' when you are not using the infinite running repeat operation function.

4) Command inposition range

This item sets the distance to the target position where inposition flag (_AXxx_INPOS) is On.

When starting up the motion control, the in-position flag (_AXxx_INPOS) is Off, and it is On when the current position goes inside the 「Command inposition range」 from the target position. In-position flag can be used as a trigger when executing other assistant work before completing the position control.

5) Exceeding value of tracking error

Set the value which will detect the value over position deviation. If a value exceeds this range, the 「Over deviation warning (_AXxx_DEV_WARN)」 or 「Over deviation alarm(_AXxx_DEV_ERR)」 flag is On.

If this set value is 0, it won't detect the value over the deviation. You can set whether you want it to be a warning or an alarm for over deviation in the Ferror level of tracking error of the expanded parameter.

6) Tracking error level

Set whether to make it a warning or an alarm when the value over deviation is detected.

Operations according to the set values are as follows.

- '0: Warning'

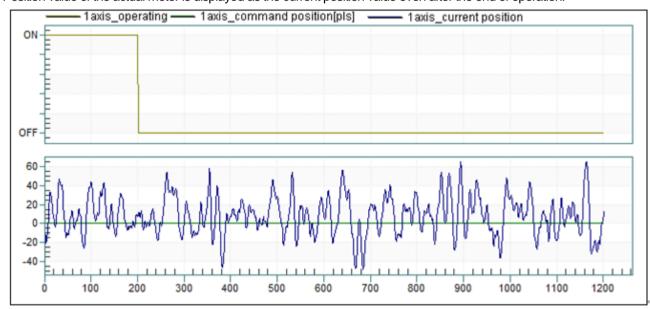
When an error occurs in tracking error, the 「Over deviation warning (_AXxx_DEV_WARN)」 flag is On, and warning error of tracking error (error code: 0x101D)) occurs. The axis does not stop and keeps operation.

- '1: Alarm'

When an error occurs in tracking error, the 「Over deviation alarm (_AXxx_DEV_ERR)」 flag is On, and the alarm error of tracking error (error code: 0x101C) occurs. The axis suddenly stops at the 「Emergency stop deceleration」 of basic parameter.

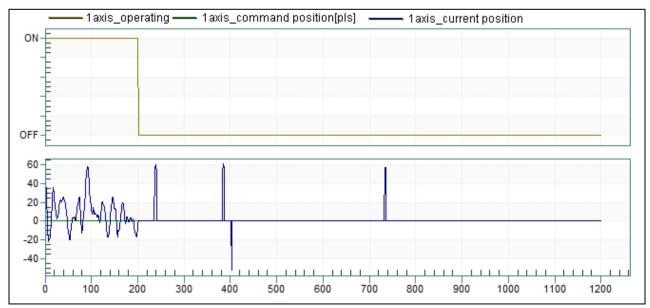
In the following situations, the error in tracking error is not examined.

- In case the 「Tracking error over-range value」 is 0
- In case of the operation in homing or torque control

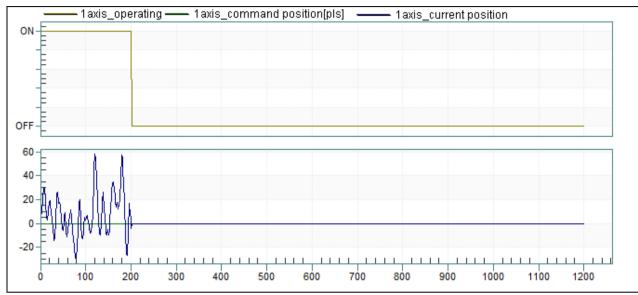

7) Current position compensation amount

Current position compensation amount is a parameter unit used to display the current position value as the command position when the servo motor's current position value is not displayed as a fixed value but changed slightly depending on the personal setting of the user application and the servo drive.

When it is not in operation and if the difference of the command position and the current position is within the amount of compensation in displaying current position, the current position value is displayed as a command position value. When it is in operation, Current position compensation amount is not reflected, and the actual position value is displayed.


The following is an example of application of Current position compensation amount according to the value of Current position compensation amount when the command position is '0'.

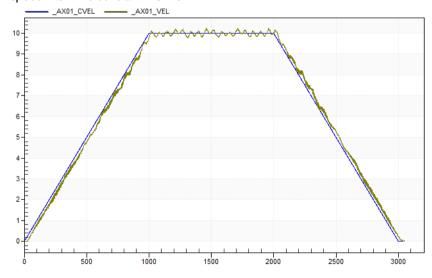
① Current position compensation amount = 0 pls Position value of the actual motor is displayed as the current position value even after the end of operation.


2 Current position compensation amount = 50 pls

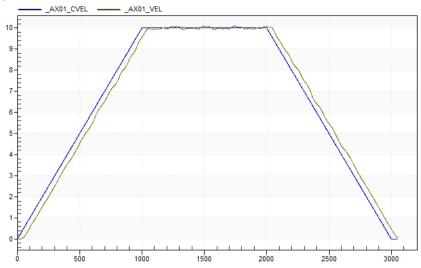
If the current position value is within ±50 of command position after the end of operation, it is displayed as the command position value.

3 Current position compensation amount = 100 pls

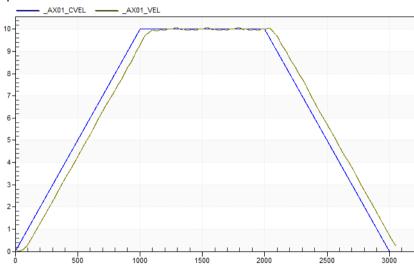
If the current position value is within ±100 of command position after the end of operation, it is displayed as the command position value.


8) Current speed filter time constant

Set the time to calculate the average of movement at current speed. (unit: ms) Current speed filter time constant is not applied if it is set to '0'.


When the speed of axis is slow or there are wide variations in current speed (ex. 「unit」 setting is '0: pulse', stable speed can be achieved by applying the average of movement to the current speed.

You can check the differences in current speed depending on the value of Current speed filter time constant in the list below which traces command speed and current speed at 10 mm/s of command speed.


① Current speed filter time constant = 0 ms

2 Current speed filter time constant = 50 ms

3 Current speed filter time constant = 100 ms

9) Error reset monitoring time

Set the monitoring time in the event of error reset occurred in the servo drive. (unit: ms) If the error which occurred in the servo drive within the error reset monitoring time, error reset monitoring is terminated and error reset time out error of servo drive (error code: 0x1070) is occurred.

10) S/W limit during speed control

When software limit is detected during the operation at fixed speed by speed control, this is used to stop the motor. Operations according to the set values are as follows.

- '0: Don't detect'

If it is under the speed control even when the software limit function is activated, software limit is not detected.

- '1: Detect'

If it is under the speed control even when the software limit function is activated, software limit is detected.

Even when the parameter value is set to '1: detect', if the software upper limit/lower limit is set to the initial value (upper limit: 2,147,483,647, lower limit: -2,147,483,648) or the same value, software limit is not detected.

11) JOG high speed / JOG low speed

Jog speed is related to the speed when operating jog which is a type of manual operation. Jog operation is divided into JOG high speed and JOG low speed.

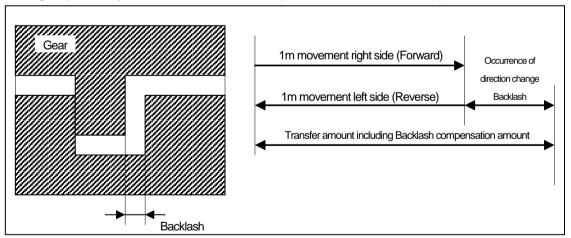
Jog is operated in the pattern with the areas of acceleration, fixed speed, and deceleration. Therefore, the acceleration area is controlled by jog acceleration time and the deceleration area is controlled by jog deceleration time.

Setting range of JOG high speed cannot exceed the speed limit. Also, JOG high speed must be the same with or bigger than JOG low speed.

12) JOG acceleration, JOG deceleration, JOG jerk

Set the values of acceleration, deceleration, and jerk which are applied in the case of JOG high speed and JOG low speed operation.

If JOG acceleration is 0, it is operated immediately at JOG set speed without acceleration area at the beginning of JOG operation.


If JOG deceleration is 0, it is stopped immediately at 0 without deceleration area at the stop of JOG operation.

If JOG jerk is 0, the form of acceleration/deceleration is in a linear as acceleration is fixed

13) Backlash Compensation Amount

If a gear, a screw and more is combined to the motor axis, the tolerance of the machine does not work by wear, when the rotation direction changes, is called 'Backlash'. Therefore, when changing the rotation direction, a backlash compensation amount should be added to the amount traveled to avoid the machine position tolerance.

As presented in the following figure, if the position is moved 1m to the right and again 1m to the left, it is not possible to reach the original position by backlash. At this time, it is required to set the backlash compensation amount.

The backlash compensation amount can be set to the pulse unit from 0 to 65535. If the 'Unit' parameter value is not '0: pulse', Please set a range as follows:

 $0 \le [Backlash compensation amount X (Pulse number per rotation / Transfer distance per rotation) X (Gear ratio on the motor / Gear ratio on the machine)] <math>\le 65535$

Note

- The 'backlash compensation amount' parameter generally operates only on the axis connected to the S axis of the NC channel, that is for the spindle axis on which the spindle device does not support the backlash compensation function. For the NC channel/axis excluding general axes and the NC S axis, use the backlash function that a servo drive supports.
- 2. The 'backlash compensation amount' is output by adding the amount traveled to the original position when the traveling direction of machine changes after becoming the origin fix state. The backlash compensation amount applies only to the position control operation such as the spindle orientation operation but does not apply to the speed control.

(c) NC Spindle Axis Setting

Explain about the NC Spindle Axis Setting of axis parameters.

Item	Description	Setting range	Initial value
		0: Disable	
	Set the method that an encoder attached to	1: Motor ENC	
Select the Spindle Encoder	a motor of the spindle axis is connected.	2: Built-in ENC1	0: Disable
	a motor of the spiritie axis is connected.	3: Built-in ENC2	
		4: EtherCAT ENC	
Number of pulses per rotation	If the 'spindle encoder selection' parameter		
of the spindle EtherCAT	setting value is '4: EtherCAT ENC', set	1 ~ 4294967295	8192 pls
encoder	number of pulses per rotation of an encoder.		
	If the 'spindle encoder selection' parameter		
Spindle EtherCAT encoder	setting value is '4: EtherCAT ENC', set the	%ID0 ~ %ID4095	%ID0
position variable/address	device where the current position of the	%MD0 ~ %MD524287	/6IDU
	encoder is saved.		
The P Gain of the Spindle	Set the P gain value that the spindle axis	1~ 500 Hz	30 Hz
Positioning Mode	uses when controlling position.	1~ 300 112	30112
The Feed Forward Gain of the	Set the feed forward gain value that the	0~ 100 %	0%
Spindle Positioning Mode	spindle axis uses when controlling position.	U~ 100 /0	0 70

1) Select the Spindle Encoder

The spindle axis is basically operated by speed control. But there are some cases where the position control operation such as the orientation operation is needed according to NC operation. Setting of the 'Spindle Encoder Selection' parameter is needed to operate the spindle axis by position control. In addition, setting of the 'Spindle Encoder Selection' parameter is needed to execute the homing operation to make the spindle axis become the origin fix state.

- 0: Disable

If the 'spindle encoder selection' parameter is '0: Disable', a spindle axis can only perform the speed control-based operation. Errors occur when running the position control operation.

- 1: Motor ENC

Set it if the position confirmation is possible by accepting the input of encoder signals of a motor on drives such as a servo drive. The position actual value (0x6064:0) object should be set in the setting of the EhterCAT Slave TxPDO.

- 2: Built-in ENC1

If confirming a position by attaching a separate encoder to the motor of the spindle axis, the position can be confirmed by connecting encoder signals to the built-in ENC1 of a motion controller.

When using the 'built-in ENC1', set the 'built-in parameter - encoder' as follows:

- Unit of Encoder 1 = 0: pulse
- Max. value of Encoder 1 = 2147483647 pls
- Min. value of Encoder 1 = -2147483648 pls

- 3: Built-in ENC2

If confirming a position by attaching a separate encoder to the motor of the spindle axis, the position can be confirmed by connecting encoder signals to the built-in ENC2 of a motion controller.

When using the 'built-in ENC2', set the 'built-in parameter - encoder' as follows:

- Unit of Encoder 2 = 0: pulse
- Max. value of Encoder 2 = 2147483647 pls
- Min. value of Encoder 2 = -2147483648 pls

- 4: EtherCAT ENC

Set it if confirming a position by attaching a separate encoder to the motor of the spindle axis and connecting it to the EtherCAT slave (high speed counter device). To confirm the encoder position value read from the EtherCAT slave, the following parameter setting is needed.

- Number of pulses per rotation of the spindle EtherCAT encoder
- Spindle EtherCAT encoder position variable/address

2) Number of pulses per rotation of the spindle EtherCAT encoder

If the 'spindle encoder selection' parameter is set to '4: EtherCAT ENC', set the resolution of the encoder attached to a motor.

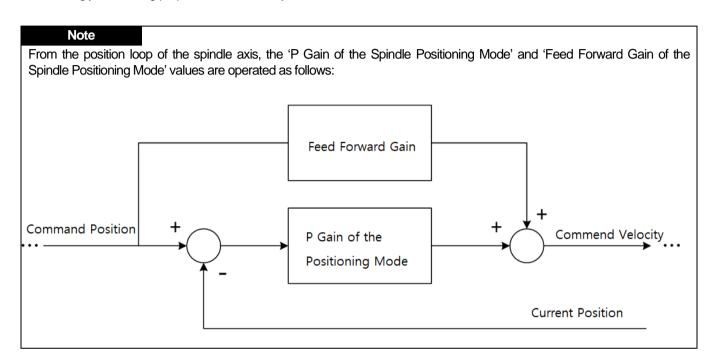
3) Spindle EtherCAT encoder position variable/address

If the 'spindle encoder selection' parameter is set to '4: EtherCAT ENC', the position value of the encoder read from the EtherCAT slave sets the saved variable/address. You can specify the input variable (I) and direct variable (M).

The address value that can be set according to variables is as follows:

- %ID0 ~ %ID4095
- %MD0 ~ %MD524287

4) The P Gain of the Spindle Positioning Mode


The spindle axis is basically operated by speed control and the speed command value is output to the device controlling the spindle axis. However, some spindle functions sometimes need the position control operation. When the spindle axis executes position control operations such as the homing operation and orientation operation, the position loop that calculates the output speed with the command position and the current position operates.

The 'P Gain of the Spindle Positioning Mode' sets all the responses from the position loop. The bigger the gain value is set the higher the responses become. However, as vibration can occur according to load if setting the gain value too big, adjust the gain value accordingly after taking proper actions for safety.

5) The Feed Forward Gain of the Spindle Positioning Mode

The 'Feed Forward Gain of the Spindle Positioning Mode' is used to add the control value that is proportional to a speed command of the spindle axis from the position loop to the output speed.

The bigger the gain value is set the less the tolerance is. But as vibration or overshoot can occur according to load if setting the gain value too big, adjust the gain value accordingly after taking proper actions for safety.

(d) NC Spindle homing Setting

Explain about the NC Spindle Homing Setting of axis parameters.

Item	Description	Setting range	Initial value
How to conduct the homing operation	Set the homing operation method that is run when executing the NC_Home command on the spindle axis.	Servo drive supported Servo drive supported Servo direction, Z phase Servo direction, Z phase Set the homing of the current position	0: Servo drive supported
Switch navigation speed of the homing operation	Set the operated speed to detect switch signals after starting the homing operation.	Long real (LREAL) positive	60 rpm
Zero navigation speed of the homing operation	Set the operated speed to detect zero signals after starting the homing operation.	number	12 rpm
Acceleration/deceleration of the homing operation	Set acceleration/deceleration to accelerate and decelerate to the target speed after starting the homing operation.	0 or Long real (LREAL) positive number	1000 deg/s ²
Z phase variable/address	Set the device where Z phase signal used as the Zero signal of the homing operation is saved.	%IX0 ~ %IX131071 %MX0 ~ %MX16777215	%IX0

Item	Description	Setting range	Initial value
Orientation velocity	When the M19 Orientation command is	Long real (LREAL) positive number	60 rpm
Orientation direction	executed on the NC program, set the Orientation offset position and velocity, and	0: Forward direction 1: Reverse direction	0: Forward direction
Orientation offset	the traveling direction.	0 ~ 360	0

1) How to conduct the homing operation

Set the homing operation method that is run when executing the NC_Home command on the spindle axis.

- 0: Servo drive supported

If the spindle drive connected to the spindle axis is a servo drive, the homing operation supported by the servo drive is executed. The servo drive parameter used for the homing operation is Homing method (0x6098:0).

- 33: Reverse direction, Z phase

Set the Z phase position as the homing after executing the homing operation on the NC function module of a motion controller and starting reverse operation.

When executing the NC_Home command, execute the homing operation with parameters; zero navigation speed of the homing operation and acceleration/deceleration of the homing operation. Set the device where the Z phase signal used as the Zero signal of the homing operation for 'Z phase variable/address' parameters is saved.

- 34: Forward direction, Z phase

Set the Z phase position as the homing after executing the homing operation on the NC function module of a motion controller and starting forward operation.

When executing the NC_Home command, execute the homing operation with parameters; zero navigation speed of the homing operation and acceleration/deceleration of the homing operation. Set the device where the Z phase signal used as the Zero signal of the homing operation for 'Z phase variable/address' parameters is saved.

- 35: Set the homing of the current position

It is used when setting the current position of the spindle axis to the homing.

2) Switch navigation speed of the homing operation, Zero navigation speed of the homing operation, Acceleration/deceleration of the homing operation

When the 'How to conduct the homing operation' parameter is set to '33: Reverse direction, Z phase' and '34: Forward direction, Z phase', and the homing operation is executed on the NC function module of a motion controller, set velocity and acceleration/deceleration.

3) Z phase variable/address

When the 'How to conduct the homing operation' parameter is set to '33: Reverse direction, Z phase' and '34: Forward direction, Z phase', set variables/addresses where the Z phase signal used as the Zero signal of the homing operation is saved. You can specify the input variable (I) and direct variable (M).

The address value that can be set according to variables is as follows:

- %IX0 ~ %IX131071
- %MX0 ~ %MX16777215

4) Orientation velocity

When the M19 Orientation command is executed on the NC program, set the command speed of the Orientation operation.

5) Orientation direction

When the M19 Orientation command is executed on the NC program, set the operation direction of the Orientation operation.

- 0: Forward direction
- 1: Reverse direction

6) Orientation offset

When the M19 Orientation command is executed on the NC program, set the target position value of the Orientation operation. After starting operation in the direction set to the 'Orientation direction' parameter, stop it at the position set to the 'Orientation offset'. The range of the set value is 0 to 360 degrees.

(e) NC Spindle Control Setting

Explain about the NC Spindle Control Setting of axis parameters.

Item	Description	Setting range	Initial value
The tolerance range to reach the spindle rotation command speed	Determine whether to reach the command speed of the spindle axis by the set value	0~ 100 %	95 %
The tolerance RPM to reach the spindle rotation zero speed	Determine whether to reach the zero speed of the spindle axis by the set value.	0~ 100rpm	5 rpm

1) The tolerance range to reach the spindle rotation command speed

When an axis operates as the spindle axis as it is connected to the NC S axis, the range is used to set the range to confirm whether the current speed value of the spindle axis reaches the target speed.

The 'signal to confirm whether to reach the spindle command speed' (_NC01_SpindleCVelAgr) flag turns On, if satisfying the following conditions:

\rightarrow	'Actual transfer speed of the S axis'	≥ ['Target speed of spindle (S command value)'	X
	('Tolerance range to reach the spind	lle rotation command speed' / 100)]	

2) The tolerance RPM to reach the spindle rotation zero speed

When an axis operates as the spindle axis as it is connected to the NC S axis, the range is used to set the RPM speed value to confirm whether the current speed value of the spindle axis reaches the zero speed.

The 'signal to confirm whether to reach the spindle command speed' (_NC01_SpindleZeroVel) flag turns On, if satisfying the following conditions:

→ 'Actual transfer speed of the S axis' ≤ 'Tolerance RPM to reach the spindle rotation zero speed'

6. Axis group parameter

(1) Basic setting

Basic setting item is explained as follows.

Item	Description	Settings	Initial value
Configuration Axis1~10	Set the axis which form axis group.	None, 1Axis ~ 32Axis(Real/Virtual axis), 33Axis ~ 36Axis(Virtual axis)	None
Interpolation speed max	Set max speed of operation about axis group.	Long Real(LREAL) Positive number	20000000 u/s

(a) Configuration axis setting

Set the number of each axis which belongs to the relevant axis group. Each axis group can include up to 10 axes.

Virtual axis can also be set in the axis group parameter.

Axis setting must be set in order in axis group which executes circular interpolation or helical interpolation command. In other words, \lceil axis setting 1 \rfloor is X-axis of the arc, \lceil axis setting 2 \rfloor is Y-axis of the arc, and \lceil axis setting 3 \rfloor is Z-axis of helical interpolation.

Therefore, if circular interpolation command is executed when setting the axis group, errors occur as follows.

- In case the axis group is comprised of 4 axes (error code: 0x20A9)
- In case the set value of 「axis setting 1」 or 「axis setting 2」 is 'none' (error code: 0x20AA)
- In case the set value of 「axis setting 3」 is 'none' and the remaining axes are set (error code: 0x20AA)

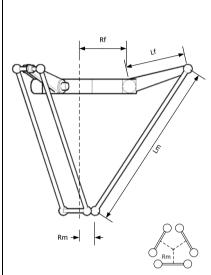
(b) Interpolation speed max

This refers to the configurable maximum speed of interpolation control operation when controlling interpolation with axes which belongs to the relevant axis group.

In case of interpolation operation of the relevant axis group, interpolation speed must be set below the set Interpolation speed max.

(2) Coordinate system setting

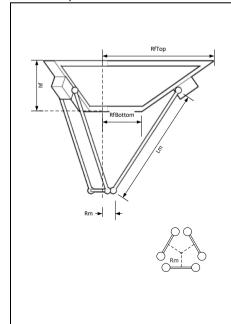
Coordinate system setting item is explained as follows.


Item	Description	Settings	Initial value
Coordinate system		0: None,	
		1: XYZ	
	Set the type of robot that is applied in the operation	2: Delta3	0: None
	of coordinate system.	3: Delta3R	
		4: LinearDelta3	
		5: LinearDelta3R	
Coordinate system	Set the parameters of the machine depending on		
parameter	the type of coordinate system.	-	-

(a) XYZ

XYZ is a robot where the axis set in \lceil axis setting 1 \rfloor in X-axis, the axis set in \lceil axis setting2 \rfloor in Y-axis, and the axis set in \lceil axis setting 3 \rfloor in Z-axis make a one-to-one correspondence and move in Cartesian coordinate. If the type of coordinate system is set to XYZ, there is no need to set the coordinate system parameters.

(b) Delta3/3R


Delta is the delta robot consisting of three rotation axes. If you set the coordinate system type as Delta, you need to set the parameters of the five coordinate systems; Rf/Rm/Lf/Lm

	Parameter	Description
	Fixed frame radius (Rf)	Length from the center of the fixed frame to the link of the fixed frame(mm)
	Link length of fixed frame (Lf)	Link length of the fixed frame(mm)
Link length of the moving frame (Lm)		Link length of the moving frame(mm)
	Moving frame radius Rm)	Length from the center of the moving frame to the link of the moving frame(mm) (In the left figure, the X, Y coordinates of the fixed frame and the moving frame are the same)

(c) LinearDelta3/3R

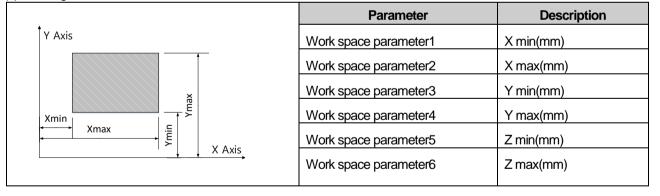
LinearDelta is the delta robot consisting of three linear axes. If you set the coordinate system type as LinearDelta, you need to set the parameters of the five coordinate systems; Lm / Hf / RfTop / RfBottom / Rm.

Parameter	Description
Link length of the moving frame (Lm)	Link length of the moving frame(mm)
Fixed frame height (Hf)	Fixed frame height (mm)
Fixed frame radius (RfTop)	Fixed frame radius (mm)
Fixed frame radius (RfBottom)	Fixed frame radius (mm)
	Length from the center of the moving frame to
	the link of the moving frame(mm)
Moving frame radius Rm)	(In the left figure, the X, Y coordinates of the
	fixed frame and the moving frame are the
	same)

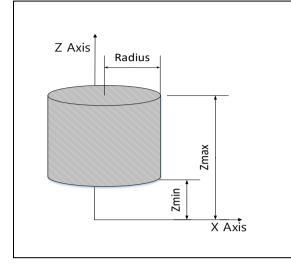
(3) Tool setting

Tool setting item is explained as follows.

Item	Description	Settings	Initial value
X axis offset	Set the X axis offset at the end(tool) of robot	Long real(LREAL)	0
Y axis offset	Set the Y axis offset at the end(tool) of robot	Long real(LREAL)	0
Z axis offset	Set the Z axis offset at the end(tool) of robot	Long real(LREAL)	0

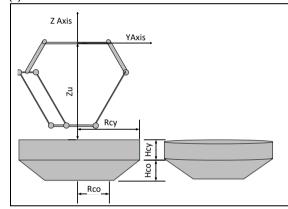

The tool setting parameter enables the position of the tool to be set as an offset so that the end of the tool can be controlled when using a separate tool at the end of the robot.

(4) Work space setting

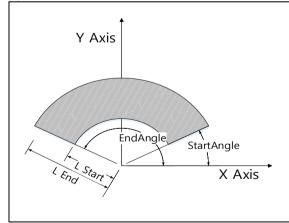

Work space setting item is explained as follows.

Item	Description	Settings	Initial value
		0: No use	
		1: Rectangle	
Work space type	Set the type of work space.	2: Cylinder	0
		3: Delta	
		4: Sector	
Work space error	Set whether or not an error occurs if it	0: Prohibit	0
check	deviates from a work space	1: Allow	0
Work space	Set the parameter in according to work space	Long real(LREAL)	0
parameter	type.	Long real(LINLAL)	0

(a) Rectangle



(b) Cylinder


Parameter	Description
Work space parameter1	Radius(mm)
Work space parameter2	Z min(mm)
Work space parameter3	Z max(mm)

(c) Delta

Parameter	Description
Work space parameter1	Zu(mm)
Work space parameter2	Hcy(mm)
Work space parameter3	Hco(mm)
Work space parameter4	Rcy(mm)
Work space parameter5	Rco(mm)

(d) Sector

Parameter	Description
Work space parameter1	L start(mm)
Work space parameter2	L end(mm)
Work space parameter3	Z min(mm)
Work space parameter4	Z max(mm)
Work space parameter5	SartAngle(degree)
Work space parameter6	EndAngle(degree)

(5) PCS setting

PCS setting item is explained as follows.

The PCS parameter sets the origin of the workpiece to PCS to facilitate the operation of moving over a specific workpiece in the coordinate system operation. In the PCS coordinate system operation, the coordinate system operation is performed with the set PCS as the origin.

Item	Description	Settings	Initial value
V ovio movo	Set X-axis move distance from MCS origin to	Long rool/LDEAL)	0 mm
X-axis move	PCS origin.	Long real(LREAL)	Omm
V avia maya	Set Y-axis move distance from MCS origin to	Languagi/LDEAL)	0
Y-axis move	PCS origin.	Long real(LREAL)	0 mm
-	Set Z-axis move distance from MCS origin to	Languagi/LDEAL)	0 mm
Z-axis move	PCS origin.	Long real(LREAL)	
X-axis rotation	Set X-axis rotation value of PCS.	-360~360 0 deg	
Y-axis rotation	otation Set Y-axis rotation value of PCS360~360 0 de		0 deg
Z-axis rotation	Set Z-axis rotation value of PCS.	-360~360 0 deg	

(6) JOG operation setting of the coordinate system

JOG operation setting item is explained as follows.

The JOG speed parameters of the coordinate system set the speed during JOG operation.

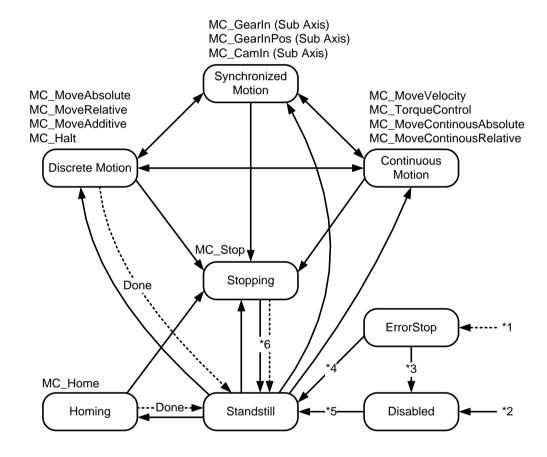
Item	Description	Setting range	Initial value
XYZ low speed	Set the low-speed JOG operation of the	Long real(LREAL)	
	linear axis in the coordinate system	It should be less than or equal	1 mm/sec
	operation.	to XYZ high speed.	
	Set the low-speed JOG operation of the	Long real(LREAL)	
ABC low speed	rotary axis in the coordinate system	It should be less than or equal	1 deg/sec
	operation.	to ABC high speed.	
XYZ high speed	Set the high-speed JOG operation of the		
	linear axis in the coordinate system	Long real(LREAL)	5 mm/sec
	operation.		
ABC high speed	Set the high-speed JOG operation of the		
	rotary axis in the coordinate system	Long real(LREAL)	5 deg/sec
	operation.		

7. NC parameters

- Set the parameters related to NC control.
- For more details, please refer to Chapter 9 NC control function -9.4 NC parameters.

8. CAM data

- Set the CAM profile data for CAM operation.
- For more details, refer to Chapter 8, Motion Control Function -8.2.11 (3) CAM Operation in the Synchronous Control Section.


Chapter 6 Motion Function Block

This chapter describes the basic function block library mentioned in the previous chapter and other application function block library.

6.1 Common Elements of Motion Function Blocks

6.1.1 The State of Axis

Each axis in the motion controller is changed to the relevant state depending on the situation and command. The changing structure of each situation is shown in the figure below.

^{*1} ErrorStop: in case axis error occurs regardless of the current state of axis

^{*2} Disabled: in case MC Power. Enable input is Off when axis error does not occur

^{*3} ErrorStop → Disabled: in case MC_Reset command has issued when MC_Power.Status output is Off

^{*4} ErrorStop → Standstill: in case MC_Reset command has issued when MC_Power.Status output is on and MC_Power.Enable input is On

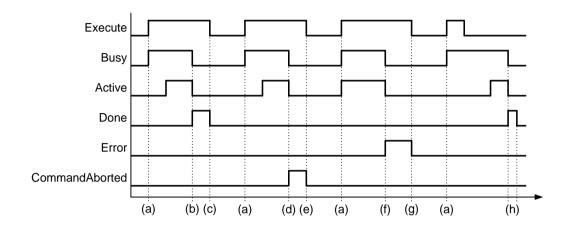

^{*5} Disabled → Standstill: in case of turning On MC Power. Enable input when MC Power. Status output is On

^{*6} Stopping → Standstill: in case of turning Off MC_Stop.Execute input when MC_Stop.Done output is On

The state of axis	Description
Disabled	Disabled state indicates the state in which no command is given to a single axis, and no error occurs. In case there is no motion controller at the time of first operation, each axis begins in the disabled state. Afterwards, axis status is changed to standstill state in case servo-on status emerges when Enable input of servo On/Off (MC_Power) motion function block is On. The axis becomes disabled state when Enable input of serve On/Off (MC_Power) motion function block is Off in case of not being in ErrorStop state. In case there is motion function block which is currently being performed, the command is interrupted.(The CommandAborted output of the motion block function is On)
ErrorStop	No matter which state the current axis is in, it is changed to ErrorStop state when axis error occurs, and the axis decelerates to stop. In the state where error occurs, ErrorStop state is maintained even though servo On/Off (MC_Power) motion function block is executed. The motion axis which is in ErrorStop state maintains stationary state, and any command except for error reset is not executed.
StandStill	When the power of axis is activated, there is no error in the axis and any command is not made, the axis state indicates StandStill state.
Homing	Homing state indicates the axis is in homing operation.
Stopping	In case Stop immediately (MC_Stop) function block is executed, the axis state is changed to stopping state. When the axis is in stopping state, other motion commands cannot be given to the axis until the Stop is completed (until Done output is activated). If Done output is On, and Execute input is On, the state is switched to Standstill status.
Continuous Motion	It indicates state where operation continues until the current axis becomes operation stop status.
Discrete Motion	It indicates reduced operating status with target position.
Synchronized Motion	Synchronized motion indicates axis is in synchronized operation.

6.1.2 The State of Group

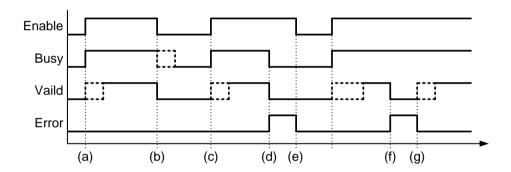
Each group in motion controller is changed to the relevant state depending on the situation and command. The changing structure of each state is shown in the figure below.



- *1 GroupMoving: in case of performing the motion function block of general group operation
- *2 GroupStopping, GroupErrorStop
 - : The relevant motion function block is not performed when different motion function block is performed in GroupStopping or GroupErrorStop state, and when MC_GroupReset function block is performed in GroupErrorStop state, the state of the relevant group is changed to GroupStandby.
- *3 GroupStopping → GroupStandby
 - : when MC_GroupStop.DONE output is On and MC_SroupStop.EXECUTE input is Off
- *4 GroupStandby → GroupDisabled
 - : in case there is no axis belonging to the group when performing the axis remove command (MC_RemoveAxisFromGroup, MC_UnGroupAllAxes)
- *5 GroupStandby
 - : in case more than one axis belongs to the group when performing the axis add or remove command in group (MC_AddAxisToGroup, MC_RemoveAxisFromGroup)
- *6 GroupDisabled
 - : When performing MC_GroupDisable or MC_UnGroupAllDisable function block, the relevant group is changed to GroupDisabled state regardless of its current state.

6.1.3 Basic I/O Variable

1. Edge operation motion function block


Relationships of the basic I/O parameter in the Edge operation motion function block are as below.

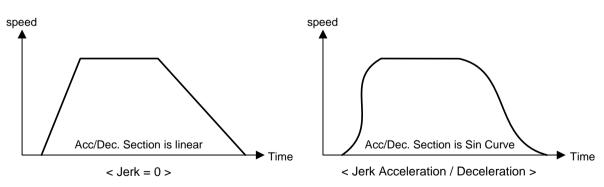
Variable	Description
Fuerante	This is an input to run the relevant function block in Edge operation function block. Function
Execute	block is executed in the rising Edge. (Figure a state)
	This is an output to indicate the relevant motion function block is currently running (= not
	completed), and this indicates the output of motion function block can be changed.
Busy	Busy output is On in the rising Edge of Execute input (Figure a state), and it is Off when Done
	output is On (Figure b state), CommandAborted output is On (Figure d state), or Error output
	is On (Figure f state).
	This indicates the relevant motion function block is actually controlling axis.
	When running many motion function block to one axis (in case only one motion function block
Active	is controlling and other notion function blocks are Buffered), Active output is On in only one
	motion function block which is controlling, and in motion function blocks which are Buffered,
	Busy output is On.
	This is an output to indicate operation of the relevant motion function block has been
	successfully completed.
Done	If Done output is On, Busy and Active output is Off. (Figure d state)
	Done output is Off when Execute input is Off (Figure e state), if Execute output was Off when
	Done output became On, it remains On only during 1 scan (Figure h state).
	This is an output to indicate an error occurs while running motion function block.
Error	Error output is Off when Execute input is Off (Figure f state). If Execute output was Off when
	Error output became On, it remains On only during 1 scan (Figure h state).

Variable	Description
ErrorID	This outputs error code regarding the relevant error when an error occurs while running motion function block. ErrorID output and elimination time are same with Error output.
CommandAborted	This indicates the relevant motion function block is interrupted by the other motion function block. CommandAborted output is Off when Execute input is Off (Figure g state). If Execute output was Off when Done output became On, it remains On only during one scan.
* When Execute input is On in Edge operation(Execute input) motion function block, depending on the state of axis,	
one output in Busy, Done, Error, and CommandAborted output is On. Busy, Done, Error, and CommandAborted output are available to be On one at a time, and if one output in four is On, other three outputs become Off.	

2. Motion function block for level motion

Variable	Description
	This is an input to run function block for level operation motion.
Enable	This runs motion function block in the rising Edge (Figure a state), and stops it in the falling
	Edge(Figure b state).
Busy	This is an output to indicate the relevant motion function block is currently running ((= not completed), and it indicates the output of motion function block can be changed. Busy output is On in the rising Edge of Enable input (Figure b state), and it remains on while motion function is in operation.
	This is an output to indicate the relevant motion function block is successfully performed and
Valid	output & motion are valid. Valid output is Off when Enable input is Off (Figure b state).

Variable	Description
	This is an output to indicate an error occurs while running motion function block.
	If an error which cannot be automatically restored occurs while motion function block is in
	operation, Error output is On, Busy & Valid output is Off (Figure d state), and motion function
	block stops operating.
Error	Error output is Off when Enable input is Off (Figure e state).
	If an error which can be automatically restored occurs while function block is in operation,
	Error output is On and Valid input is Off (Figure f state).
	When the error in the relevant motion function block is restored, Error output is Off, and
	operation is resumed (Figure g state).
	This outputs error code regarding the relevant error when an error occurs while running
ErrorID	motion function block. ErrorID output and elimination time are same with Error output.
※ Valid and Error outputs are not On at the same time.	


Note

1. Axis input1)

Each motion function block can be specified by Axis input to the axis which is subject to the relevant command. Motion controller can control 1~32 real/virtual axes and 33~36 virtual axes, and 1001~1002 encoders can be used as main axis depending on motion function block. Therefore, values of 1~32, 33~36, and 1001~1002 can be input in Axis input depending on motion function block. When it is out of the range which is available to set in each motion function block, "error 0x0006" occurs.

2. Jerk

If Jerk is set to a non-zero value, the speed profile becomes S-shaped, which can reduce the impact of the machine during acceleration / deceleration. If Jerk value is set larger, acceleration / deceleration is performed close to the straight line. If Jerk value is set to 0, acceleration / deceleration operation speed profile becomes linear.

Note 1) Explain the range to set axis input variables on the basis of XMC-E32A.

6.1.4 BufferMode Input

This is an input which can specify whether to wait until the existing command is completed or to cancel the existing motion function block and execute the command in case the axis is already running other motion function block when running motion function block in a certain axis. The number between 0-5 can be specified, and if it is out of the range, "error 0x101A" occurs in the axis command and "error 0x201A" occurs in the axis group command. The values which are available to be set in BufferMode are as below.

Number	Buffer Mode	Explanation
0	Aborting	Execute the command immediately. The existing command in operation is interrupted.
1	Buffered	Execute the command after the existing command in operation is completed.
2	BlendingLow	Do combined operation to combine the speeds of the existing command and command issuing to the low speed by comparing.
3	BlendingPrevious	Do combined operation to combine the speeds of the existing command.
4	BlendingNext	Do combined operation to combine the speeds of the command issuing.
5	BlendingHigh	Do combined operation to combine the speeds of the existing command and command giving to the high speed by comparing.

Note

The maximum number of commands that can wait for their execution in buffers on axis control is 100. An error (error code: 0x1022) occurs when executing more than 100 commands in a buffer mode.

6.1.5 Changes in Parametes during Execution of Motion Function Block

The parameter of the relevant command can be changed at the time motion function block is running, and the detailed operations are as below.

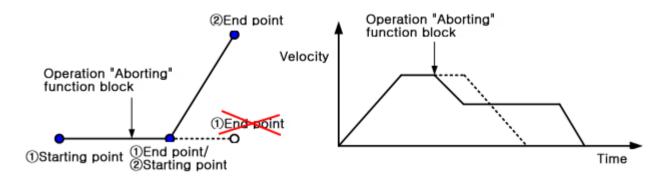
- (1) When executing Edge operation motion function block in the Off state of ContinuousUpdate input (turn On the Execute input), the relevant motion function block is operated by application of the parameter at the time when Execute input was On (rising Edge). In this case, the change of the parameter input value in the middle of execution of motion function block does not affect operation.
 - When wanting to change the parameter while the relevant motion function block is in operation, change the parameter and turn On Execute input again.
- (2) When executing Edge operation motion function block in the On state of ContinuousUpdate input (turn On the Execute input), the parameter of the time when Execute input was On (rising Edge) is applied at first.
 - When changing the parameter while ContinuousUpdate input is On, the relevant motion function block operates reflecting the every change in parameter.
 - But, if you change the parameter at the completion or after the stop of the operation of the relevant motion function block (Busy output is Off), the change is not reflected any more. (Parameter changing operation using ContinuousUpdate does not rerun the motion function block which is completed or interrupted, In other words, ContinuousUpdate operation is applied only to the motion function block which is currently running.)
- (3) For a function block without ContinuousUpdate input, the changed parameters can be applied by re-executing the function block (Execute input is On) before the command is completed.
- (4) As for level operation motion function block, it is operated by the application of the parameter at the time when Enable input was On (rising Edge), and continuous change of parameter is available while Enable input is On.

- (5) For MC_CAMIN function block, only the following inputs can be updated: MasterOffset, SlaveOffset, MasterScaling, SlaveScaling, MasterStartDistance, and MasterSyncPosition(If InSync=On, only MasterOffset, SlaveOffset, MasterScaling, and SlaveScaling are updated.)
- (6) For MC_GEARIN function block, only the following inputs can be updated: RatioNumerator, RatioDenominator, Acceleration, and Deceleration (If InGear=On, only RatioNumerator and RatioDenominator are updated.)

6.1.6 Group Operation Route Change Settings

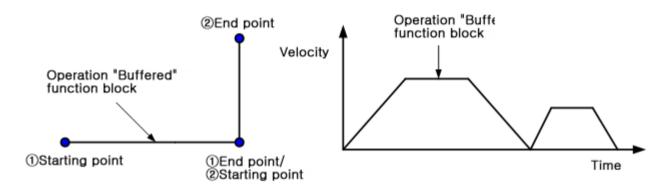
When the axis group of the current motion controller is executing a command, other command can be issued to the relevant axis group. At this point, the path, which the next command will achieve, can specify how the existing command will be connected to the existing path. The parameter of connection track is specified in TransitionParameter input.

Number TRANSITION Mode Explanation		Explanation	
0 TMNone		Do not generate a connection track.	
3	TMCornerDistance	Generate a connection track which specifies the corner distance of a connection track and draws circular arcs at the specified corner distance.	


Note

The maximum number of buffers that can wait for execution on axis group control is 100. An error (error code: 0x2022) occurs when executing more than 100 commands in a buffer mode.

1. TransitionMode "TMNone"

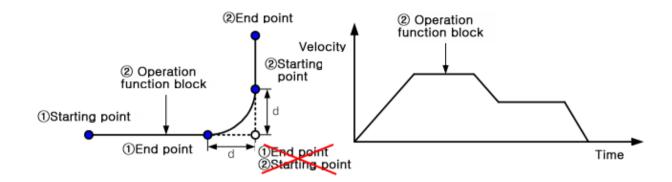

Connection track is not generated. TransitionMode input is available only to "TMNone" in case BufferMode input of motion function block is "Aborting" or "Buffered".

The Figure below shows the case when running BufferMode of motion function block in the setting of 'Aborting'. The Figure in the left shows that motion function block ② is executed in the setting of 'Aborting' while motion function block ① is running. Motion function block ① is forced to be terminated at 'end point ① / starting point ②' without reaching 'end point ①'. The Figure in the right shows that the next motion function block is executed at the moment of the execution of 'Aborting' function block.

<In case BufferMode is specified as "Aborting">

The Figure below shows that the case when running BufferMode of motion function block in the setting of 'Buffered'. The Figure in the left shows that motion function block ② is executed in the setting of 'Buffered' while motion function block ① is running. Motion function block ② is executed after motion function block ① has reached target position. The Figure in the right shows that when 'Buffered' function block is executed, the next motion function block is executed after it reaches original target position.

<In case BufferMode is specified as "Buffered">


2. TransitionMode "TMCornerDistance"

The radius of a connection track is specified and the connection track which draws a circle having specified radius is output. This mode is operated only when BufferMode is "BlendingXXXX", and it is operated in "TMNone" when BufferMode is "Aborting" or "Buffered".

When drawing a connection track, the maximum speed of the path complies with the specified speed in BufferMode, and the length of radius complies with the value specified in TransitionParameter.

The Figure below shows the generation of a connection track which draws radius circle in two linear interpolation commands. The Figure in the left shows that motion function block ② is executed in the setting of "TMcornerDistance" while motion function block ① is running. The original target position of motion function block ① was end point ① / starting point ②, but straight-line motion is stopped and circular motion is started at the point ahead as far as radius 'd' (end point ①). Circular operation starts at end point ① and finishes at starting point ②, and executes motion function block ②.

The Figure in the right shows that the speed does not stop in the middle of two function blocks and continues.

<In case BufferMode is specified as "BlendingLow" and TransitionMode is specified as "TMCornerDistance">

6.1.7 Motion Function Block Errors

Errors occurring in ErrorID variable of motion function block are as follows.

STAT	Content	Detailed Description		
0x0000	Normal	In case motion function block is normally executed, "O" is displayed on ErrorID.		
0x0005	The current motion controller does not support the motion function block.	The motion function block is not executed in the version of current motion controller. Check the version in which the motion function block can be executed.		
0x0006	Axis number of motion function block (Axis input) or encoder number (Encoder input) exceeded allowable range.	Set axis and encoder numbers with a range by product.		
0x0007	Axis group number of motion function block (AxesGroup input) exceeded allowable range.	Set axis group number to a value between 1 and 16.		
0x0008	NC channel of function block exceeded allowable range.	Check the range of NC channel, and set again.		
0x0009	Slave number of function block (Slave input) exceeded allowable range.	Check the range of slave number, and set again.		
0x000B	Input of function block exceeded allowable range.	ction block exceeded allowable range. Check the input range of function block, and set again.		
0x000C	Array input of function block exceeded allowable range. Check the array input size of function block, and set again			
0x0012	Internal execution error of motion function block occurred during the execution of the motion function block.			
0x0013	Motion response error occurred during the execution of motion function block.	Check the version of XG5000 and XMC-E32A.		
0x0014	CAM ID (CamTableID input) of function block exceeded allowable range.	Check the CAM ID range of function block, and set again.		
0x0E00 : 0x0FFF	It indicates a common error of the motion controller. For more details, refer to 'error information and measures in APPENDIX 2'.			
0x1000 : 0x1FFF	It indicates error that occurs in relation to axis control of motion controller. For more details, refer to 'error information and measures in APPENDIX 2'.			
0x2000 : 0x2FFF	It indicates error that occurs in relation to axis control of motion controller. For more details, refer to 'error information and measures in APPENDIX 2'.			
0x3000 : 0x3FFF	It indicates error that occurs in relation to NC control of motion controller. For more details, refer to 'error information and measures in APPENDIX 2'.			

6.2 Motion Function Block

NO.	Name	Description	Operation condition	Module O/S	XG5000		
Single	Single-axis command						
1	MC_Power Servo On/Off		Level	V1.0	V4.20		
2	MC_Home	Perform the search home	Edge	V1.0	V4.20		
3	MC_Stop	Stop immediately	Edge	V1.0	V4.20		
4	MC_Halt	Stop	Edge	V1.0	V4.20		
5	MC_MoveAbsolute	Absolute positioning operation	Edge	V1.0	V4.20		
6	MC_MoveRelative	Relative positioning operation	Edge	V1.0	V4.20		
7	MC_MoveAdditive	Additive positioning operation	Edge	V1.0	V4.20		
8	MC_MoveVelocity	Specified velocity operation	Edge	V1.0	V4.20		
9	MC_MoveContinuousAbsolute	Absolute position operation ending with specified velocity operation	Edge	V1.0	V4.20		
10	MC_MoveContinuousRelative Relative position operation ending with specified velocity operation		Edge	V1.0	V4.20		
11	MC_TorqueControl	Torque control	Edge	V1.0	V4.20		
12	MC_SetPosition	Setting the current position	Edge	V1.0	V4.20		
13	MC_SetOverride	Velocity/Acceleration override	Level	V1.0	V4.20		
14	MC_ReadParameter	Read Parameter	Level	V1.0	V4.20		
15	MC_WriteParameter	Write Parameter	Edge	V1.0	V4.20		
16	MC_Reset	Reset axis error	Edge	V1.0	V4.20		
17	MC_TouchProbe	Touch probe	Edge	V1.0	V4.20		
18	MC_AbortTrigger	Abort trigger events	Edge	V1.0	V4.20		
19	MC_MoveSuperImposed	SuperImposed operation	Edge	V1.0	V4.20		
20	MC_HaltSuperImposed	SuperImposed operation halt	Edge	V1.0	V4.20		
Multi-axis command							
21	MC_CamIn	Camming run	Edge	V1.0	V4.20		
22	MC_CamOut	Camming stop	Edge	V1.0	V4.20		
23	MC_Gearln	Electrical gearing run	Edge	V1.0	V4.20		
24	MC_GearOut	Electrical gearing disengage	Edge	V1.0	V4.20		
25	MC_GearInPos	Electrical gearing by specifying the position	Edge	V1.0	V4.20		
26	MC_Phasing	Phase compensation	Edge	V1.0	V4.20		

NO.	Name	Description	Operation condition	Module O/S	XG5000			
Group	Group command							
27	MC_AddAxisToGroup	Adds one axis to the group	Edge	V1.0	V4.20			
28	MC_RemoveAxisFromGroup	Removes one axis from the group	Edge	V1.0	V4.20			
29	MC_UngroupAllAxes	Removes all axes from the group	Edge	V1.0	V4.20			
30	MC_GroupEnable	Changes the state for group from GroupDisable to GroupEnable	Edge	V1.0	V4.20			
31	MC_GroupDisable	Changes the state for group from GroupEnable to GroupDisable	Edge	V1.0	V4.20			
32	MC_GroupHome	Performs the search home of all axes in the group	Edge	V1.0	V4.20			
33	MC_GroupSetPosition	Sets the position of all axes in the group without moving	Edge	V1.0	V4.20			
34	MC_GroupStop	Stop the group immediately	Edge	V1.0	V4.20			
35	MC_GroupHalt	Stop the group	Edge	V1.0	V4.20			
36	MC_GroupReset	Reset the group error	Edge	V1.0	V4.20			
37	MC_MoveLinearAbsolute	Absolute positioning linear interpolation operation	Edge	V1.0	V4.20			
38	MC_MoveLinearRelative	Relative positioning linear interpolation operation	Edge	V1.0	V4.20			
39	MC MoveCircularAbsolute	Absolute positioning circular interpolation operation	Edge	V1.0	V4.20			
40	MC MoveCircularRelative	Relative positioning circular interpolation operation	Edge	V1.0	V4.20			
LS co	mmand		<u> </u>					
41	LS_Connect	Connect servo drives	Edge	V1.0	V4.20			
42	LS_Disconnect	Disconnect servo drives	Edge	V1.0	V4.20			
43	LS_ReadSDO	Read SDO	Edge	V1.0	V4.20			
44	LS_WriteSDO	Write SDO	Edge	V1.0	V4.20			
45	LS_SaveSDO	Save SDO	Edge	V1.0	V4.20			
46	LS_EncoderPreset	Encoder preset	Edge	V1.0	V4.20			
47	LS_Jog	JOG operation	Level	V1.0	V4.20			
48	LS_ReadCamData	Read CAM data	Edge	V1.0	V4.20			
49	LS_WriteCamData	Write CAM data	Edge	V1.0	V4.20			
50	LS_ReadEsc	Read ESC	Edge	V1.0	V4.20			
51	LS_WriteEsc	Write ESC	Edge	V1.0	V4.20			
52	LS_CamSkip	Skip CAM	Edge	V1.0	V4.20			
53	LS_VarCamIn	Variable CAM operation	Edge	V1.0	V4.20			
54	LS_VarGearIn	Variable gear operation	Edge	V1.0	V4.20			
55	LS_VarGearInPos	Variable positioning gear operation	Edge	V1.0	V4.20			
56	LS_ReadCAM tableSlavePos	Read the slave location of the CAM table	Edge	V1.0	V4.20			
57	LS_InverterWriteVel	Write inverter speed	Edge	V1.0	V4.20			
58	LS_InverterReadVel	Read inverter speed	Level	V1.0	V4.20			
59	LS_InverterControl	Write inverter control word	Edge	V1.0	V4.20			
60	LS_InverterStatus1	Read inverter status 1	Level	V1.0	V4.20			
61	LS_InverterStatus2	Read inverter status 1	Level	V1.0	V4.20			
62	LS_SyncMoveVelocity	Speed control operation (csv mode)	Edge	V1.0	V4.20			
63	LS_ReadCamTableMasterPos	Read CAM table master position	Edge	V1.1	V4.23			
64	LS_OnfOffCam	Onoff CAM operation	Edge	V1.1	V4.23			
65	LS_RotaryKnifeCamGen	RotaryKnife cam profile generation	Edge	V1.1	V4.23			
66	LS_CrossSealCamGen	Cross sealer cam profile generation	Edge	V1.2	V4.25			
67	LS_OnOffCamEx	Expanded on/off CAM operation	Edge	V1.4	V4.28			

NO.	Name	Description	Operation condition	Module O/S	XG5000
Coord	linate system command				
68	MC_SetKinTransform	Machine information setting	Edge	V1.0	V4.20
69	MC_SetCartesianTransform	PCS setting	Edge	V1.0	V4.20
70	LS_SetWorkSpaceTransform	Work space setting	Edge	V1.0	V4.20
71	LS_MoveLinearTimeAbsolute	Time- linear interpolation operation for absolute position of coordinate system	Edge	V1.0	V4.20
72	LS_MoveLinearTimeRelative	Time- linear interpolation operation for relative position of coordinate system	Edge	V1.0	V4.20
73	MC_MoveCircularAbsolute2D	Circular interpolation operation for absolute position of coordinate system	Edge	V1.0	V4.20
74	MC_MoveCircularRelative2D	Circular interpolation operation for relative position of coordinate system	Edge	V1.0	V4.20
75	MC_TrackConveyorBelt	Synchronization setting of the conveyor belt	Edge	V1.0	V4.20
76	MC_TrackRotary table	Synchronization setting of the rotary table	Edge	V1.0	V4.20
77	LS_RobotJOG	JOG operation of the coordinate system	Level	V1.0	V4.20
78	LS_SetMovePath	Set path operation data	Edge	V1.0	V4.20
79	LS_ResetMovePath	Delete path operation data	Edge	V1.0	V4.20
80	LS_GetMovePath	Read path operation data	Edge	V1.0	V4.20
81	LS_RunMovePath	Perform path operation	Edge	V1.0	V4.20
NC co	entrol command				
82	NC_LoadProgram	Specify NC program	Edge	V1.0	V4.20
83	NC_BlockControl	Specify Block operation	Level	V1.0	V4.20
84	NC_Reset	Reset	Edge	V1.0	V4.20
85	NC_Emergency	Emergency stop	Level	V1.0	V4.20
86	NC_CycleStart	Start automatic operation	Edge	V1.0	V4.20
87	NC_FeedHold	Feed Hold	Level	V1.0	V4.20
88	NC_Home	Homing	Edge	V1.0	V4.20
89	NC_RapidTraverseOverride	Rapid traverse override	Level	V1.0	V4.20
90	NC_CuttingFeedOverride	Cutting feed override	Level	V1.0	V4.20
91	NC_SpindleOverride	Spindle override	Level	V1.0	V4.20
92	NC_M codeComplete	M Code operation completed	Edge	V1.0	V4.20
93	NC_ScodeComplete	S Code operation completed	Edge	V1.0	V4.20
94	NC_TcodeComplete	T Code operation completed	Edge	V1.0	V4.20
95	NC_ReadParameter	Read NC parameters	Level	V1.0	V4.20
96	NC_WriteParameter	Write NC parameters	Edge	V1.0	V4.20
97	NC_RetraceMove	Reverse operation	Level	V1.3	V4.28
98	NC_BlockSkip	Block skip	Level	V1.3	V4.28
99	NC_DryRun	Dry run operation	Level	V1.3	V4.28
100	NC_ToolMode	Tool retract/recover operation	Edge	V1.3	V4.28
101	NC_ReadToolMode	Read tool retract/recover modes	Level	V1.3	V4.28
102	NC_Mirrorlmage	Mirror image	Level	V1.3	V4.28
103	NC_SpindleControl	Spindle operation control	Level	V1.3	V4.28
104	NC_BlockOptionalSkip	NC optional block skip	Edge	V1.3	V4.28
105	NC_ManualToolComp	Manual measurement of NC compensation value	Edge	V1.3	V4.28

Chapter5 Motin Functin Block

NO.	Name	Description	Operation condition	Module O/S	XG5000	
106	NC_ChgSpindleGear	NC spindle gear change	Edge	V1.3	V4.28	
File co	File command					
107	FILE_OPEN	Open files in SD memory cards	Edge	V1.4	V4.28	
108	FILE_CLOSE	Close files in SD memory cards	Edge	V1.4	V4.28	
109	FILE_WRITE	Write files in SD memory cards	Edge	V1.4	V4.28	
110	FILE_READ	Read files in SD memory cards	Edge	V1.4	V4.28	
111	FILE_SEEK	Move positions to access in SD memory cards	Edge	V1.4	V4.28	

6.2.1 Setting Range by Product

Note

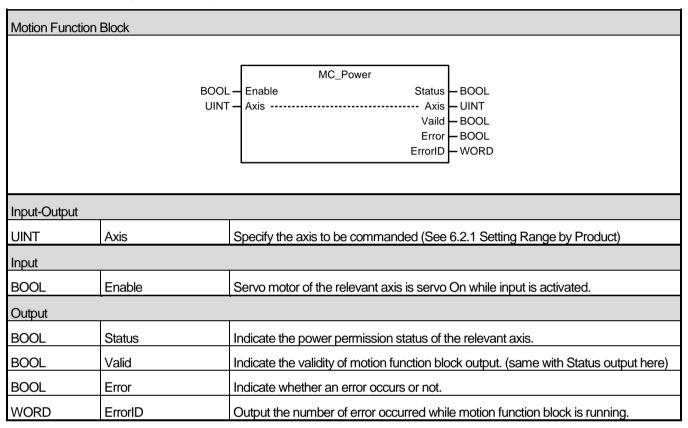
- 1) The motion function block names of XMC-E32A, XMC-E16A, XMC-E08A and XMC-E32C are all identical. This 'Chapter 06 Function Block' basically describes XMC-E32A.
- (2) The motion function block of XMC-E32A and XMC-E32C has an identical setting range of input variables and the motion function block of XMC-E32A, XMC-E16A and XMC-E08A has a different setting range of input variables that set IDs of axes, slaves and CAM tables.
 - (A) Setting range of input variables that set axes

	\#.10 ==== 1 h #.10 ====	\# 10 = 101	\#.10 ====
Input variable	XMC-E32A/XMC-E32C	XMC-E16A	XMC-E08A
Axis	1~32: Real/Virtual Axes,	1~16: Real/Virtual Axes,	1~8: Real/Virtual Axes,
	33~36: Virtual Axis	17~18: Virtual Axis	9: Virtual Axis
Master	1~32: Real/Virtual Axes,	1~16: Real/Virtual Axes,	1~8: Real/Virtual Axes,
	33~36: Virtual Axis	17~18: Virtual Axis	9: Virtual Axis
	1001~1002: Encoder	1001~1002: Encoder	1001~1002: Encoder
Slave*Note 1)	1~32: Real/Virtual Axes,	1~16: Real/Virtual Axes,	1~8: Real/Virtual Axes,
	33~36: Virtual Axis	17~18: Virtual Axis	9: Virtual Axis

(B) Setting range of input variables that set slaves

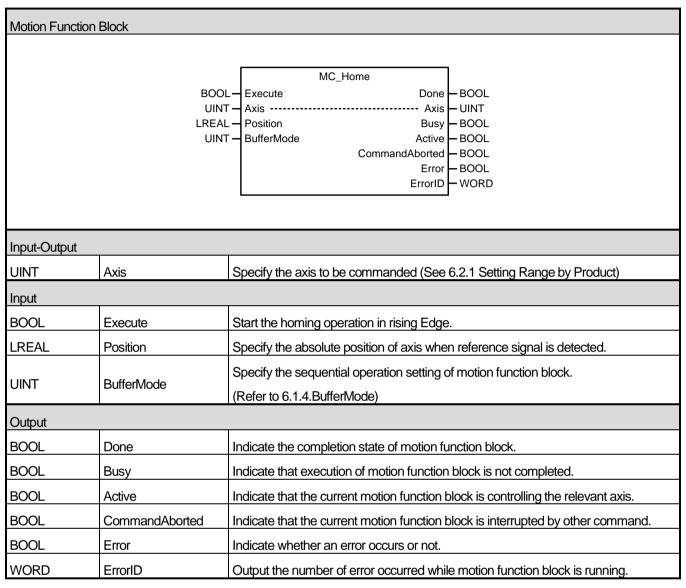
Input variable	XMC-E32A/XMC-E32C	XMC-E16A	XMC-E08A
Slave*Note 2)	1~64: Slave	1~32: Slave	1~16: Slave

(C) Setting range of input variables of the CAM table ID


Input variable	XMC-E32A/XMC-E32C	XMC-E16A	XMC-E08A
CamTableID	1~32: CAM table number	1~16: CAM table number	1~8: CAM table number

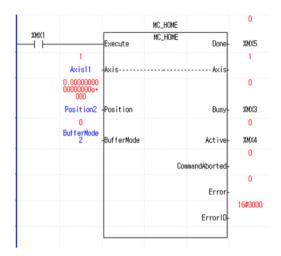
Note 1) An input variable of the function block (MC_CAMIN, etc.) that sets operation of axes.

Note 2) An input variable of the function blocks (LS_ReadSDO, LS_WriteSDO, LS_SaveSDO) that sets operation of slaves.


6.3 Single-Axis Motion Function Block

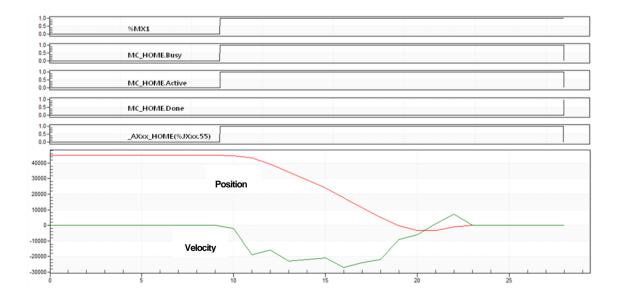
6.3.1 Servo On/Off (MC_Power)

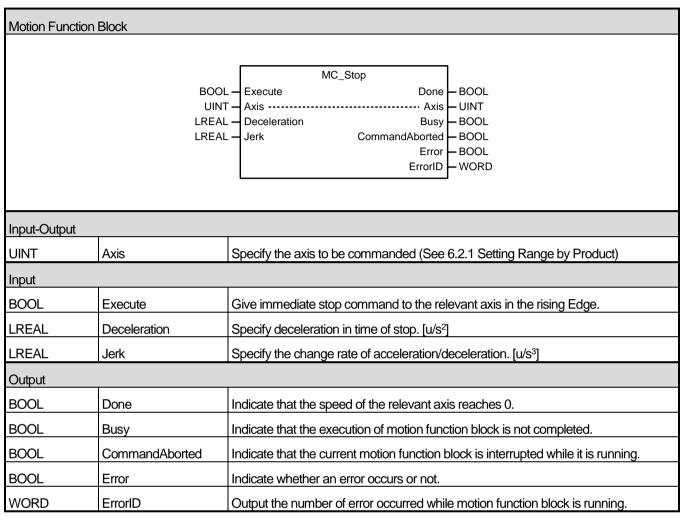
- (1) This motion function block is to give servo On/Off command to the relevant axis.
- (2) When Enable input changes from Off to On, the Servo On command is given to the relevant axis. When it changes from On to Off, the Servo Off command is given to it.
- (3) If servo On command is executed when the axis is in 'Disable' state, the axis state is 'StandStill', and failure in servo On brings 'ErrorStop' state.


6.3.2 Perform the search home (MC_Home)

- (1) This motion function block is to give a homing command to the relevant axis.
- (2) Homing method is operated as specified in the operation parameter of the relevant axis in advance.
- (3) As for Position input, absolute position of axis is specified when Reference Signal is detected or homing is completed.
- (4) While this motion function block is running, the axis is 'Homing' state, and when the command is completed, it is switched to 'Standstill'.
- (5) The changed parameters can be applied by re-executing the function block (Execute input is On) before the command is completed. Only Position input can be updated.
- (6) Example program

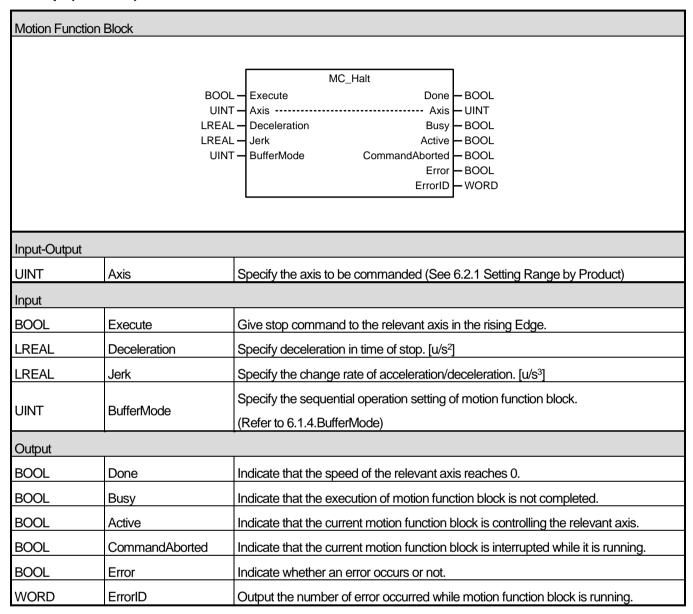
This example shows execution of MC_HOME command when the current command position is 100,000.


(a) Function block setting


(b) Parameter setting

- Set the Homing method in SDO parameters to 33.

✓	ndex	Name	Unit	Current Value	Initial Value	Access
	607A	Target Position	UU	0	0	rw
🗸	607C	Home Offset	UU	0	0	rw
i 🗹	607D:00	Software Position Limit	-	2	2	rw
	607F	Maximum Profile Velocity	UU/s	2147483647	2147483647	rw
	6080	Maximum Motor Speed	rpm	0	0	ro
	6081	Profile Velocity	UU/s	200000	200000	rw
	6083	Profile Acceleration	UU/s^2	200000	200000	rw
	6084	Profile Deceleration	UU/s^2	200000	200000	rw
	6085	Quick Stop Deceleration	UU/s^2	2000	2000	rw
	6087	Torque Slope	0,1%/s	1000	1000	rw
÷ 🗸	6091:00	Gear Ratio	-	2	2	rw
	6098	Homing Method	-	33	34	rw
. V	6099:00	Homing Speeds	-	2	2	rw
	609A	Homing Acceleration	UU/s^2	200000	200000	rw
	60B0	Positon Offset	UU	0	0	rw
	60B1	Velocity Offset	UU/s	0	0	rw
	60B2	Torque Offset	0,1%	0	0	rw



6.3.3 Stop immediately (MC_Stop)

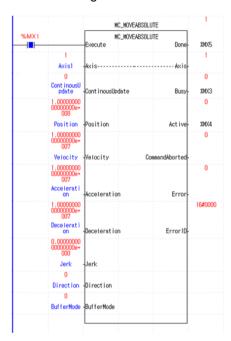
- (1) This motion function block is to give an emergency stop command to the relevant axis.
- (2) When executing immediate stop (MC_Stop) motion function block, the existing motion function block being executed in the relevant axis is stopped, and the axis state changed to 'Stopping'. When the relevant axis is in 'Stopping' state, other motion function block cannot be executed in the relevant axis until the stopping is completed (until the Done output is activated).
- (3) CommandAborted output indicates that the current motion function block is interrupted while it is running. Other motion function block cannot interrupt immediate stop (MC_Stop) motion function block while immediate stop (MC_Stop) motion function block is running, therefore, CommandAborted output is On in general when the power of servo is blocked or servo Off command is executed.
- (4) If Execute input is On or the speed of axis is not 0, the axis is in 'Stopping' state, and when Done output is On and Execute input is Off, it is switched to 'Standstill' state.
- (5) The changed parameters can be applied by re-executing the function block (Execute input is On) before the command is completed. Only Deceleration and Jerk input can be updated

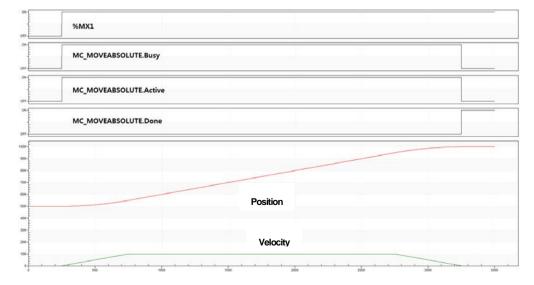
6.3.4 Stop (MC_Halt)

- (1) This motion function block is to give a stop command to the relevant axis.
- (2) The axis is 'DiscreteMotion' state while this motion function block is running, and when the speed of the relevant axis is 0, 'Done' output is On and changed to 'Standstill' state.
- (3) BufferMode can be selected, unlike MC_Stop command. Halt command (MC_Halt) can be stopped by another motion function block.
- (4) The changed parameters can be applied by re-executing the function block (Execute input is On) before the command is completed.

6.3.5 Absolute positioning operation (MC_MoveAbsolute)

Motion Function Block					
Wolld'I Tarello's Block					
MC_MoveAbsolute					
	BOOL Execute Done BOOL UINT Axis Axis UINT				
BOOL — ContinuousUpdate Busy — BOOL					
	LREAL - Position Active - BOOL				
		REAL Velocity CommandAborted BOOL REAL Acceleration Error BOOL			
	L	REAL — Deceleration ErrorID — WORD			
	L	REAL — Jerk UINT — Direction			
		UINT — BufferMode			
L O					
Input-Output					
UINT	Axis	Specify the axis to be commanded (See 6.2.1 Setting Range by Product)			
Input					
BOOL	Execute	Give an absolute position operation command to the relevant axis in the rising Edge.			
BOOL	ContinuousUpdate	Specify the update setting of input value. (Refer to 6.1.5.Changes in Parameters during Execution of Motion Function Block)			
LREAL	Position	Specify the target position.			
LREAL	Velocity	Specify the maximum speed. [u/s]			
LREAL	Acceleration	Specify the acceleration. [u/s²]			
LREAL	Deceleration	Specify the deceleration. [u/s²]			
LREAL	Jerk	Specify the change rate of acceleration/deceleration. [u/s³]			
		Specify the operation direction.			
UINT	Direction	(0~4: 0-Not specified, 1-Forward direction, 2-Shortest distance, 3-Reverse direction,			
		4-Current direction)			
UINT	BufferMode	Specify the sequential operation setting of motion function block. (Refer to 6.1.4.BufferMode)			
Output					
BOOL	Done	Indicate whether to reach the specified distance.			
BOOL	Busy	Indicate that the execution of motion function block is not completed.			
BOOL	Active	Indicate that the current motion function block is controlling the relevant axis.			
BOOL	CommandAborted	Indicate that the current motion function block is interrupted while it is running.			
BOOL	Error	Indicate whether an error occurs or not.			
WORD	ErrorID	Output the number of error occurred while motion function block is running.			

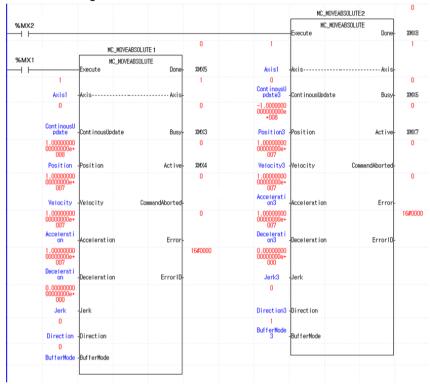

- (1) This motion function block is to give the relevant absolute position operation commands.
- (2) Operation direction of the axis in Infinite length repetition operation is set in Direction input, and if Infinite length repetition operation is set to Prohibited, Direction input is ignored. When Direction input is the shortest distance (=2), the relevant axis doing Infinite length repetition operation automatically selects the direction which allows the shortest distance. The available range is 0-4 (0-Not specified, 1-Forward direction, 2-Shortest distance, 3-Reverse direction, 4-Current direction), and "error

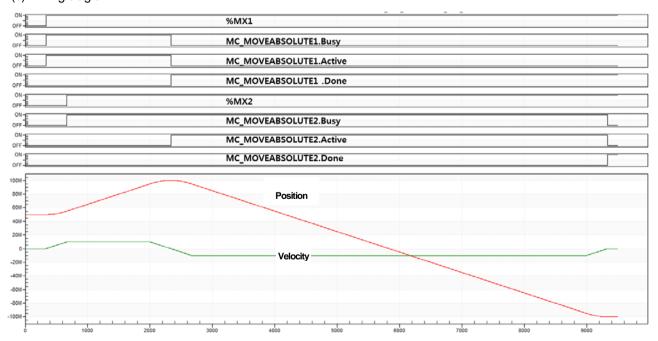

0x1017" occurs in case of excess of the range.

- (3) On condition that there is no motion function block is on standby after the current motion function block, If the speed is 0 after reaching the target point, operation is completed and Done output is On.
- (4) The axis is in 'DiscreteMotion' state while this motion function block is running, and it is switched to 'Standstill' state when operation is completed.
- (5) The changed parameters can be applied by re-executing the function block (Execute input is On) before the command is completed. Only Position, Velocity, Acceleration, Deceleration, Jerk, Direction input can be updated.
- (6) Velocity input can be set to 0 or changed.
- (7) During the deceleration operation, even if the Velocity and Acceleration inputs are changed by using the ContinuousUpdate function or the command re-execution function, the deceleration operation is not affected and the previous deceleration operation continues.
- (8) Example program

This example shows the movement from the current command position of 50,000,000 to the 100,000,000 position.

(a) Function block setting



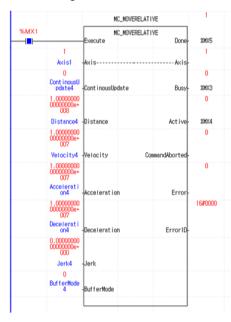


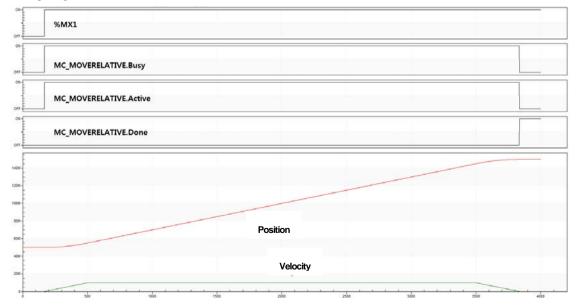
(9) Application example program

This example shows the execution of another function block with BufferMode set to 1 while moving from the current command position of 50,000,000 to the 100,000,000 position, to move to the -100,000,000 position.

(a) Function block setting

6.3.6 Relative positioning operation (MC_MoveRelative)

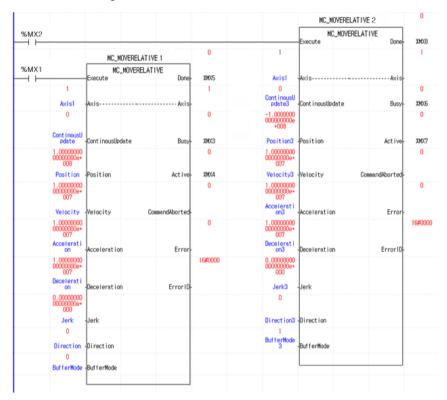

Motion Function	n Block	
Wiodorr driction	II DIOCK	
	BOOL — C LREAL — C LREAL — V LREAL — A LREAL — C LREAL — J	Axis
Input-Output		
UINT	Axis	Specify the axis to be commanded (See 6.2.1 Setting Range by Product)
Input		
BOOL	Execute	Give an absolute position operation command to the relevant axis in the rising Edge.
BOOL	ContinuousUpdate	Specify the update setting of input value. (Refer to 6.1.5.Changes in Parameters during Execution of Motion Function Block)
LREAL	Distance	Specify the target distance.
LREAL	Velocity	Specify the maximum speed. [u/s]
LREAL	Acceleration	Specify the acceleration. [u/s²]
LREAL	Deceleration	Specify the deceleration. [u/s²]
LREAL	Jerk	Specify the change rate of acceleration/deceleration. [u/s³]
UINT	BufferMode	Specify the sequential operation setting of motion function block. (Refer to 6.1.4.BufferMode)
Output		
BOOL	Done	Indicate whether to reach the specified distance.
BOOL	Busy	Indicate that the execution of motion function block is not completed.
BOOL	Active	Indicate that the current motion function block is controlling the relevant axis.
BOOL	CommandAborted	Indicate that the current motion function block is interrupted while it is running.
BOOL	Error	Indicate whether an error occurs or not.
WORD	ErrorID	Output the number of error occurred while motion function block is running.

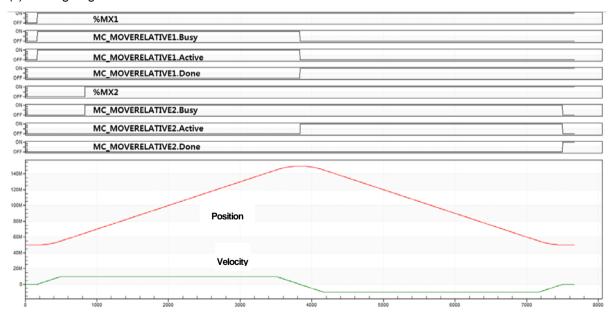

- (1) This motion function block is to give relative position operation command to the relevant axis.
- (2) Relative position motion (MC_MoveRelative) is the motion function block which moves as far as the target distance specified in Distance input from the current position.
- (3) Moving direction is decided depending on the sign of the target distance specified in Distance input, and positive (+ or No sign) moving direction leads to the forward direction, and negative (-) moving direction leads to the reverse direction.

- (4) If there is no motion function block is on standby after the current motion function block and the speed is 0 after moving to the target distance, operation is completed and Done output is On.
- (5) The axis is in "DiscreteMotion" state when this motion function block is running, and it is switched to "StandStill" state when operation is completed.
- (6) The changed parameters can be applied by re-executing the function block (Execute input is On) before the command is completed. Only Distance, Velocity, Acceleration, Deceleration, Jerk input can be updated.
- (7) Velocity input can be set to 0 or changed.
- (8) During the deceleration operation, even if the Velocity and Acceleration inputs are changed by using the ContinuousUpdate function or the command re-execution function, the deceleration operation is not affected and the previous deceleration operation continues.
- (9) Example program

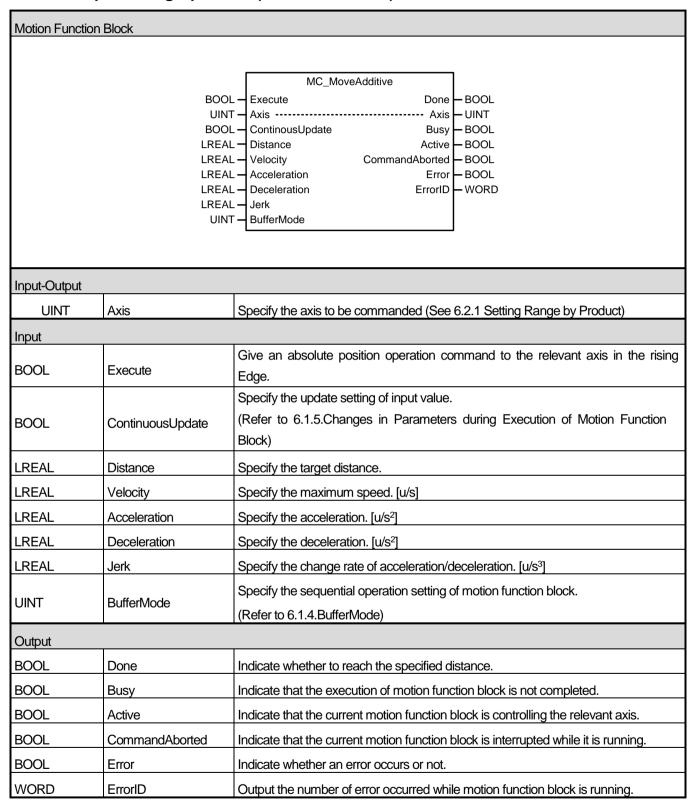
This example shows the movement from the current command position of 50,000,000 to the 150,000,000 position by moving the distance corresponding to the set value (100,000,000).

(a) Function block setting



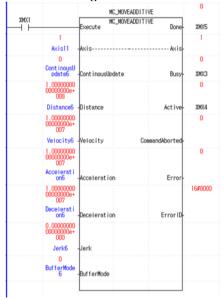


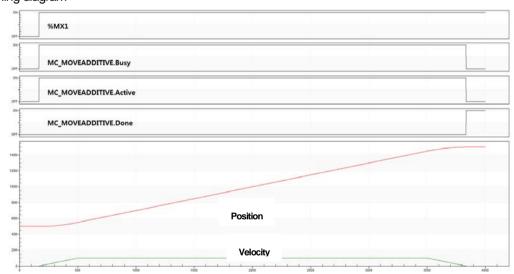
(10) Application example program


This example shows the execution of another function block with BufferMode set to 1 while moving from the current command position of 50,000,000 to the 150,000,000 position, to move to the 50,000,000 position.

(a) Function block setting

6.3.7 Additive positioning operation (MC_MoveAdditive)

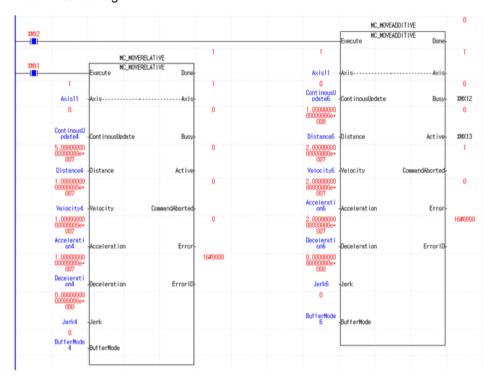

Chapter5 Motin Functin Block

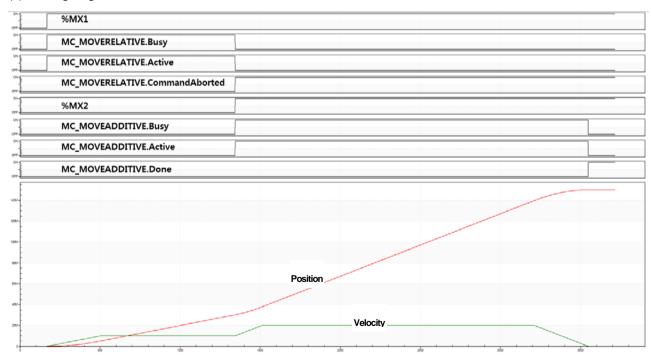

- (1) This motion function block is to give the relevant additive position operation commands.
- (2) Additive position motion (MC_MoveAdditive) is the motion function block which additionally moves as far as the position specified in Distance input from the final target position of the currently running motion function block or the latest motion function block executed in 'DiscreteMotion' state. If the current axis is executing motion function block 'ContinuousMotion' state, it executes operation based on the position where additive position motion (MC_MoveAdditve) is executing.
- (3) Moving direction is decided depending on the sign of the specified target distance in Distance input, and positive (+ or No sign) moving direction leads to forward direction, and negative (-) moving direction leads to reverse direction.
- (4) When reaching the target position without motion function block on standby after the current motion function block, 'Done' output is On.
- (5) The axis is in 'DiscreteMotion' state while this motion function block is running, and it is switched to 'Standstill' state when operation is completed.
- (6) The changed parameters can be applied by re-executing the function block (Execute input is On) before the command is completed. Only Distance, Velocity, Acceleration, Deceleration, Jerk input can be updated.
- (7) Velocity input can be set to 0 or changed.
- (8) During the deceleration operation, even if the Velocity and Acceleration inputs are changed by using the ContinuousUpdate function or the command re-execution function, the deceleration operation is not affected and the previous deceleration operation continues.

(9) Example program

This example shows the movement from the current command position of 50,000,000 to the 150,000,000 position by moving the distance corresponding to the set value (100,000,000).

(a) Function block setting



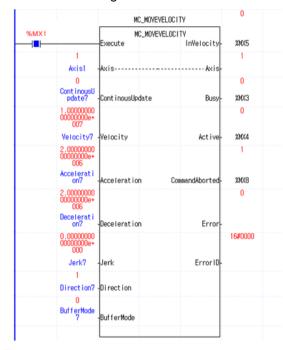


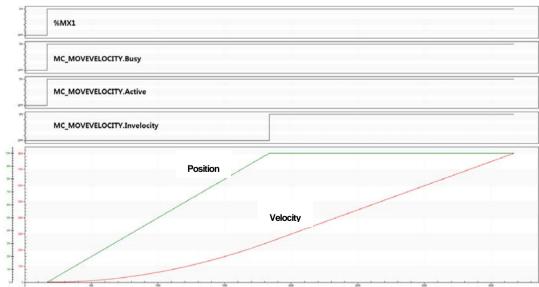
(10) Application example program

This example shows the execution of MC_MOVEADDITIVE function block while moving from current command position of 0 to the 50,000,000 position, to move an additional 100,000,000 to the 150,000,000 position.

(a) Function block setting

6.3.8 Specified velocity operation (MC_MoveVelocity)

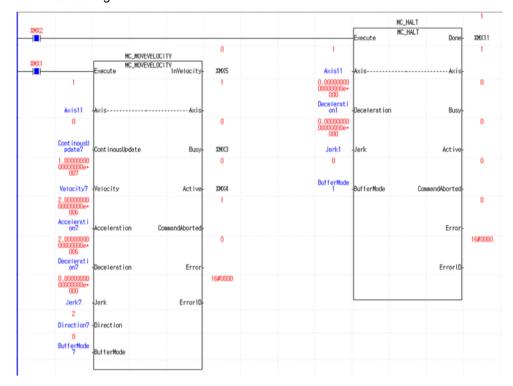

Motion Function	Motion Function Block				
	BOOL — C LREAL — V LREAL — A LREAL — C LREAL — J UINT — C	Axis			
Input-Output					
UINT	Axis	Specify the axis to be commanded (See 6.2.1 Setting Range by Product)			
Input					
BOOL	Execute	Give an absolute position operation command to the relevant axis in the rising Edge.			
BOOL	ContinuousUpdate	Specify the update setting of input value. ContinuousUpdate (Refer to 6.1.5.Changes in Parameters during Execution of Motion Function Block)			
LREAL	Velocity	Specify the maximum speed. [u/s]			
LREAL	Acceleration	Specify the acceleration. [u/s²]			
LREAL	Deceleration	Specify the deceleration. [u/s²]			
LREAL	Jerk	Specify the change rate of acceleration/deceleration. [u/s³]			
UINT	Direction	Specify the operation speed. (1 \sim 3 : 1-Forward direction, 2-Reverse direction, 3-Current direction)			
UINT	BufferMode	Specify the sequential operation setting of motion function block. (Refer to 6.1.4.BufferMode)			
Output					
BOOL	InVelocity	Indicate whether to reach the specified speed.			
BOOL	Busy	Indicate that the execution of motion function block is not completed.			
BOOL	Active	Indicate that the current motion function block is controlling the relevant axis.			
BOOL	CommandAborted	Indicate that the current motion function block is interrupted while it is running.			
BOOL	Error	Indicate whether an error occurs or not.			
WORD	ErrorID	Output the number of error occurred while motion function block is running.			

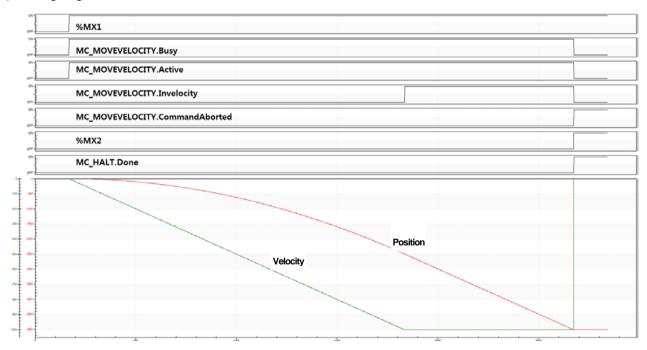

- (1) This motion function block is to give specified velocity operation command to the relevant axis.
- (2) Giving a stop command or execution of other motion function block allow to interrupt specified velocity motion.
- (3) Specify the operation speed in Velocity input. Positive sign (+ or No sign) of the operation speed value leads to forward direction, and negative (-) sign leads to reverse direction.

- (4) Specify the operation direction in Direction input. But, the operation direction is affected by the sign of the specified speed value by Velocity input. For example, if you specify the negative number for the Velocity value and reverse direction for Direction input, the relevant axis lastly does forward direction operation.
- (5) Output InVelocity is On when the relevant axis reaches the specified speed, and it is Off when the specified speed operation is interrupted.
- (6) The axis is in 'ContinuousMotion' state when this motion function block is running.
- (7) The changed parameters can be applied by re-executing the function block (Execute input is On) before the command is completed. Only Distance, Velocity, Acceleration, Deceleration, Jerk, Direction input can be updated.
- (8) Velocity input can be set to 0 or changed.
- (9) Example program

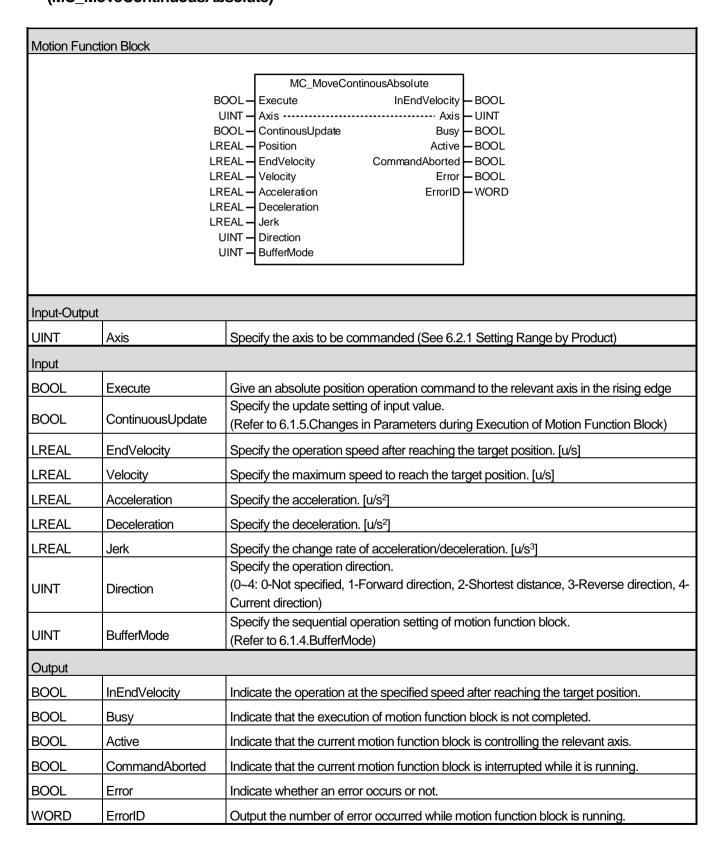
This example program shows the movement at a velocity of 10,000,000. Once the set velocity is reached, InVelocityoutput is on.

(a) Function block setting



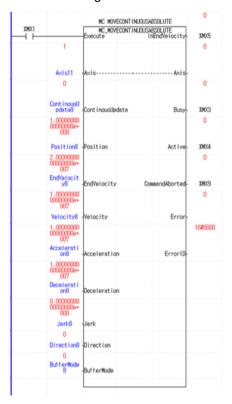


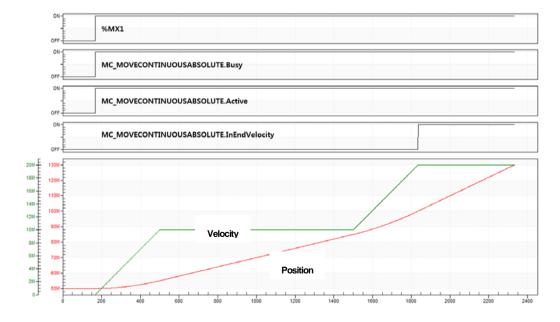
(10) Application example program


This example program shows that it stops running due to the execution of MC-Halt function block, while moving in the reverse direction at a velocity of 10,000,000.

(a) Function block setting

6.3.9 Absolute position operation ending with specified velocity operation (MC_MoveContinuousAbsolute)

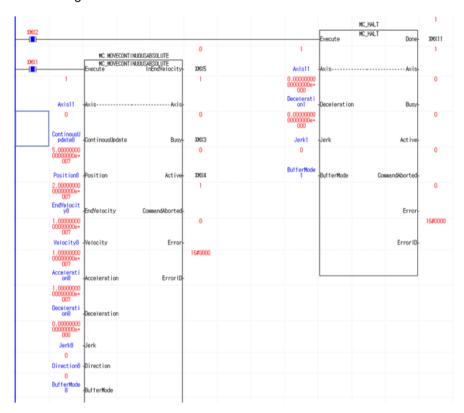


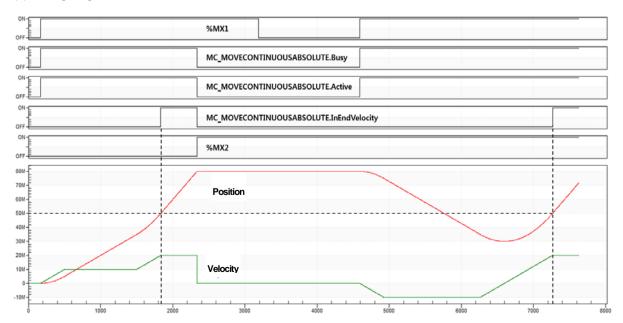

- (1) This motion function block is to give Specified velocity operation after relative position operation command to the relevant axis.
- (2) When executing MC_MoveContinuousAbsolute, the relevant axis moves to the position specified in Position and operates at the specified speed in EndVelocity if there is no motion function block is on standby.
- (3) Giving a stop command or execution of other motion function block allow to interrupt speed operation.
- (4) Set the operation direction of the axis in infinite length repetition operation in Direction input, and if infinite length repetition operation is set to Prohibited, Direction input is ignored. When Direction input is the shortest distance (=2), the relevant axis selects the direction which allows the shortest distance and operates if it does infinite length repetition operation. The range can be set to 0~4(0-No specified, 1-Forward direction, 2-Shortest distance, 3-Reverse direction, 4-Current direction), if the value outside the range is set and motion function block is executed, Error is On and "0x1017" occurs in ErrorID.
- (5) Output InEndVelocity is on when the relevant axis starts speed operation after reaching the specified position, and when the specified operation is interrupted, it is Off.
- (6) The axis is in 'ContinuousMotion' state while this command is executing.
- (7) The changed parameters can be applied by re-executing the function block (Execute input is On) before the command is completed. Only Position, EndVelocity, Velocity, Acceleration, Deceleration, Jerk, Direction input can be updated. (However, in case of InEndVelocity=On, it is reflected only EndVelocity inputs.
- (8) Velocity and EndVelocityy input can be set to 0 or changed.

(9) Example program

This example program shows the operation at a speed of 20,000,000 after moving from the current command position of 50,000,000 to the 100,000,000 position. Once the set position is reached, InEndVelocityoutput is on.

(a) Function block setting





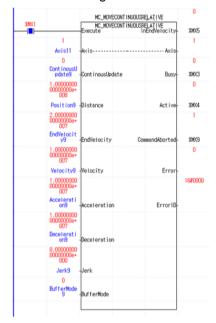
(10) Application example program

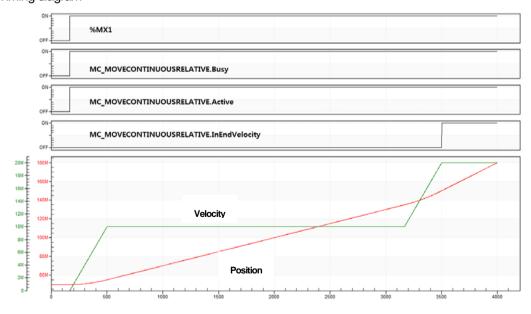
This example program shows the movement in the direction of the same speed when re-executing the function block after stopping the execution of MC-Halt function block, while moving from the current command position of 0 to the 50,000,000, then operating at a speed of 20,000,000.

(a) Function block setting

6.3.10 Relative position operation ending with specified velocity operation

(MC_MoveContinuousRelative)

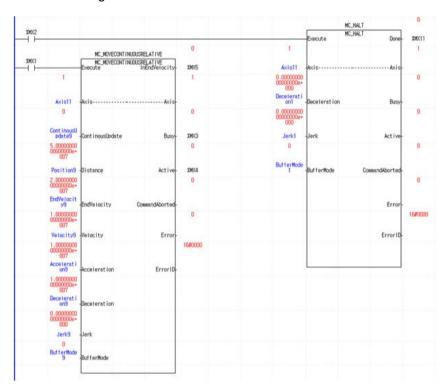

Motion Fund	ction Block		
TVIOLIGITT UIT	Olion Dioon		
		MC_MoveContinousRelative	
	BOOL -	xecute InEndVelocity - BOOL	
		Axis Axis UINT	
		ContinousUpdate Busy - BOOL Distance Active - BOOL	
		EndVelocity CommandAborted - BOOL	
		Velocity Error - BOOL	
		Acceleration ErrorID - WORD	
		Deceleration	
	LREAL -	BufferMode	
	OINT -	Bulletivioue	
Input-Outpu	ut		
UINT	Axis	Specify the axis to be commanded (See 6.2.1 Setting Range by Product)	
Input			
	_	Give an absolute position motion command to the relevant axis in the rising	
BOOL	Execute	Edge.	
		Specify the update setting of input value.	
BOOL	ContinuousUpdate	(Refer to 6.1.5.Changes in Parameters during Execution of Motion Function	
		Block)	
LREAL	Distance	Specify the target distance.	
LREAL	EndVelocity	Specify the operation speed after reaching the target position. [u/s]	
LREAL	Velocity	Specify the maximum speed to reach the target position. [u/s]	
LREAL	Acceleration	Specify the acceleration. [u/s²]	
LREAL	Deceleration	Specify the deceleration. [u/s²]	
LREAL	Jerk	Specify the change rate of acceleration/deceleration. [u/s³]	
		Specify the sequential operation setting of motion function block.	
UINT	BufferMode	(Refer to 6.1.4.BufferMode)	
Output			
BOOL	InEndVelocity	Indicate the operation at the specified speed after reaching the target position.	
BOOL	Busy	Indicate that the execution of motion function block is not completed.	
BOOL	Active	Indicate that the current motion function block is controlling the relevant axis.	
BOOL	CommandAborted	Indicate that the current motion function block is interrupted while it is running.	
BOOL	Error	Indicate whether an error occurs or not.	
WORD	ErrorID	Output the number of error occurred while motion function block is running.	

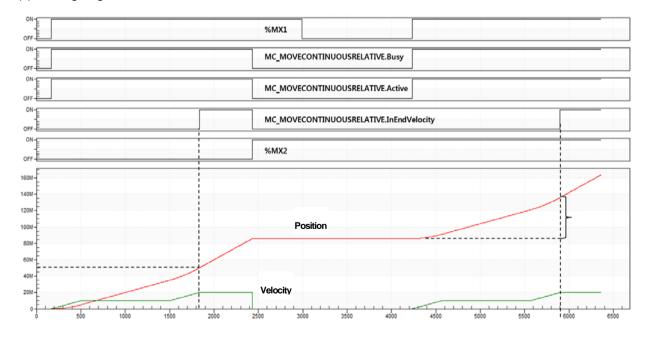

- (1) This motion function block gives MC_MoveContinuousRelative command to the relevant axis.
- (2) When executing MC_MoveContinuousRelative, the relevant axis operates at the speed specified in EndVelocity after moving the distance specified in Distance if there is no motion function block is on standby.

- (3) Giving a stop command or operation of other motion function block allow to interrupt specified velocity motion.
- (4) Output InEndVelocity is On when the relevant axis starts speed operation and reaches the specified speed after moving the specified distance, and when specified velocity motion is interrupted, it is Off.
- (5) The axis is in 'ContinuousMotion' state while this motion function block is running.
- (6) The changed parameters can be applied by re-executing the function block (Execute input is On) before the command is completed. Only Distance, EndVelocity, Velocity, Acceleration, Deceleration, Jerk input can be updated. (However, in case of InEndVelocity=On, it is reflected only EndVelocity inputs.
- (7) Velocity and EndVelocityy input can be set to 0 or changed
- (8) Example program

This example program shows the operation at a velocity of 20,000,000 after moving from the current command position of 50,000,000 to the 150,000,000 position by moving the distance corresponding to the set value (100,000,000). Once the set position is reached, InEndVelocity is on.

(a) Function block setting

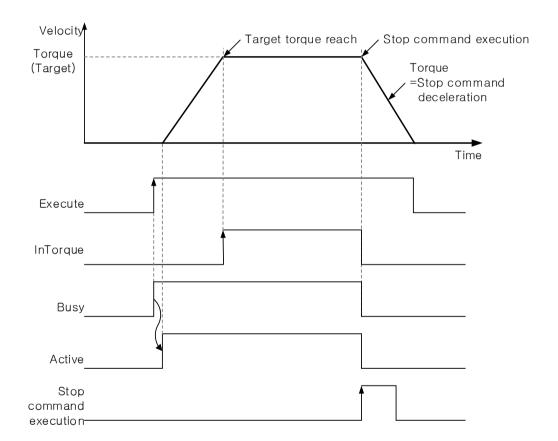




(9) Application example program

This example program shows the movement at a velocity of 20,000,000 after moving from the current command position of 0 to the 50,000,000 position, then operating at a velocity of 20,000,000, stopping by executing MC_Halt function block, moving to the same relative position (20,000,000) by re-executing the function block.

(a) Function block setting



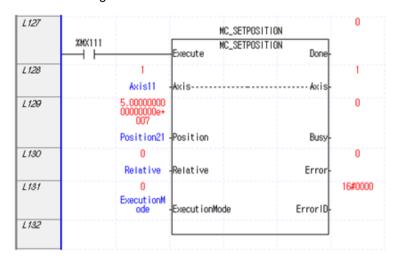
6.3.11 Torque control (MC_TorqueControl)

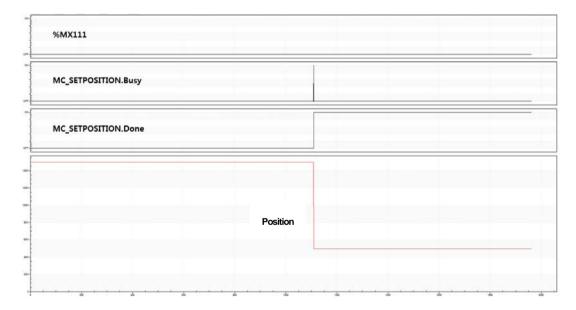
Motion Funct	ion Block	
	BOOL — LREAL — LREAL — LREAL — LREAL — LREAL — UINT —	Axis
Input-Output		
UINT	Axis	Specify the axis to be commanded (See 6.2.1 Setting Range by Product, Real axis)
Input		1
BOOL	Execute	Give an absolute position operation command to the relevant axis in the rising Edge.
BOOL	ContinuousUpdate	Specify the update setting of input value. (Refer to 6.1.5.Changes in Parameters during Execution of Motion Function Block)
LREAL	Torque	Specify the target torque. [u]
LREAL	TorqueRamp	Specify the ascending slope of torque. [u/s]
LREAL	Velocity	Unused
LREAL	Acceleration	Unused
LREAL	Deceleration	Unused
LREAL	Jerk	Unused
UINT	Direction	Specify the operation direction.
UINT	Direction	(1~2: 1-Forward direction, 2-Reverse direction)
UINT	BufferMode	Specify the sequential operation setting of motion function block. (Refer to 6.1.4.BufferMode)
Output		
BOOL	InTorque	Indicate that the input torque value and currently operating torque value are same.
BOOL	Busy	Indicate that the execution of motion function block is not completed.
BOOL	Active	Indicate that the current motion function block is controlling the relevant axis.
BOOL	CommandAborted	Indicate that the current motion function block is interrupted while it is running.
BOOL	Error	Indicate whether an error occurs or not.
WORD	ErrorID	Output the number of error occurred while motion function block is running.

- (1) This motion function block is to give torque control command to the relevant axis.
- (2) When executing torque control (MC_Torque), the relevant axis performs the control to keep the torque value specified in Torque input.
- (3) Giving a stop command or operation of other motion function block allow to interrupt specified velocity motion.
- (4) Specify the gradient to reach the target torque value in TorqueRamp input.
- (5) Specify the operation direction in Direction input. When setting the value outside the range and executing motion function block, Error is On and "0x1017" occurs in ErrorID.
- (6) Output InTorque is On when the relevant axis reaches the specified torque, and when torque control operation is interrupted, it is Off.
- (7) The axis is in 'ContinuousMotion' state when this motion function block is running.
- (8) The changed parameters can be applied by re-executing the function block (Execute input is On) before the command is completed. Only Torque, TorqueRamp, Direction input can be updated.
- (9) Timing diagram

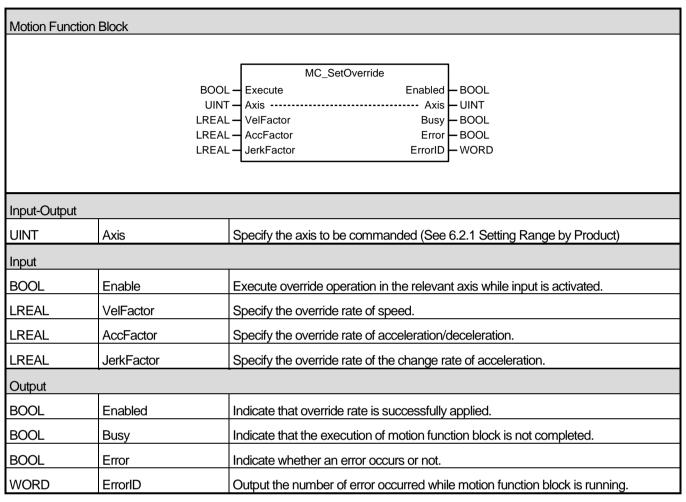
6.3.12 Setting the current position (MC_SetPosition)

Motion Function	on Block	
	UIN [*] LREAI BOOI	MC_SetPosition L — Execute Done — BOOL Axis — Axis — UINT L — Position Busy — BOOL L — Relative CommandAborted — BOOL F — ExcutionMode Error — BOOL ErrorID — WORD
Input-Output		
UINT	Axis	Specify the axis to be commanded (See 6.2.1 Setting Range by Product)
Input		
BOOL	Execute	Specify the current position of the relevant axis in the rising Edge.
LREAL[]	Position	Specify the position.
BOOL	Relative	0: Position value=Absolute position, 1: Position value=Relative position
UINT	ExecuteMode	Immediately applied the position value, Applied at the same point with 'Buffered' of Buffermode
Output		
BOOL	Done	Indicate the state of motion function block completion.
BOOL	Busy	Indicate that the execution of motion function block is not completed.
BOOL	CommandAborted	Indicate that the current motion function block is interrupted while it is running.
BOOL	Error	Indicate whether an error occurs or not.
WORD	ErrorlD	Output the number of error occurred while motion function block is running.

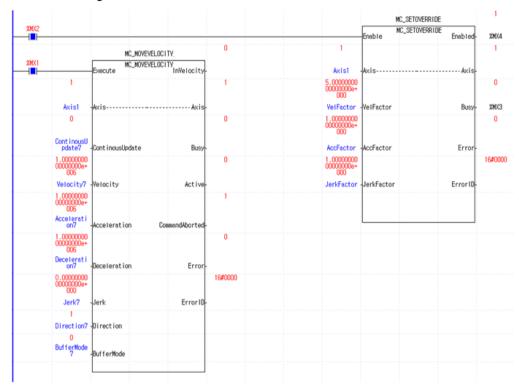

- (1) This motion function block is to set the current position of the relevant axis.
- (2) Specify the position in Position input. When executing motion function block, if Relative input is Off, the position of the relevant axis is replaced by the value of Position input, and if Relative input is On, the value of Position input is added to the current position of the relevant axis.
- (3) ExcutionMode input specifies the setting point. 0 means to be set immediately after motion function block, and 1 means to be set at the same point with 'Buffered' in sequential operation setting. The value unable to be set causes "error0x101B".
 - 0 (mcImmediately): Change the parameter value immediately after executing function block (rising Edge in Execute input).

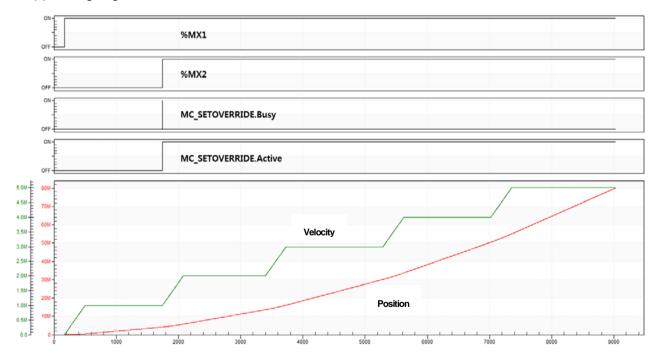

 If the relevant axis is in running, operation can be affected.
 - 1 (mcQueued): Changed at the same point with 'Buffered' in Buffermode. (Refer to 6.1.4 Buffermode input)

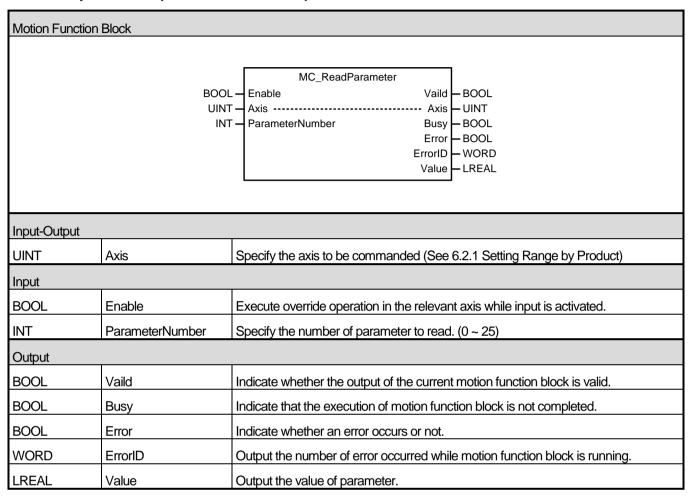
(4) Example program


This example program shows the setting of the current position to 200,000,000 position by adding a relative position (Relative=1) corresponding to the set value (50,000,000) from the current position of 150,000,000.

(a) Function block setting




6.3.13 Velocity/Acceleration override (MC_SetOverride)


- (1) This motion function block is to override the speed of the relevant axis, acceleration, and the change rate of acceleration.
- (2) Override rate which is applied to the relevant axis can be specified and changed while Enable input is On. If Enable input is Off, override rate right before the Off is maintained.
- (3) Speed override rate is specified in VelFactor input. If the specified value is 0.0, the relevant axis stops but it is not changed to 'StandStill' state.
- (4) Specify acceleration/deceleration and override rate of jerk (change rate of acceleration) in AccFactor and JerkFactor input respectively.
- (5) Negative number cannot be input in each Facotr, and if it is input, "error 0x10C1" occurs.
- (6) Default of each override rate is 1.0, and it means 100% of the command speed of function block currently running.
- (7) Override operation does not affect the serve axis of the relevant axis.
- (8) Example program
 - This example shows the operation by changing the current velocity to 2,000,000/ 3,000,000/ 4,000,000/ 5,000,000 if VelFactor is changed to 2/3/4/5 at the current velocity of 1,000,000.

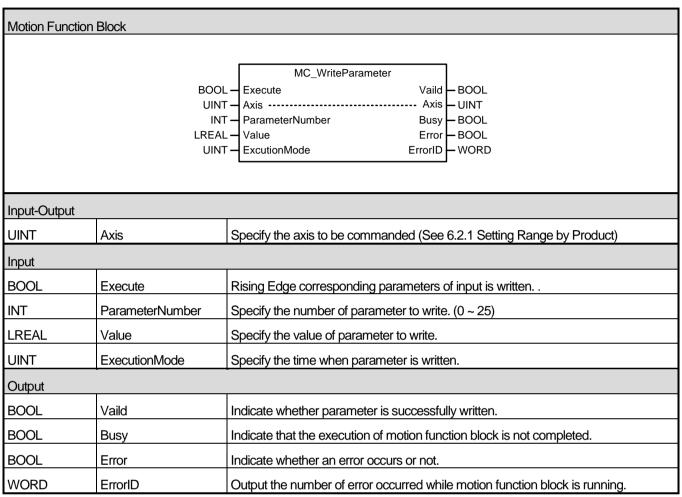
(a) Function block setting

6.3.14 Read parameter (MC_ReadParameter)

- (1) This command is a motion function block which outputs parameter of the relevant axis.
- (2) The value of the relevant parameter is continuously output in Value while Enable input is On.
- (3) Specify the number of parameter to read in ParameterNumber input.

(4) The numbers of parameter are as below.

No	Parameter	Item	Description	os
0		Unit	0:pulse,1:mm,2:inch,3:degree	-
1		Purses per rotation	1 ~ 4,294,967,295 [pulse]	-
2		Travel per rotation	0.000000001 ~ 4,294,967,295 [Unit]	-
3		Speed command unit	0:Unit/Time, 1:rpm	-
			LREAL Positive number [Unit/s, rpm]	
4	Doois	Speed limit	(Change according to Unit, Pulses per rotation,	-
	Basic Parameter		Travel per rotation, Speed command unit)	
5	Parameter	Emergency stop deceleration	0 or LREAL Positive number [Unit/s²]	-
6		Encoder select	0:Incremental Encoder,1:Absolute Encoder	-
7		Gear ratio(Motor)	1 ~ 65,535	-
8		Gear ratio(Machine)	1 ~ 65,535	-
9		Operating mode of the reverse rotation	0:E.Stop, 1:Stop	-
46		Position Control Range Expansion	0: Disable, 1: Enable	
10		S/W upper limit	LREAL [Unit]	-
11		S/W lower limit	LREAL [Unit]	-
12		Infinite running repeat position	LREAL Positive number [Unit]	-
13		Infinite running repeat	0:Disable, 1:Enable	-
14		Command Inposition range	0 or LREAL Positive number [Unit]	-
15		Tracking error over-range value	0 or LREAL Positive number [Unit]	-
16		Current position compensation amount	0 or LREAL Positive number [Unit]	-
17		Current speed filter time constant	0~100	-
18		Error reset monitoring time	1 ~ 1000 [ms]	-
19	Extended	S/W limit during speed control	0:Don't detect, 1:Detect	-
20	Parameter	Tracking error level	0:Warning, 1:Alarm	-
21		JOG high Speed	LREAL Positive number [Unit]	
21		300 High Speed	(Jog low speed ~speed limit) [Unit/s]	_
22		JOG low Speed	LREAL Positive number [Unit]	
22		300 low Speed	(< Jog high speed) [Unit/s]	_
23		JOG acceleration	0 or LREAL Positive number [Unit/s²]	-
24		JOG deceleration	0 or LREAL Positive number[Unit/ s²]	-
25		JOG jerk	0 or LREAL Positive number [Unit/ s²]	-
26		Override mode	0: Specified by ratio, 1: Specified by unit	-
29		Backlash compensation value	0 or Long real (LREAL) positive number*1) [Unit]	V1.30
27		Identifying range to reach the spindle	0~100%	
<u> </u>	NC	rotation command speed	0-100/0	
28	Parameter	Identifying RPM to reach the spindle	0~100rpm	
20		rotation zero speed	о попри	


No	Parameter	Item	Description	os
30		Select the Spindle Encoder	0: Disable, 1: Motor ENC, 2: Built-in ENC1, 3: Built-in ENC2, 4: EtherCAT ENC	V1.30
31		Number of pulses per rotation of the spindle EtherCAT encoder	1 ~ 4294967295	V1.30
32		Spindle EtherCAT encoder position variable	0: I device, 1: M device	V1.30
33	NC Spindle Axis Setting	Spindle EtherCAT encoder position address	0~4095 (Spindle EtherCAT encoder position variable = 0: I) 0~524287 (Spindle EtherCAT encoder position variable = 1: M)	V1.30
34		The P Gain of the Spindle Positioning Mode	1~ 500 Hz	V1.30
35		The Feed Forward Gain of the Spindle Positioning Mode	0~ 100 %	V1.30
36		How to conduct the homing operation	0: Servo drive supported, 33: Reverse direction, Z phase, 34: Forward direction, Z phase, 35: Set the homing of the current position	V1.30
37		Switch navigation speed of the homing operation	Long real (LREAL) positive number*1)	V1.30
38	NO Corin III	Zero navigation speed of the homing operation	Zero navigation speed of the origin operation ≤ Switch navigation speed of the origin origin ≤ Limit value of speed	V1.30
39	NC Spindle Origin Setting	Acceleration/deceleration of the homing operation	0 or Long real (LREAL) positive number*1) [Unit/ S2]	V1.30
40		Z phase variable	0: I device, 1: M device	V1.30
41		Z phase address	0~131071 (Z phase variable = 0: I) 0~16777215 (Z phase variable = 0: M)	V1.30
42		Orientation velocity	Long real (LREAL) positive number*1) (≤ Limit value of speed)	V1.30
43	1	Orientation direction	0: Forward direction, 1: Reverse direction	V1.30
44	1	Orientation offset	0~360	V1.30

No	Parameter	Item	Description	
100		Encorder1 unit	0: pulse, 1: mm, 2: inch, 3:degree	-
101		Encorder1 pulse per rotation	1 ~ 4294967295	-
102		Encorder1 travel per rotation	0.00000001 ~ 4294967295	-
			0:CW/CCW 1 multiplier, 1:PULSE/DIR 1 multiplier	
103		Encorder1 pulse input	2:PULSE/DIR 2 multiplier, 3:PHASE A/B 1 multiplier	-
			4:PHASE A/B 2 multiplier, 5: PHASE A/B 4multiplier	
104		Encorder1 max. value	(Encoder1 min. value + 1) ~ 2147483647	-
105		Encorder1 min. value	-2147483648 ~ (Encoder1 max. value - 1)	-
			0: No use, 1: 500kPPS	
106		Encoder1 input filter value	2: 200kPPS, 3: 100kPPS	
106		Encoder i input litter value	4: 10kPPS, 5: 1kPPS	-
			6: 0.1kPPS	
107		Encoder1 Speed unit	0: Unit/sec, 1: Unit/min, 2: rpm	V1.10
108		Encoder1 Position filter time constant	0~1000 ms	V1.10
109	Encoder	Encoder1 Position Latch	0: Disable, 1: Enable	V1.40
200	Parameter	Encorder2 unit	0: pulse, 1: mm, 2: inch, 3:degree	-
201		Encorder2 pulse per rotation	1 ~ 4294967295	-
202		Encorder2 travel per rotation	0.00000001 ~ 4294967295	-
			0:CW/CCW 1 multiplier, 1:PULSE/DIR 1 multiplier	
203		Encorder2 pulse input	2:PULSE/DIR 2 multiplier, 3:PHASE A/B 1 multiplier	-
			4:PHASE A/B 2 multiplier, 5: PHASE A/B 4multiplier	
204		Encorder2 max. value	(Encoder2 min. value + 1) ~ 2147483647	-
205		Encorder2 min. value	-2147483648 ~ (Encoder2 max. value - 1)	-
			0: No use, 1: 500kPPS	
000		Franks O is not filter and a	2: 200kPPS, 3: 100kPPS	
206		Encoder2 input filter value	4: 10kPPS, 5: 1kPPS	_
			6: 0.1Kpps	
207		Encoder2 Speed unit	0: Unit/sec, 1: Unit/min, 2: rpm	V1.10
208		Encoder2 Position filter time constant	0~1000 ms	V1.10
209		Encoder2 Position Latch	0: Disable, 1: Enable	V1.40

*Remak1) LREAL range: 2.2250738585072e-308 ~ 1.79769313486232e+308

LREAL positive range: 0 ~ 1.79769313486232e+308 (Excluded 0)

6.3.15 Write parameter (MC_WriteParameter)

- (1) This motion function block is to write the value specified in parameter of the relevant axis.
- (2) Parameter is written in the rising Edge of Execute input.
- (3) Specify the number of parameter to write in ParameterNumber input. The value unable to be set causes "error 0x10F0".
- (4) Specify the value to write in parameter for Value input.
- (5) In ExecutionMode, correct the time when parameter is written and the values below can be set. The value unable to be set causes "error 0x101B".
 - 0 (mcImmediately): Change the parameter value immediately after executing function block (rising Edge in Execute input).

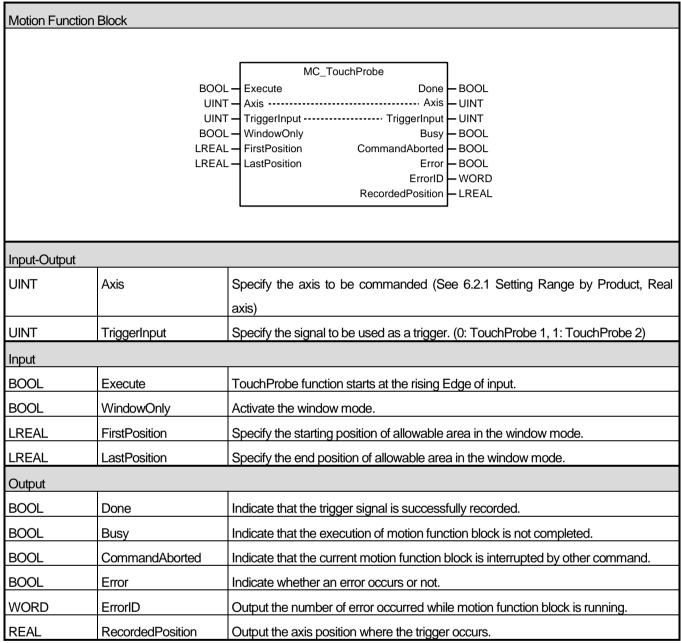
 If the relevant axis is in running, operation can be affected.
 - 1 (mcQueued): Changed at the same point with 'Buffered' in Buffermode. (Refer to the chapter 6.1.4 BufferMode input)

(6) The numbers of parameter are as below.

No	Parameter	Item	Description	os
0		Unit	0:pulse,1:mm,2:inch,3:degree	-
1]	Purses per rotation	1 ~ 4,294,967,295 [pulse]	-
2]	Travel per rotation	0.000000001 ~ 4,294,967,295 [Unit]	-
3		Speed command unit	0:Unit/Time, 1:rpm	-
			LREAL Positive number [Unit/s, rpm]	
4	D	Speed limit	(Change according to Unit, Pulses per rotation,	-
	Basic		Travel per rotation, Speed command unit)	
5	- Parameter	Emergency stop deceleration	0 or LREAL Positive number [Unit/s²]	-
6]	Encoder select	0:Incremental Encoder,1:Absolute Encoder	-
7]	Gear ratio(Motor)	1 ~ 65,535	-
8]	Gear ratio(Machine)	1 ~ 65,535	-
9		Operating mode of the reverse rotation	0:E.Stop, 1:Stop	-
46]	Position Control Range Expansion	0: Disable, 1: Enable	-
10		S/W upper limit	LREAL [Unit]	-
11		S/W lower limit	LREAL [Unit]	-
12		Infinite running repeat position	LREAL Positive number [Unit]	-
13		Infinite running repeat	0:Disable, 1:Enable	-
14		Command Inposition range	0 or LREAL Positive number[Unit]	-
15		Tracking error over-range value	0 or LREAL Positive number[Unit]	-
16		Current position compensation amount	0 or LREAL Positive number[Unit]	-
17		Current speed filter time constant	0~100	-
18		Error reset monitoring time	1 ~ 1000 [ms]	-
19	Extended	S/W limit during speed control	0:Don't detect, 1:Detect	-
20	Parameter	Tracking error level	0:Warning, 1:Alarm	-
0.4		1001:10	LREAL Positive number [Unit]	
21		JOG high Speed	(Jog low speed ~speed limit) [Unit/s]	-
00		1001-01	LREAL Positive number [Unit]	
22		JOG low Speed	(< Jog high speed) [Unit/s]	-
23]	JOG acceleration	0 or LREAL Positive number [Unit/ s²]	-
24]	JOG deceleration	0 or LREAL Positive number [Unit/ s²]	-
25]	JOG jerk	0 or LREAL Positive number [Unit/ s²]	
26]	Override mode	0: Specified by ratio, 1: Specified by unit	
29]	Backlash compensation value	0 or Long real (LREAL) positive number*1) [Unit]	V1.30
27		Identifying range to reach the spindle	0.4009/	
27	NC	rotation command speed	0~100%	-
20	Parameter	Identifying RPM to reach the spindle	0.100mm	
28		rotation zero speed	0~100rpm	
30		Select the Spindle Encoder	0: Disable, 1: Motor ENC, 2: Built-in ENC1,	V1.30
JU	NC Spindle	Ocieci ine Opiniale Encodel	3: Built-in ENC2, 4: EtherCAT ENC	v 1.30
31	Axis Setting	Number of pulses per rotation of the	1 ~ 4294967295	V1.30
J1	31 / Mac County	spindle EtherCAT encoder	1 - 7207301230	v 1.30

No	Parameter	Item	Description	os
		Spindle EtherCAT encoder position variable	0: I device, 1: M device	V1.30
33		Spindle EtherCAT encoder position address	0~4095 (Spindle EtherCAT encoder position variable = 0: I) 0~524287 (Spindle EtherCAT encoder position variable = 1: M)	V1.30
34		The P Gain of the Spindle Positioning Mode	1~ 500 Hz	V1.30
35		The Feed Forward Gain of the Spindle Positioning Mode	0~100%	V1.30
36		How to conduct the homing operation	O: Servo drive supported, 33: Reverse direction, Z phase, 34: Forward direction, Z phase, 35: Set the homing of the current position	V1.30
37		Switch navigation speed of the homing operation	Long real (LREAL) positive number*1)	V1.30
38	NC Spindle Origin Setting	Zero navigation speed of the homing operation	Zero navigation speed of the origin operation ≤ Switch navigation speed of the origin origin ≤ Limit value of speed	V1.30
39		Acceleration/deceleration of the homing operation	0 or Long real (LREAL) positive number*1) [Unit/ S2]	V1.30
40		Z phase variable	0: I device, 1: M device	V1.30
41		Z phase address	0~131071 (Z phase variable = 0: I) 0~16777215 (Z phase variable = 0: M)	V1.30
42		Orientation velocity	Long real (LREAL) positive number*1) (≤ Limit value of speed)	V1.30
43		Orientation direction	0: Forward direction, 1: Reverse direction	V1.30
44		Orientation offset	0~360	V1.30
100		Encorder1 unit	0: pulse, 1: mm, 2: inch, 3:degree	-
101		Encorder1 pulse per rotation	1 ~ 4294967295	-
102		Encorder1 travel per rotation	0.000000001 ~ 4294967295	-
103	Encoder Parameter	Encorder1 pulse input	0:CW/CCW 1 multiplier, 1:PULSE/DIR 1 multiplier 2:PULSE/DIR 2 multiplier, 3:PHASE A/B 1 multiplier 4:PHASE A/B 2 multiplier, 5: PHASE A/B 4multiplier	-
104		Encorder1 max. value	(Encoder1 min. value + 1) ~ 2147483647	
105		Encorder1 min. value	-2147483648 ~ (Encoder1 max. value - 1)	
106		Encoder1 input filter value	0: No use, 1: 500kPPS 2: 200kPPS, 3: 100kPPS 4: 10kPPS, 5: 1kPPS	-

No	Parameter	Item	Description	os
			6: 0.1kPPS	
107		Encoder1 Speed unit	0: Unit/sec, 1: Unit/min, 2: rpm	V1.10
108		Encoder1 Position filter time constant	0~1000 ms	V1.10
109		Encoder1 Position Latch	0: Disable, 1: Enable	V1.40
200		Encorder2 unit	0: pulse, 1: mm, 2: inch, 3:degree	-
201		Encorder2 pulse per rotation	1 ~ 4294967295	-
202		Encorder2 travel per rotation 0.000000001 ~ 4294967295		-
		Encorder2 pulse input	0:CW/CCW 1 multiplier, 1:PULSE/DIR 1	
			multiplier	
202			2:PULSE/DIR 2 multiplier, 3:PHASE A/B 1	
203			multiplier	-
			4:PHASE A/B 2 multiplier, 5: PHASE A/B	
			4multiplier	
204		Encorder2 max. value	(Encoder2 min. value + 1) ~ 2147483647	-
205		Encorder2 min. value	-2147483648 ~ (Encoder2 max. value - 1)	-
			0: No use, 1: 500kPPS	
206		Encoder2 input filter value	2: 200kPPS, 3: 100kPPS	
206			4: 10kPPS, 5: 1kPPS	-
			6: 0.1kPPS	
207		Encoder2 Speed unit	0: Unit/sec, 1: Unit/min, 2: rpm	V1.10
208		Encoder2 Position filter time constant	0~1000 ms	V1.10
209]	Encoder2 Position Latch	0: Disable, 1: Enable	V1.40


^{*}Remak1) LREAL range: 2.2250738585072e-308 ~ 1.79769313486232e+308 LREAL positive range: 0 ~ 1.79769313486232e+308 (Excluded 0)

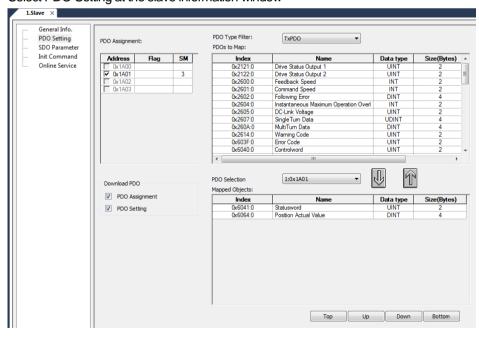
6.3.16 Reset axis error (MC_Reset)

- (1) This motion function block is to reset the error of the relevant axis. When setting ErrorType to '0' and executing motion function block in case the relevant axis is in 'ErrorStop' state, every axis error is reset and the axis state is switched to 'StandStill' or 'Disabled' state.
- (2) If ErrorType is set to '1' and motion function block is executed, common error occurred in the relevant module is reset.
- (3) Motion function block is executed in the rising Edge of Execute input.

6.3.17 Touch probe (MC_TouchProbe)

⁽¹⁾ This motion function block is to execute 'TouchProbe' function which records the axis position at the time when the trigger event occurs.

- (2) TouchProbe function starts at the rising Edge of Execute input.
- (3) Specify the signal to be used as a trigger in TriggerInput. The value unable to be set causes "error 0x10E1".
- (4) When activating the window mode, allowable area where accepts the trigger signal of axis can be set. Operation timing of each signal when the window mode is activated is as below.


Note

In the case of using Touch Probe, please set the slave parameters before use.

1. At XG50000, click the registration information of the servo drive.

2. Select PDO Setting at the slave information window

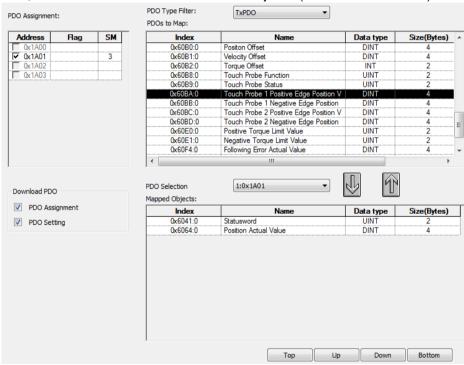
- 3. Select Touch Probe item in the edit window and click the arrow(downward), and include it in the PDO communication data. Touch Probe related PDO item are as follows.
 - 1) RxPDO

Touch Probe function (0x60B8)

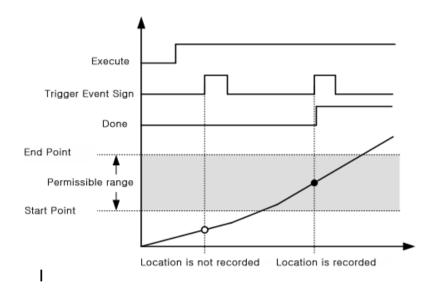
2) TxPDO

Touch Probe function (0x60B8)

Touch Probe status (0x60B9)

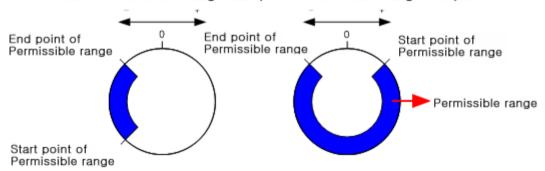

Touch Probe 1 forward direction position value (0x60BA)

Touch Probe 1 backward direction position value (0x60BB)

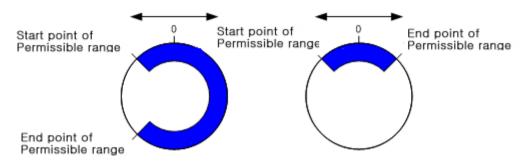

Touch Probe 2 forward direction position value (0x60BC)

Touch Probe 2 backward(0x60BD)

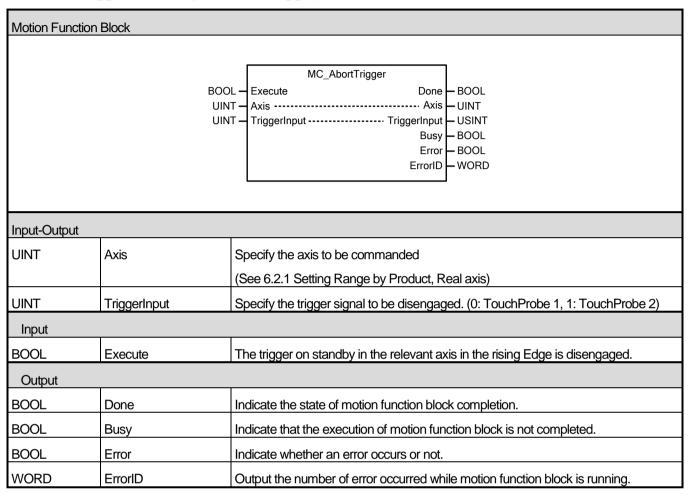
At the PDO edit window, select the forward direction position value for Touch Probe 2, and select the down arrow. For some servo drive, a PDO setting error (0xF22) may occur, preventing connection to the servo drive. In such a case, the number of PDOs selected should be adjusted (deselect unused PDOs) as shown on the right.



4. After PDO item is edited, must write 'EtherCAT parameter' in motion controller.

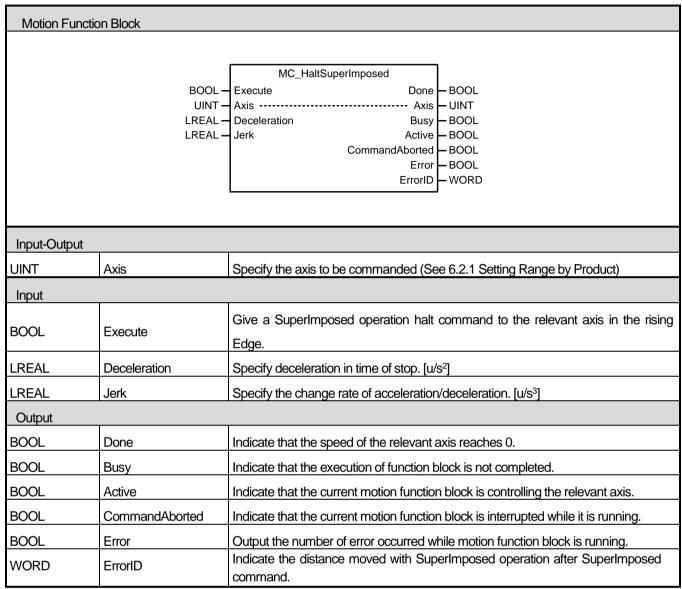


< In case Touch Probe function is the window mode, Operation timing >


● In case of Permissible range start point < Permissible range end point

In case of Permissible range start point > Permissible range end point

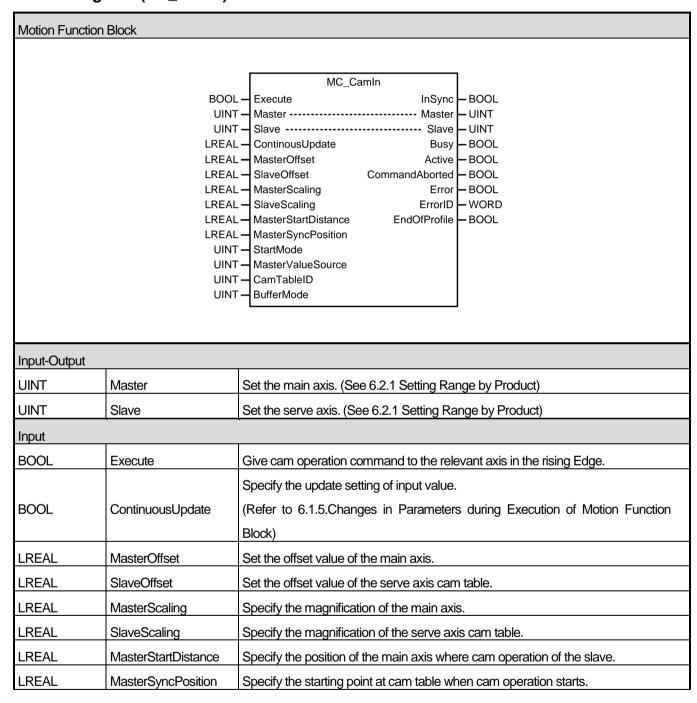
6.3.18 Abort trigger events (MC_AbortTrigger)


- (1) This motion function block is to disengage the trigger which is on standby in the relevant axis.
- (2) Specify the trigger signal to be disengaged in TriggerInput. The value unable to be set causes "error 0x10E1".

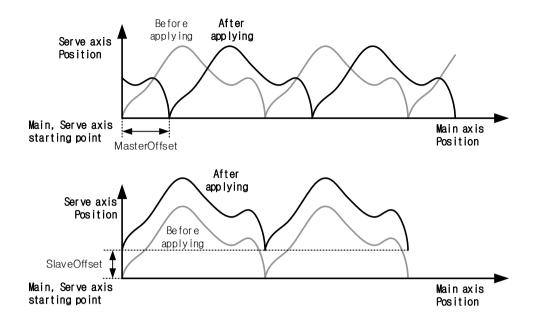
6.3.19 SuperImposed operation (MC_MoveSuperImposed)

		MC_MoveSuperImposed Execute Done — BOOL	
	UINT —		
	UINT —		
		LANGUAGE DOOL	
		Axis Axis UINT	
		ContinuousUpdate Busy – BOOL	
		Distance Active - BOOL VelocityDiff CommandAborted - BOOL	
		Acceleration Error — BOOL	
		Deceleration ErrorID - WORD	
	LREAL —	Jerk CoveredDistance - LREAL	
Input-Output			
UINT	Axis	Specify the axis to be commanded (See 6.2.1 Setting Range by Product)	
Input			
BOOL	Execute	Give a SuperImposed operation command to the relevant axis in the rising Edge.	
BOOL	ContinuousUpdate	Specify the update setting of input value.	
BOOL		(Refer to 6.1.5.Changes in Parameters during Execution of Motion Function Block)	
LREAL	Distance	Specify the target distance. [u]	
LREAL	VelocityDiff	Specify the added velocity. [u/s]	
LREAL	Acceleration	Specify the added acceleration. [u/s²]	
LREAL	Deceleration	Specify the added deceleration. [u/s²]	
LREAL	Jerk	Specify the added change rate of acceleration/deceleration. [u/s³]	
Output			
BOOL	Done	Indicate whether to reach the specified distance.	
BOOL	Busy	Indicate that the execution of motion function block is not completed.	
BOOL	Active	Indicate that the current motion function block is controlling the relevant axis.	
BOOL	CommandAborted	Indicate that the current motion function block is interrupted by other command	
BOOL	Error	Indicate whether an error occurs or not.	
WORD	ErrorID	Output the number of error occurred while motion function block is running.	
LREAL	EAL CoveredDistance Indicate the distance moved with SuperImposed operation after SuperImposed command.		

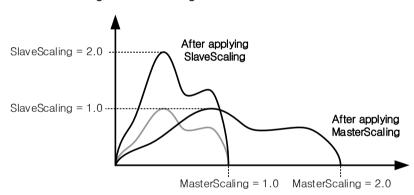
- (1) This motion function block is a command issuing SuperImposed operation order to the relevant axis.
- (2) SuperImposed is a command ordering to move from the current position at the time of the command to the target distance set by Distance input.
- (3) The direction of the movement is determined by the positivity/negativity of the set distance. Positive distance (+ or no sign) means forward movement, and negative distance (-) means reverse movement.
- (4) After moving the target distance, when the velocity reaches 0, the command is completed and Done output is on.


6.3.20 SuperImposed operation halt (MC HaltSuperImposed)

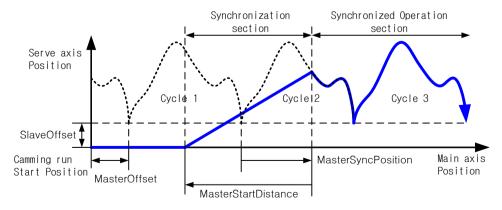
- (1) This motion function block is a command issuing an order to halt SuperImposed operation to the relevant axis.
- (2) Halt command for SuperImposed operation is a command ordering to decelerate and halt at a given acceleration and jerk at the time of performing the command.
- (3) After moving the target distance, when the velocity reaches 0, the command is completed and Done output is on.

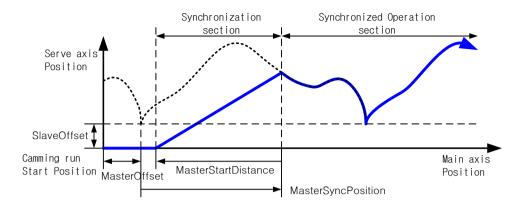

6.4 Multi-Axis Motion Function Block

6.4.1 Camming run (MC_CamIn)



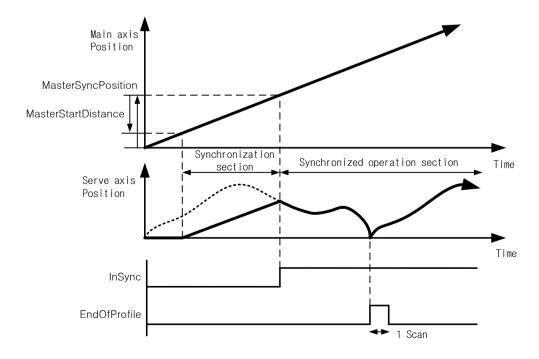
UINT StartMode		Set the cam operation mode. 0 : Cam table is applied as an absolute value (mcAbsolute) 1: Cam table is applied as a relative value based on the command starting point (mcRelative)	
UINT	MasterValueSource	Select the source of the main axis for cam operation. 0 : Synchronized in the target value of the main axis. 1 : Synchronized in the current value of the serve axis.	
UINT	CamTableID	Specify the cam table to operate. (See 6.2.1 Setting Range by Product)	
UINT	BufferMode	Specify the sequential operation setting of motion function block. (Refer to 6.1.4.BufferMode)	
Output			
BOOL	InSync	Indicate that cam operation is normally being fulfilled. (Indicate that the serve axis is following the cam table.)	
BOOL	Busy	Indicate that the execution of motion function block is not completed.	
BOOL	Active	Indicate that the current motion function block is controlling the relevant axis.	
BOOL	CommandAborted	Indicate that the current motion function block is interrupted while it is running.	
BOOL	Error	Indicate whether an error occurs or not.	
WORD	ErrorID	Output the number of error occurred while motion function block is running.	


- (1) This motion function block is to operate the serve axis cam depending on the main axis.
- (2) Cam operation command can be given to the serve axis even if the main axis is in stop state.
- (3) You must give cam operation abort (MC_CamOut) command to the serve axis or operate other motion function block to stop cam operation.
- (4) If this motion function block is aborted by another command (BufferMode=0 of newly executed command), the cam operation is stopped, and the CommandAborted output is on.
- (5) If another command is executed by Buffered while this motion function block is being executed (BufferMode=1~5 of newly executed command), the operation of the cam profiled cycle is terminated, and then the newly executed command is run subsequently. InSync / Busy / Active / CommandAborted / Error output of MC_CamIn function block are all Off.
- (6) The axis is in 'Synchronized Motion' while this motion function block is running.
- (7) Set the offset of cam table to be applied in MasterOffset and SlaveOffset. MasterOffset sets the offset with the starting point of the main axis, and SlaveOffset sets the offset with the starting point of the serve axis. Refer to the Figure below.


(8) Set the magnification of cam data to be applied in MasterScaling and SlaveScaling. Set the magnification of the main axis data in MasterScaling, and set the magnification of the serve axis data. Refer to the Figure below.

(9) MasterSyncPosition input specifies the position of the main axis within the table where the synchronization of actual cam operation is completed, and MasterStartDistance input specifies the relative position of the main axis where the synchronization starts. If unable to start synchronized operation at Cycle 1 as shown below (if the distance from the start position to the synchronized operation start position is shorter than MasterStartDistance), synchronized operation starts at Cycle 2.

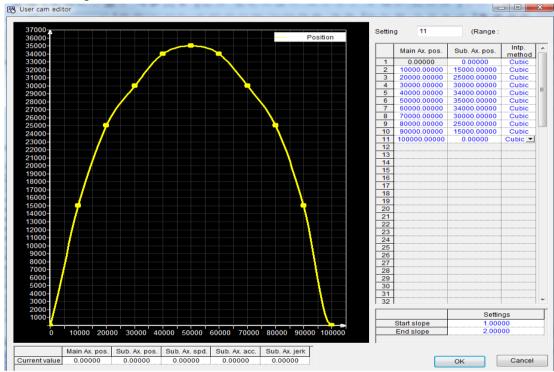
< In case MasterScaling is 1.0 >

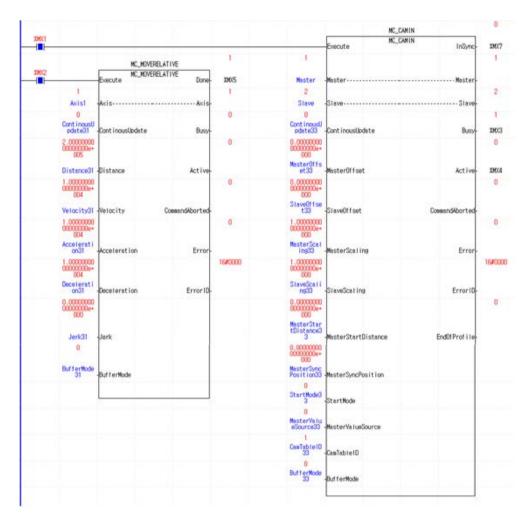

< In case MasterScaling is 2.0 >

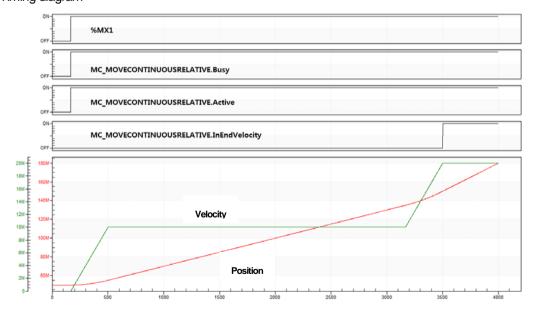
MasterSyncPosition position is based on the position within the cam table, and actual synchronization position is decided by considering MasterOffset and MasterScale parameters.

The serve axis starts moving to the synchronization position from the distance of the input value away based on the position where MasterSyncPosition is actually applied. If it is before starting moving, the serve axis waits at the relevant position in stop state, and if the serve axis is already in the section to move to the synchronization position at the beginning of the command, takes back the position of the synchronization starting point by the length of a table until it escapes the MasterStartDistance range.

Actual synchronization position can vary depending on MasterScaling and SlaveScaling because MasterSyncPosition is a value based on the inside of cam table, but MasterOffset and MasterStartDistance value remain unaffected.

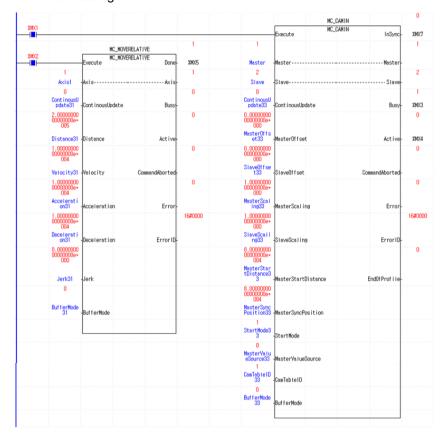

- (10) If the ContiunuousUpdate input is On, the changed parameter can be applied.
 - Only MasterOffset, SlaveOffset, MasterScaling, SlaveScaling, MasterStartDistance, MasterSyncPosition can be updated (However, In InSync=On case, MasterOffset, SlaveOffset, MasterScaling, SlaveScaling can be updated.
- (11) Once cam operation starts normally, InSync output is On, and EndOfProfile output is 1 scan On every time one cam table operation is completed.

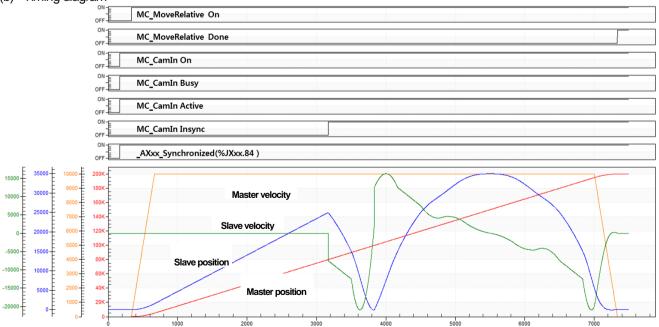



- (12) Cam operation mode is set in StartMode. Setting range is 0 or 1, and the input value outside the setting range causes an error.
- (13) MasterValueSource selects the source of the main axis to be synchronized. If it is set to 0, the serve axis performs cam operation based on the command position of the main axis which is calculated in motion controller, and if it is set to 1, the serve axis performs cam operation based on the current position which is received by communication in servo drive of main axis.
- (14) CamTableID sets the number of cam table to be applied to cam operation. Setting range is 1~32, and the input value outside the setting range causes error "0x1115" in motion function block.
- (15) The relevant axis is in "SynchronizedMotion" state while this motion function block is running.
- (16) Example program

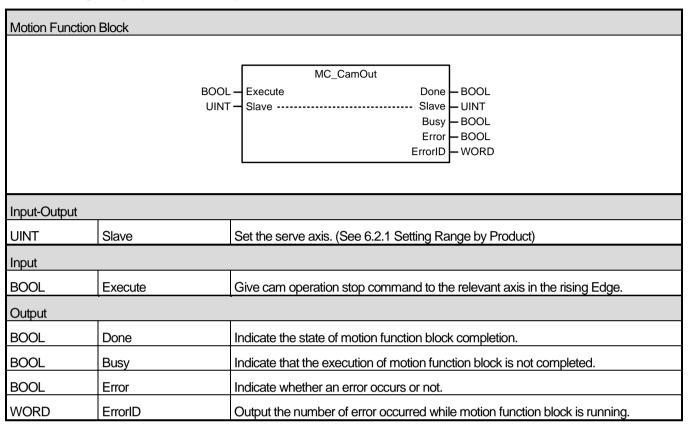
This example shows the movement of the main-axis from 0 to 200,000 positions after generating a cam profile and then executing MC_CAMIN command on the sub-axis.

(a) Function block setting

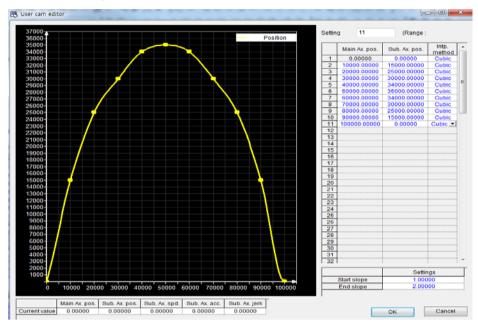


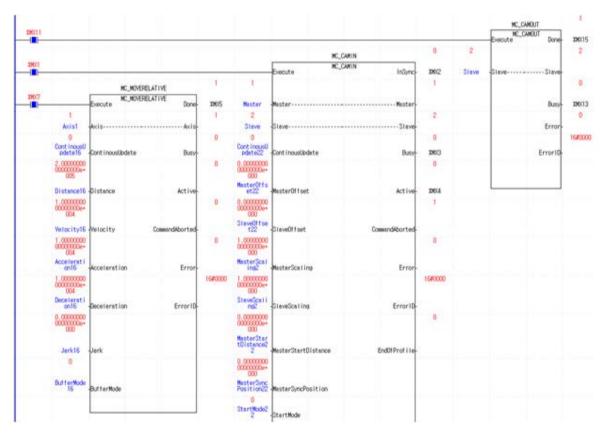


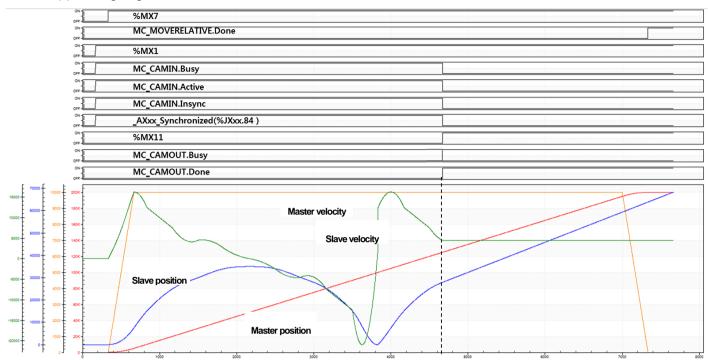
(17) Application example program


This example shows the movement of the main-axis from 0 to 200,000 positions after generating the same profile and then executing C_CAMIN command where MasterSyncPosition and MasterSyncDistance are set to 80,000 in sub-axis.

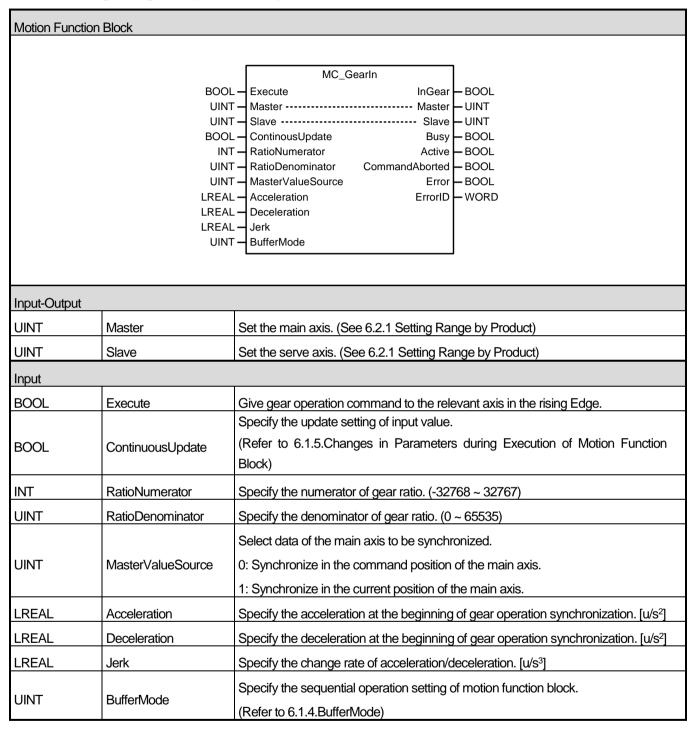
(a) Function block setting




6.4.2 Camming stop (MC_CamOut)

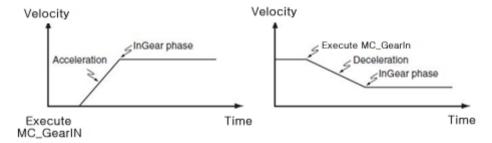

- (1) This motion function block immediately disengages cam operation running in the serve axis.
- (2) If motion function block of which BufferMode is Aborting in the serve axis where cam operation is running, cam operation is automatically disengaged and the relevant motion function block is executed. To execute cam operation abort (MC_CamOut) motion function block, the relevant axis do operation which keeps the speed at the time when cam operation is disengaged. If you want to completely stop the serve axis, use stop (MC_Halt) or immediate stop (MC_Stop) motion function block.
- (3) When MC_CamOut motion function block is executed, the InSync output of MC_CamIn function block and the Synchronized status flag (_AXxx_Synchronized) is off.
- (4) Example program
 - This example shows generating a cam profile, executing MC_CAMIN command on the sub-axis, moving the main-axis to the 200,000 position, and then executing MC_CAMOUT. The sub-axis maintains the velocity at the time when the cam operation is terminated.

(a) Function block setting



Chapter5 Motin Functin Block

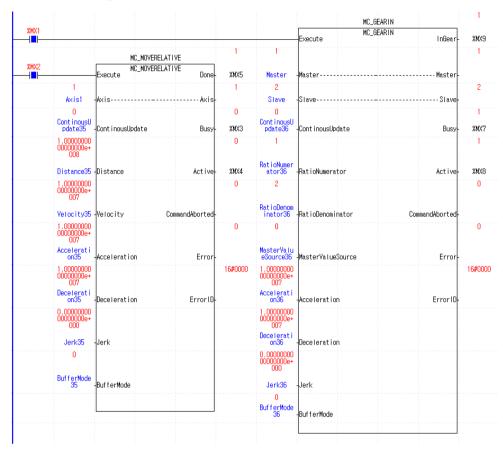
6.4.3 Electrical gearing run (MC_GearIn)

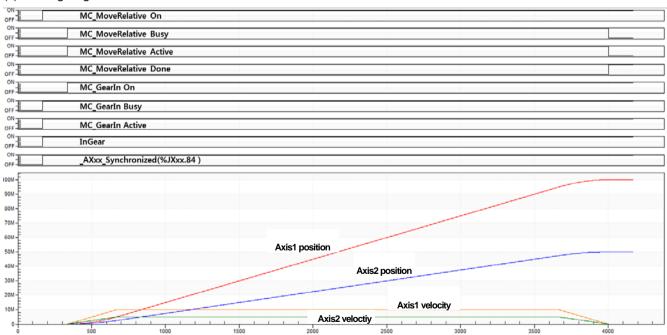


Output		
BOOL	InGear	Indicate that gear operation is running by applying gear ration.
BOOL	Busy	Indicate that the execution of motion function block is not completed.
BOOL	Active	Indicate that the current motion function block is controlling the relevant axis.
BOOL	CommandAborted	Indicate that the current motion function block is interrupted while it is running.
BOOL	Error	Indicate whether an error occurs or not.
WORD	ErrorID	Output the number of error occurred while motion function block is running.

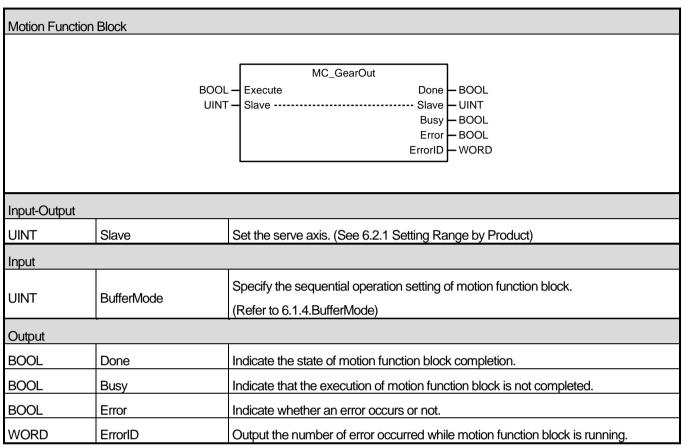
- (1) This motion function block is an operation to synchronize the speed of the main axis and the serve axis depending on gear ratio which is set.
- (2) Giving gear operation abort (MC_GearOut) commands to the relevant axis or execution of other motion function block allow disengaging gear operation.
- (3) RatioNumerator and RatioDenominator set the numerator and denominator to be applied to the serve axis respectively. If the numerator is set to negative number, the rotation direction of the serve axis is the opposite of the main axis.
- (4) MasterValueSource select the data of the main axis which is a standard of synchronization. If it is set to 0, synchronization operation is based on the command position of the main axis of motion controller, and if it is set to 1, synchronization operation is based on the current position. Other values set besides these two make Error of motion function block On and cause "0x1114" in ErrorID.
- (5) If this motion function block is aborted by another command (BufferMode=0 of newly executed command), the cam operation is stopped, and the CommandAborted output is on.
- (6) If another command is executed by Buffered while this motion function block is being executed (BufferMode=1~5 of newly executed command), the status of the gear operation (InGear phase) is terminated, and then the newly executed command is run subsequently.

InGear / Busy / Active / CommandAborted / Error output of this function block are all Off.

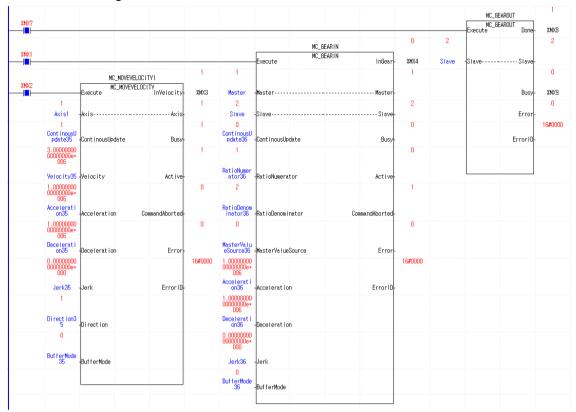

- (7) When this motion function block is executed, the serve axis is synchronized with the main axis through acceleration/deceleration at the speed in synch with the relevant gear ratio.
- (8) The serve axis is in 'SynchronizedMotion' while this motion function block is running.

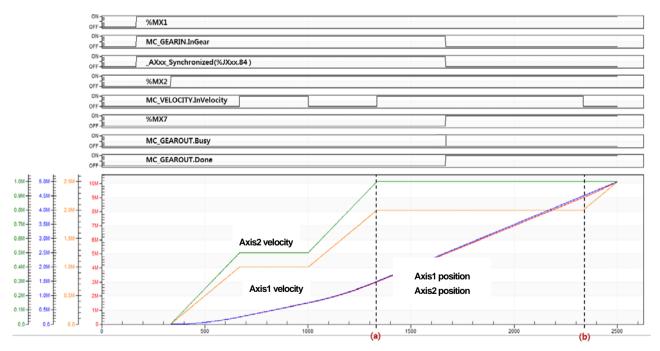


- (9) The changed parameters can be applied when ContinuousUpdate input is On. Only RatioNumerator, RatioDenominator, Acceleration, Deceleration input can be updated. (However, in case of InGear=On case, RatioNumerator, RatioDenominator input can be updated)
- (10) Example program

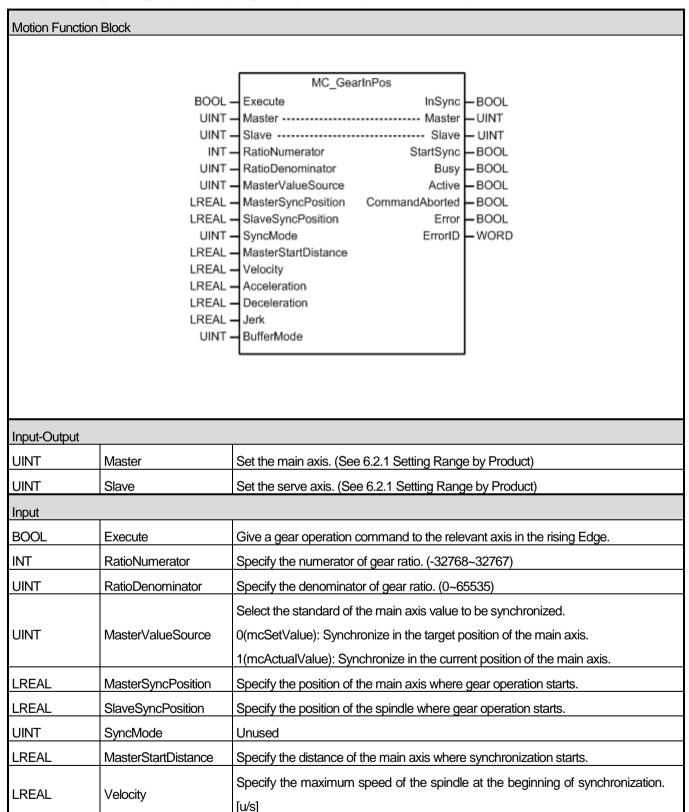

This example shows the operation of 2-axis up to 50,000,000 when moving 1-axis (main-axis) to 100,000,000 after executing MC_Gearln command on axis 2(sub-axis) at the current position of 0.

(a) Function block setting

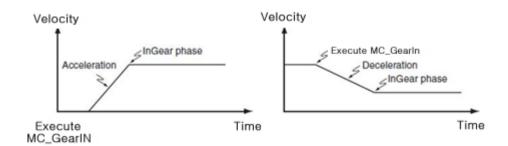

6.4.4 Electrical gearing disengage (MC_GearOut)

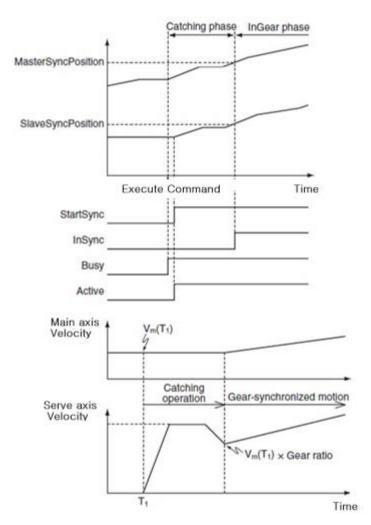


- (1) This motion function block immediately disengages gear operation running in the spindle.
- (2) If motion function block of which BufferMode is Aborting in the spindle where cam operation is running, gear operation is automatically disengaged and the relevant motion function block is executed. If gear operation abort (MC_GearOut) motion function block is only to be executed, the relevant axis performs operation to maintain the speed at the time when gear operation is disengaged. To completely stop the spindle, use stop (MC_Halt) or immediate stop (MC_Stop) motion function block.
- (3) Example program


After the execution of MC Gearln command in sub-axis at the current position of 0, ContinuousUpdate of main-axis is set to 1, and then the velocity is gradually changed $(1,000,000 \rightarrow 2,000,000 \rightarrow 3,000,000)$. This examples show the operation to ensure that the velocity of sub-axis is no longer changed (b) by executing MC_GearOut command when the velocity of main-axis is 2,000,000.

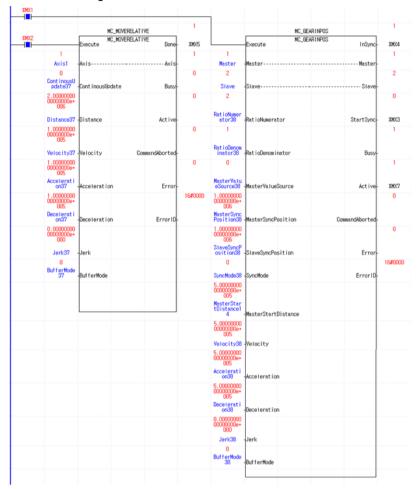
(a) Function block setting

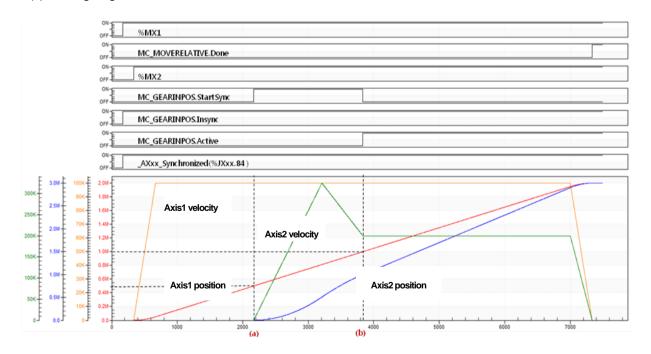



6.4.5 Electrical gearing by specifying the position (MC_GearInPos)

LREAL	Acceleration	Specify the maximum acceleration of the spindle at the beginning of synchronization. [u/s²]		
LREAL	Deceleration	Specify the maximum deceleration of the spindle at the beginning of synchronization. [u/s²]		
LREAL	Jerk	Specify the change rate of acceleration/deceleration. [u/s³]		
UINT	BufferMode Specify the sequential operation setting of motion function block. (Refer to 6.1.4.BufferMode)			
Output				
BOOL	InSync	Indicate that gear operation is normally being fulfilled as the specified gear ratio is applied.		
BOOL	StartSync	Indicate synchronization is starting.		
BOOL	Busy	Indicate that the execution of motion function block is not completed.		
BOOL	Active	Indicate that the current motion function block is controlling the relevant axis.		
BOOL	CommandAborted	Indicate that the current motion function block is interrupted while it is running.		
BOOL	Error	Indicate whether an error occurs or not.		
WORD	ErrorlD	Output the number of error occurred while motion function block is running.		

- (1) This motion function block is an operation to synchronize the speed of the main axis and the spindle in the set position depending on gear ratio which is set in the specific position.
- (2) Giving gear operation abort (MC_GearOut) commands to the spindle or operation of other motion function block allow stopping gear operation.
- (3) RatioNumerator and RatioDenominator set the numerator and denominator of gear ratio to be applied to the spindle respectively. If the numerator is set to negative number, the rotation direction of the spindle goes into reverse of the main axis.
- (4) MasterValueSource selects the source of the main axis to be synchronized. If it is set to 0 (mcSetValue), synchronization is performed by putting the target position of the main axis in the current motion control period as a source, and if it is set to 1(mcActualValue), synchronization is performed by putting the current position of the main axis got feedback from the current motion control period as a source. Other values set besides these two cause "error 0x10D1".
- (5) Input the positions of the main axis and the spindle where gear operation is completed synchronization in MasterSyncPosition input and SlaveSyncPosition input respectively. Input the distance where the spindle starts synchronization in MasterStartDistance input, and the spindle starts synchronization at the position away the distance set in MasterStartDistance input from the position set in MasterSyncPosition input.
- (6) Once synchronization starts, StartSync output is On. When synchronization is completed and gear operation starts, StartSync output is Off and InSync output is On.
- (7) If this motion function block is aborted by another command (BufferMode=0 of newly executed command), the cam operation is stopped, and the CommandAborted output is on.
- (8) If another command is executed by Buffered while this motion function block is being executed (BufferMode=1~5 of newly executed command), the status of gear operation (InGear phase) is terminated, and then the newly executed command is run subsequently.
 - InSync / Busy / Active / CommandAborted / Error output of this function block are all Off.
- (9) The spindle is in 'SynchronizedMotion' while this motion function block is running.

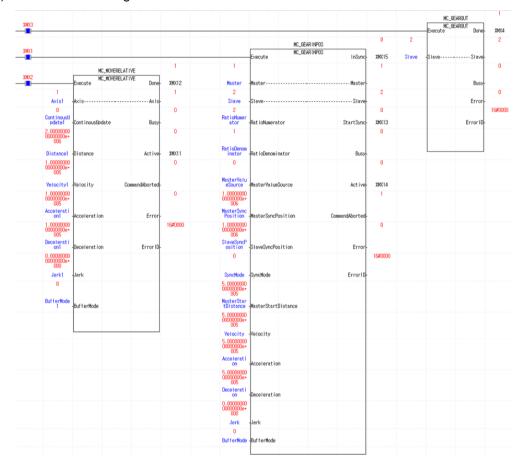


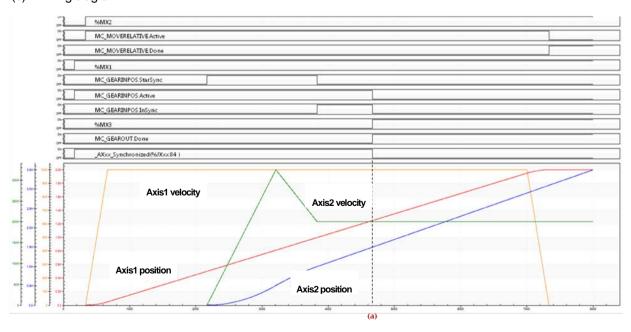


- (10) The changed parameters can be applied by re-executing the function block (Execute input is On) before the command is completed. Only RatioNumerator, RatioDenominator, MasterSyncPosition, SlaveSyncPosition, MasterStartDistance, Velocity, Acceleration, Deceleration input can be updated. (However, in case of InGear=On, RatioNumerator, RatioDenominator input can be updated.
- (11) Example program

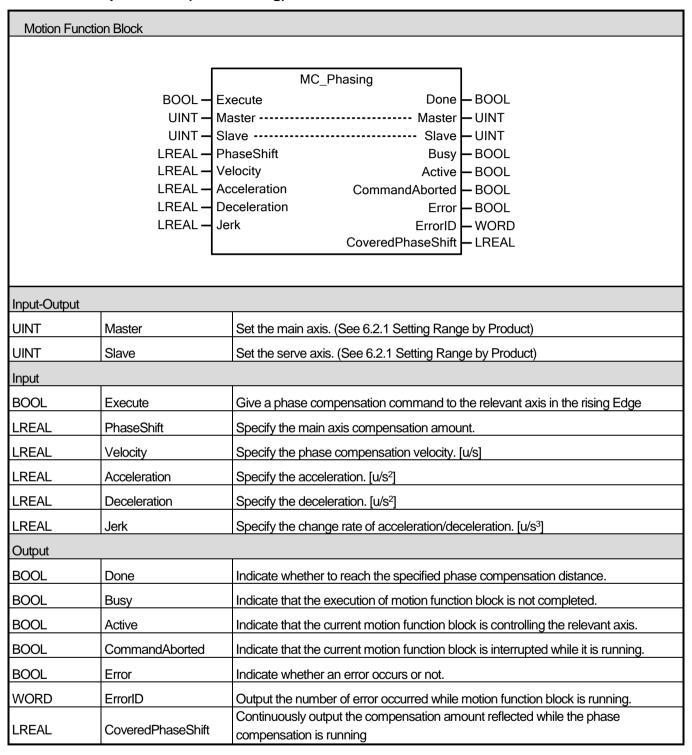
This example program executes MC_GearInPos function block in which sub-axis starts synchronization from a position away as long as the distance of MasterStartDistance(500,000) from MasterSyncPosition(1,000,000), and executes MC_MoveRelative for relative movement to the 2,000,000 position. Once synchronization starts, StartSyncoutput is on (a) and when the synchronization is completed and gear operation starts, StartSyncoutput is off, and InSyncoutput is on. (b)

(a) Function block setting



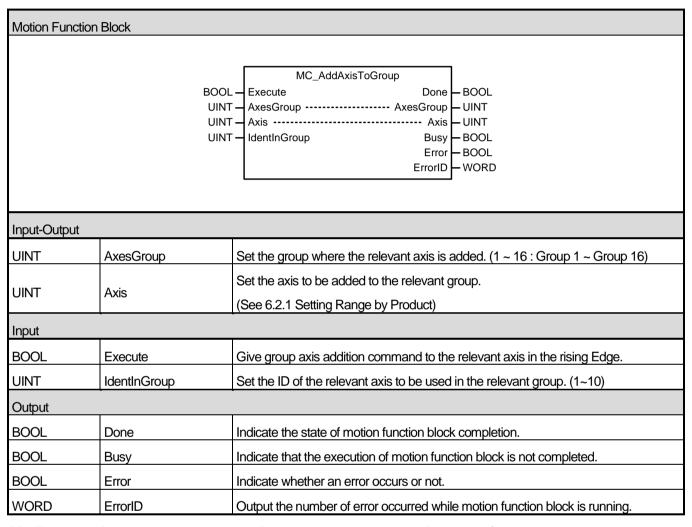


(12) Application example program


This example program shows MC_GearInPos Active and InSync being off and gear operation being terminated when MC_GearOut command is issued on 2-axis at (a) position during the motion shown in the basic example program. (Gear operation termination can be verified by 1-axis that stops and 2-axis that continues to operate)

(a) Function block setting

6.4.6 Phase compensation (MC_Phasing)

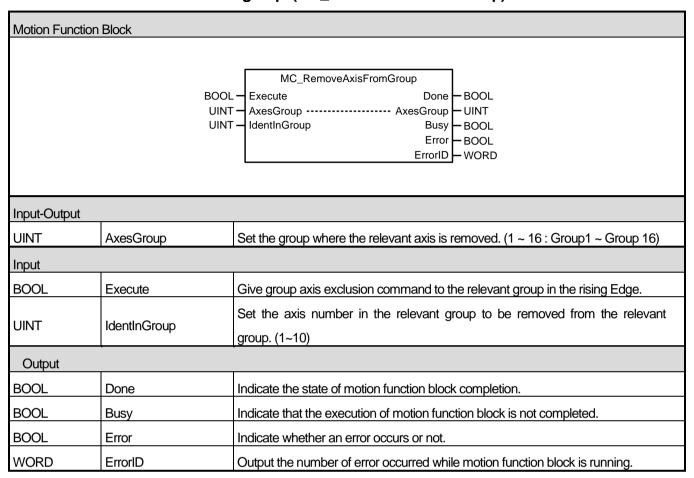


Chapter5 Motin Functin Block

- (1) This motion function block performs phase correction of axis during synchronous control operation. Phase correction is performed on the main-axis position referred to by sub-axis in synchronous control operation, to perform synchronous control operation of the sub-axis to the corrected main-axis position.
- (2) Once phase correction command is executed, the current position of the main-axis is phase-corrected using the phase shift setting at PhaseShift-Velocity / Acceleration / Deceleration / Jerk.
- (3) Phase correction does not change the actual command position or current position of the main-axis. Phase correction is performed on the main-axis position referred to by sub-axis in synchronous control operation. In other words, the main-axis does not know that phase correction is executed by the sub-axis.
- (4) Phase correction of the same amount can be performed again from the current position by re-executing the function block (Execute input is on) before the command is completed. In other words, phase shift is a relative value from the execution point.
- (5) After executing phase correction command, when the phase shift is reached, Done output is on.

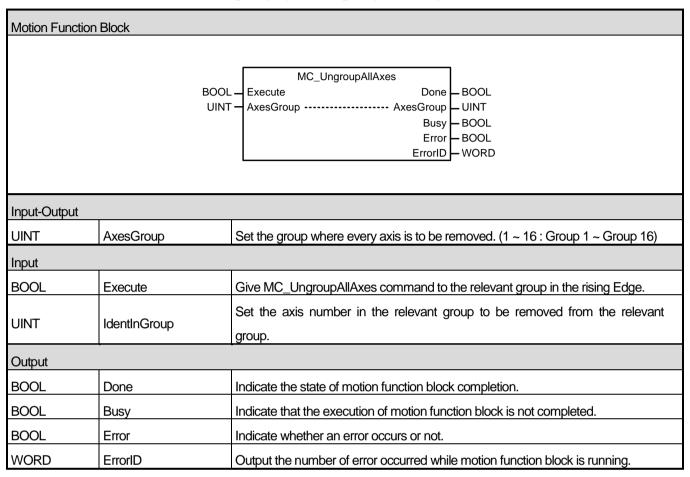
6.5 Group Motion Function Blocks

6.5.1 Adds one axis to the group (MC_AddAxisToGroup)

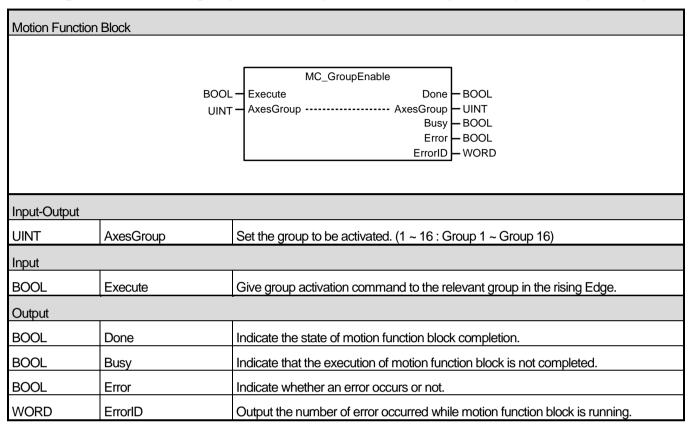


- (1) This motion function block adds Axis specified axis to the axis group specified in AxesGroup input.
- (2) ID in the axis group specified to IdentInGroup must have unique value for each axis. (ID of each axis must be different.)

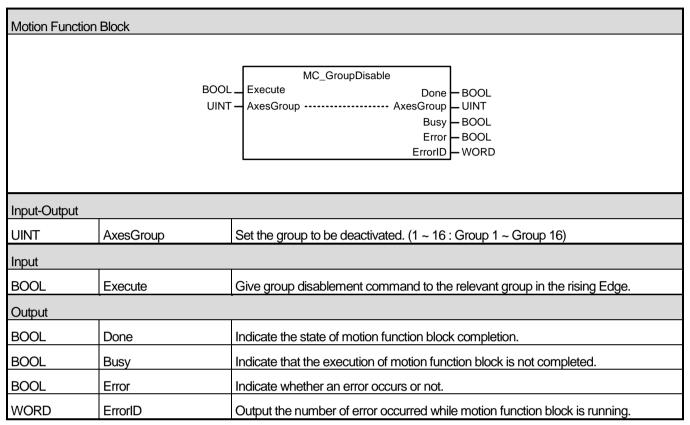
 Maximum 10 axes can be included in each axis group, axis ID can be specified in the range of 1~10. If the specified axis number is outside the range, "error 0x0006" occurs, and if numbers in the axis group overlap, "error 0x2051" occurs.
- (3) Axis group setting can be performed in the same way at XG5000 axis group parameter setting.


Group	Name	Axis group 1
	Axis 01	0: None
	Axis 02	0: None
	Axis 03	0: None
	Axis 04	0: None
4	Axis 05	0: None
Axis Group Parameter	Axis 06	0: None
1 didiliotoi	Axis 07	0: None
	Axis 08	0: None
	Axis 09	0: None
	Axis 10	0: None
	Intp. speed Max	20000000 u/s

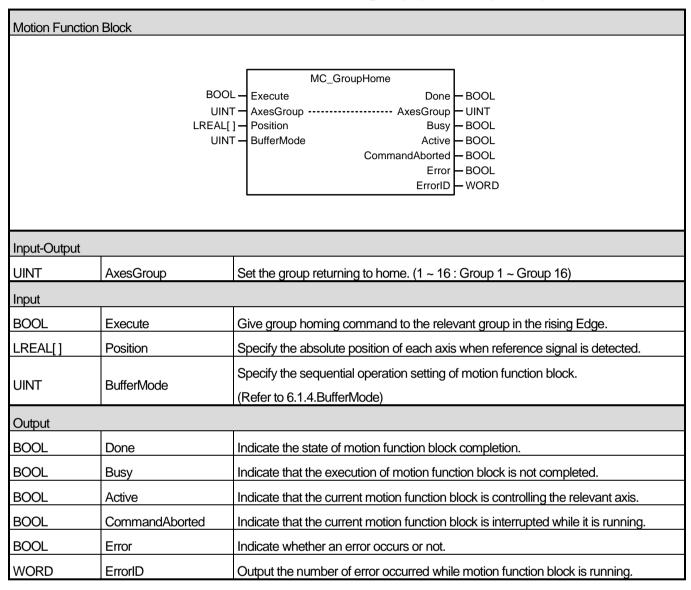
6.5.2 Removes one axis from the group (MC_RemoveAxisFromGroup)


- (1) This motion function block removes the axis which is specified to IdentInGroup in the axis group specified in AxesGroup input.
- (2) If the execution of group axis exclusion is tried when the axis group is not in GroupDisabled, GroupStandBy, and GroupErrorStop state, "error 0x2003 or 0x2004 or 0x2005" occurs and the axis is not removed. In other words, the axis cannot be removed when the axis group does not completely stop.

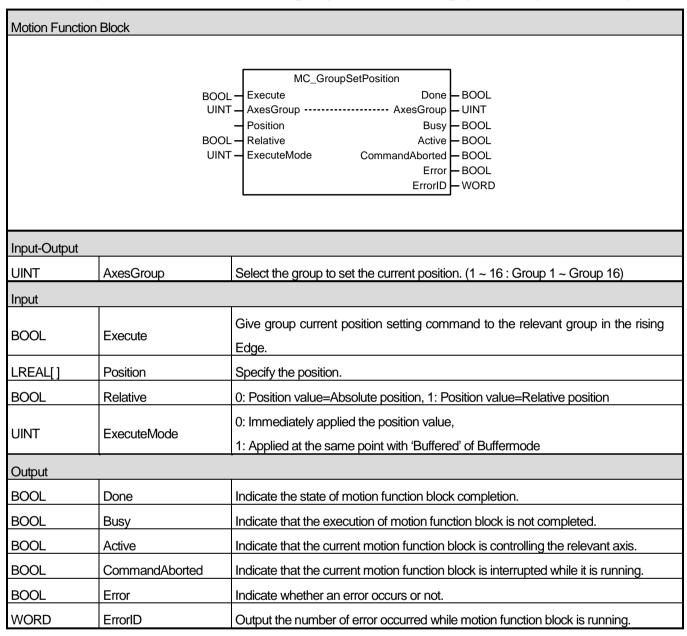
6.5.3 Removes all axes from the group (MC_UngroupAllAxes)


- (1) This motion function block removes every axis which belongs to the axis group specified in AxesGroup input.
- (2) If this motion function block is executed when the axis group is not in GroupDisabled, GroupStandBy, and GroupErrorStop state, "error 0x2003 or 0x2004 or 0x2005" occurs and the axis is not removed. In other words, the axis cannot be removed when the axis group does not completely stop.
- (3) When the axis which belongs to the group is successfully removed, the relevant group is switched to GroupDisabled state.

6.5.4 Changes the state for group from GroupDisable to GroupEnable (MC_GroupEnable)


- (1) This motion function block is to activate the axis group specified in AxesGroup input.
- (2) When giving this command to the axis group in GroupDisable state, the relevant axis group is switched to GroupStandby state.
- (3) This motion function block does not affect the power state of each axis in the relevant group.

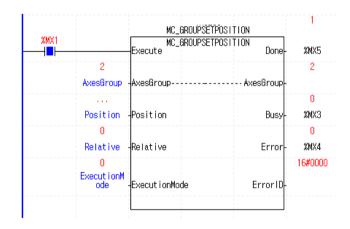
6.5.5 Changes the state for group from GroupEnable to GroupDisable (MC_GroupDisable)


- (1) This motion function block is to deactivate the axis group specified in AxesGroup input.
- (2) The axis group which executes this motion function block is switched to GroupDisabled.
- (3) This motion function block does not affect the power state of each axis in the relevant group.

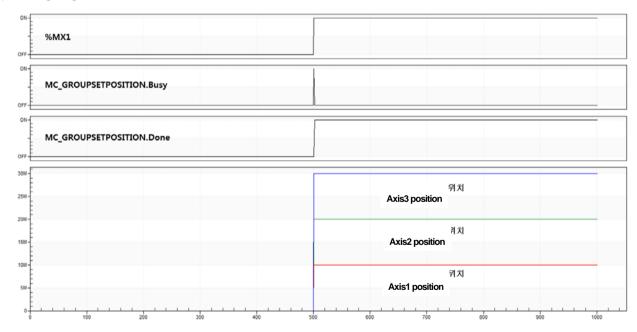
6.5.6 Performs the search home of all axes in the group (MC_GroupHome)

- (1) This motion function block is to give homing command to the axis group specified in AxesGroup input.
- (2) Homing method is operated as specified in servo parameter of the relevant axis in advance.
- (3) In Position input, specify the absolute position to the array to be set when homing is completed or Reference Signal is detected. Values in the array and the axis in the group correspond in the order of [①, ②, … ⑨, ⑩]. (①~⑩ are the axis ID in the axis group)
- (4) The axis group is in 'GroupHoming' state while this motion function block is running, and it is switched to 'GroupStandby' state when motion function block is completed.

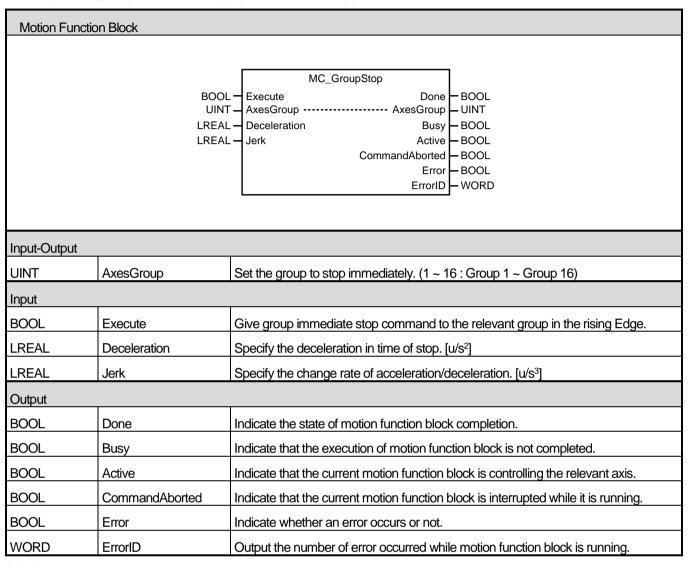
6.5.7 Sets the position of all axes in the group without moving (MC_GroupSetPosition)



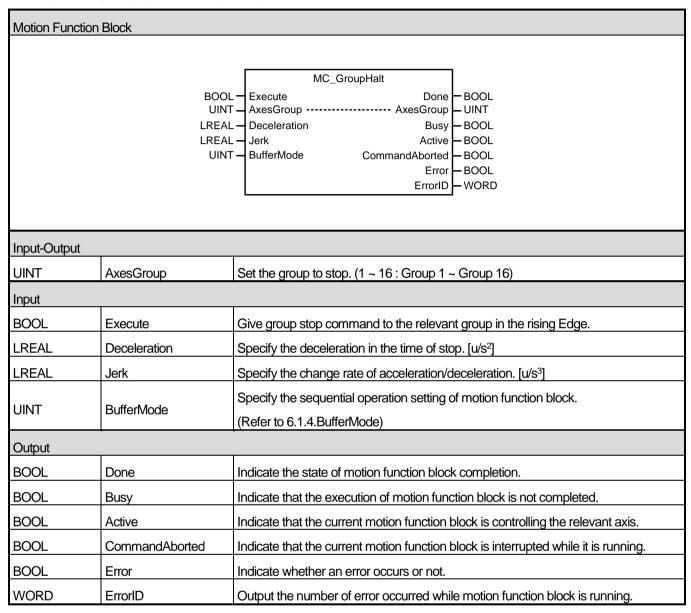
- (1) This motion function block sets the current position of the relevant axis group.
- (2) Specify the position of each axis in the group to the array. When executing this motion function block, if Relative input is Off, the position of the relevant axis is replaced by the Position input value, and if Relative input is On, the Position input value is added to the current position of the relevant axis. Values in the array and the axis in the group correspond in the order of [1, 2, ... 9, 1]. (1~1) are the axis ID in the axis group)


- (3) ExcutionMode input specifies the setting point. If it is 0, it is set immediately after the execution of a command, If it is 1, it is set at the same point with 'Buffered' of sequential operation setting. The value unable to be set causes "error 0x201B".
 0 (mcImmediately): Change the value of parameter immediately after the execution of motion function block (rising Edge in Execute input). If the relevant axis is running, the operation can be affected.
 - 1 (mcQueued): Changed at the same point of 'Buffered' of Buffermode (Refer to 6.1.4.BufferMode).
- (4) Example program

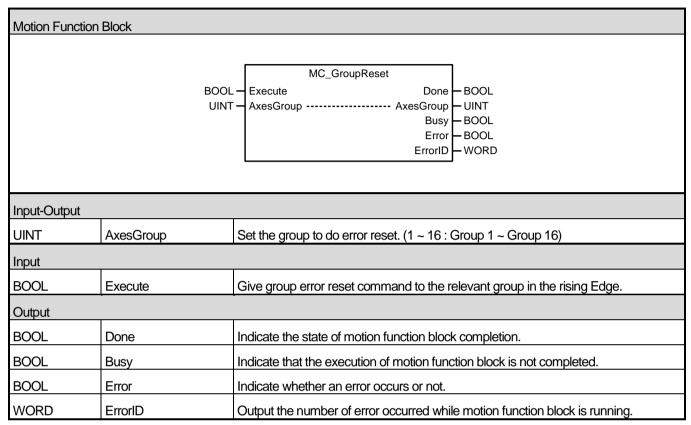
This example shows the change of the current position to position values (10,000,000/20,000,000/30,000,000) set in the position variables when executing MC_GroupSetPosition function block at the status where 1-axis, 2-axis and 3-axis are set as a single group.


(a) Function block setting

(b) Timing diagram



6.5.8 Stop the group immediately (MC_GroupStop)


- (1) This motion function block is to give an emergency stop command to the relevant axis group.
- (2) The relevant axis group moves on the route which it was following until it completely stops.
- (3) When executing group immediate stop (MC_GroupStop) motion function block, motion function block which the relevant axis group is performing is interrupted, and the axis is changed to 'GroupStopping'. When the relevant axis group is in 'GroupStopping' state, other motion function block cannot be given to the relevant axis until the stop is completed (until Done output is On).
- (4) CommandAborted output indicates that the current motion function block is interrupted while it was executed. Because other motion function block cannot interrupt group immediate stop (MC_GroupStop) command while group immediate stop (MC_GroupStop) command is being executed, CommandAborted output is On when the power of servo is cut, servo Off command is executed, or servo connection is disconnected.
- (5) If Execute input is On or the speed of the axis is not 0, the axis is in 'GroupStopping' state, and if Done output is On and Execute input is Off, the axis is switched to 'GroupStandBy' state.

6.5.9 Stop the group (MC_GroupHalt)

- (1) This motion function block is to give a stop command to the relevant axis.
- (2) The relevant axis group moves on the route which it was following until it completely stops.
- (3) The axis is in 'GroupMoving' state while this motion function block is running, and if the axis group completely stops, 'Done' output is On and the group state is changed to 'GroupStandBy' state.

6.5.10 Reset the group error (MC_GroupReset)

- (1) This motion function block is to reset the error of the relevant axis group. When the relevant axis is in 'GroupErrorStop', the execution of motion function block resets the error occurred in the current relevant axis and switches the axis group to 'GroupStandBy' state.
- (2) When executing this motion function block, every error occurred in each axis in the group is reset. (This has the same effect with when executing the axis error reset (MC_Reset) command in each axis.)

6.5.11 Absolute positioning linear interpolation operation (MC_MoveLinearAbsolute)

Motion Function Block			
	MC_MoveLinearAbsolute BOOL — Execute Done — BOOL UINT — AxesGroup — UINT LREAL[] — Position Busy LREAL — Velocity Active LREAL — Acceleration CommandAborted LREAL — Deceleration Error LREAL — Jerk ErrorID UINT — WORD		
Input-Output			
UINT	AxesGroup	Set the group to perform absolute position linear interpolation operation. (1 ~ 16: Group 1 ~ Group 16)	
Input			
BOOL	Execute	Give absolute position linear interpolation operation command to the relevant group in the rising Edge.	
LREAL[]	Position	Specify the target position of each axis.	
LREAL	Velocity	Specify the maximum speed of the route. [u/s]	
LREAL	Acceleration	Specify the maximum acceleration. [u/s²]	
LREAL	Deceleration	Specify the maximum deceleration. [u/s²]	
LREAL	Jerk	Specify the change rate of acceleration/deceleration. [u/s³]	
UINT	BufferMode	Specify the sequential operation setting of motion function block. (Refer to 6.1.4.BufferMode)	
UINT	TransitionMode	Specify the route change mode of group operation. (Refer to 6.1.6.TransitionMode)	
LREAL	TransitionParameter	Specify the parameter of the route change setting of group operation (Refer to 6.1.6.TransitionMode)	
Output			
BOOL	Done	Indicate whether to reach the specified position.	
BOOL	Busy	Indicate that the execution of motion function block is not completed.	
BOOL	Active	Indicate that the current motion function block is controlling the relevant axis.	
BOOL	CommandAborted	Indicate that the current motion function block is interrupted while it is running.	
BOOL	Error	Indicate whether an error occurs or not.	
WORD	ErrorID	Output the number of error occurred while motion function block is running.	

- (1) This motion function block is to give an absolute position linear interpolation command to the axis group specified in AxesGroup input.
- (2) When this motion function block is executed, interpolation control is performed in a linear path from the current position to the target position of each axis, and the moving direction is decided by the starting point and the target point of each axis.

Beginning position < Target position: Forward direction operation

Beginning position > Target position: Reverse direction operation

- (3) In Position input, specify the target position of each axis in the group as matrix. The values in the array and the axis in the group correspond in the order of [1, 2, ... 9, 10]. (1-10) are axis ID in the axis group).
- (4) Specify the speed, acceleration, deceleration, and the change rate of acceleration/deceleration of interpolation route in Velocity, Acceleration, Deceleration, and Jerk inputs respectively.
- (5) Velocity is to set the interpolation speed of the axis group, and it indicates the integrated speed of each axis.
 Operation speeds of each configuration axis are calculated as follows.

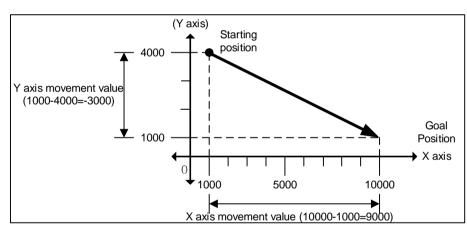
Interpolation speed (F) = Target speed specified in the Velocity

Interpolation movement amount (S) =
$$\sqrt{S_1^2 + S_2^2 + ... + S_3^2 + S_4^2}$$

$$Configuration \ axis \ 1 \ speed \ (V_1) = Interpolation \ speed \ (F) \times \frac{Configuration \ axis \ 1 \ movement \ amount \ (S_1)}{Interpolation \ movement \ amount \ (S)}$$

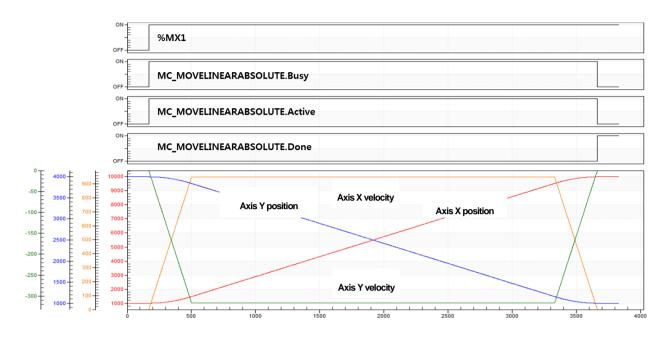
Configuration axis 2 speed
$$(V_2)$$
 = Interpolation speed $(F) \times \frac{\text{Configuration axis 2 movement amount } (S_2)}{\text{Interpolation movement amount } (S)}$

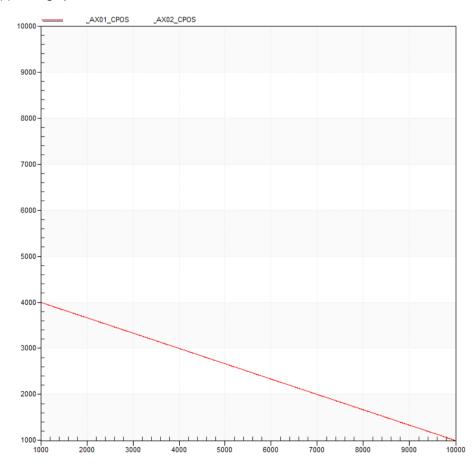
Configuration axis 3 speed
$$(V_3)$$
 = Interpolation speed $(F) \times \frac{\text{Configuration axis 3 movement amount } (S_3)}{\text{Interpolation movement amount } (S)}$


Configuration axis 4 speed
$$(V_4)$$
 = Interpolation speed $(F) \times \frac{\text{Configuration axis 4 movement amount } (S_4)}{\text{Interpolation movement amount } (S)}$

- (6) Refer to chapter 8.2.6 linear interpolation control part in motion controller's manual for more details.
- (7) The changed parameters can be applied by re-executing the function block (Execute input is On) before the command is completed. Only Velocity, Acceleration, Deceleration, Jerk, Position input can be updated.
- (8) Velocity input can be set to 0 or changed.
- (9) Example program

This example shows the linear interpolation to the target position (10000, 1000) when the current command position is (1000, 4000).


(a) Function block setting



1	<global></global>	%JL1.3	<u>±10</u>	1.00000000000000000e+003	LREAL	_AXO1_CPOS
2	<global></global>	%JL2.3	<u>#10</u>	4.0000000000000000e+003	LREAL	_AXO2_CPOS
3	<global></global>	%JL1.4	<u>#10</u>	0.00000000000000000e+000	LREAL	_AX01_CVEL
4	<global></global>	%JL2.4	<u>±10</u>	0.0000000000000000e+000	LREAL	_AX02_CVEL
5	Group	GroupHome	±10	On	BOOL	
6	Group	GourpHalt	±10	Off	BOOL	
7	Group	⊟ Positio n23			ARRAY[03] OF LREAL	7
8	Group	Position23 [0]	<u>#10</u>	1.000000000000000000e+004	LREAL	
9	Group	Position23	<u>#10</u>	1.000000000000000000e+003	LREAL	
10	Group	Position23 [2]	<u>#10</u>	0.00000000000000000e+000	LREAL	
11	Group	Position23 [3]	<u>#10</u>	0.0000000000000000e+000	LREAL	
12						

(b) Timing diagram

(c) XY graph

6.5.12 Relative positioning linear interpolation operation (MC_MoveLinearRelative)

Motion Function Block				
	MC_MoveLinearRelative BOOL			
Input-Output				
UINT	AxesGroup	Set the group to do relative position linear interpolation operation. (1 ~ 16: Group 1 ~ Group 16)		
Input				
BOOL	Execute	Give relative position linear interpolation operation command to the relevant group in the rising Edge.		
LREAL[]	Distance	Set the target distance of each axis.		
LREAL	Velocity	Specify the maximum speed of the route. [u/s]		
LREAL	Acceleration	Specify the maximum acceleration. [u/s²]		
LREAL	Deceleration	Specify the maximum deceleration. [u/s²]		
LREAL	Jerk	Specify the change rate of acceleration/deceleration. [u/s³]		
UINT	BufferMode	Specify the sequential operation setting of motion function block. (Refer to 6.1.4.BufferMode)		
UINT	TransitionMode	Specify the route change mode of group operation. (Refer to 10.1.6.TransitionMode)		
LREAL	TransitionParameter	Specify the parameter of the route change setting of group operation (Refer to 10.1.6.TransitionMode)		
Output				
BOOL	Done	Indicate whether to reach the specified position.		
BOOL	Busy	Indicate that the execution of motion function block is not completed.		
BOOL	Active	Indicate that the current motion function block is controlling the relevant axis.		
BOOL	CommandAborted	Indicate that the current motion function block is interrupted while it is running.		
BOOL	Error	Indicate whether an error occurs or not.		
WORD	ErrorID	Output the number of error occurred while motion function block is running.		

- (1) This motion function block is to give a relative position linear interpolation command to the axis group specified in AxesGroup input.
- (2) When this motion function block is executed, interpolation control performed in a linear path from the current position to the target position of each axis, and the moving direction is decided by the sign of the target distance of each axis.

Target distance > 0: Forward direction operation

Target distance < 0: Reverse direction operation

- (3) In Distance input, specify the target distance of each axis in the group as array. The specified array and the axis in the group correspond in the order of specified axis ID [ID1 target distance, ID2 target distance, ...].
- (4) Set the speed, acceleration, deceleration, and the change rate of acceleration/deceleration of interpolation route in Velocity, Acceleration, Deceleration, and Jerk inputs respectively.
- (5) Velocity is to set the interpolation speed of the axis group, and it indicates the integrated speed of each axis. Operation speeds of each configuration axis are calculated as follows.

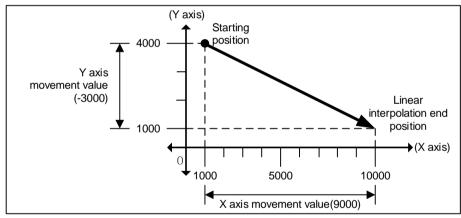
Interpolation speed (F) = Target speed specified in the Velocity

Interpolation movement amount (S) =
$$\sqrt{S_1^2 + S_2^2 + ... + S_3^2 + S_4^2}$$

$$Configuration \ axis \ 1 \ speed \ (V_1) = Interpolation \ speed \ (F) \times \frac{Configuration \ axis \ 1 \ movement \ amount \ (S_1)}{Interpolation \ movement \ amount \ (S)}$$

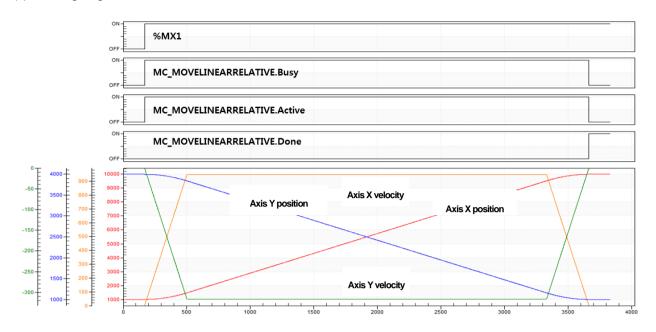
Configuration axis 2 speed
$$(V_2)$$
 = Interpolation speed $(F) \times \frac{\text{Configuration axis 2 movement amount } (S_2)}{\text{Interpolation movement amount } (S)}$

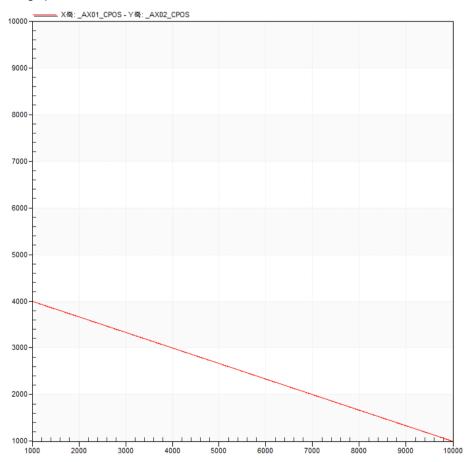
Configuration axis 3 speed
$$(V_3)$$
 = Interpolation speed $(F) \times \frac{\text{Configuration axis 3 movement amount } (S_3)}{\text{Interpolation movement amount } (S)}$


Configuration axis 4 speed
$$(V_4)$$
 = Interpolation speed $(F) \times \frac{\text{Configuration axis 4 movement amount } (S_4)}{\text{Interpolation movement amount } (S)}$

- (6) Refer to chapter 8.2.6 linear interpolation control part in motion controller's manual for more details.
- (7) The changed parameters can be applied by re-executing the function block (Execute input is On) before the command is completed. Only Velocity, Acceleration, Deceleration, Jerk, Position input can be updated.
- (8) Velocity input can be set to 0 or changed.
- Example program

This example shows the linear interpolation to the target position (10000, 1000) by moving the target distance (X-axis: 9000, Y-axis: -3000) when the current command position is (1000, 4000).

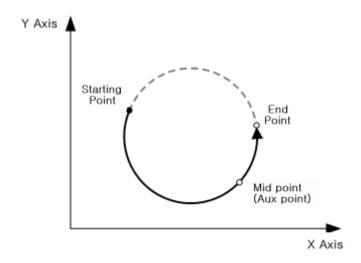

(a) Function block setting



				BA.		
1	<global></global>	%JL1.3	<u>#10</u>	1.00000000000000000e+004	LREAL	_AX01_CPOS
2	<global></global>	%JL2.3	<u>#10</u>	1.00000000000000000e+003	LREAL	_AX02_CPOS
3	<global></global>	%JL1.4	<u>#10</u>	0.00000000000000000e+000	LREAL	_AX01_CVEL
4	<global></global>	%JL2.4	<u>#10</u>	0.0000000000000000e+000	LREAL	_AX02_CVEL
5	Group	GroupHome	<u>±10</u>	Or	B00L	
6	Group	GourpHalt	±10	Off	B00L	
7	Group	⊟ Distanc e24			ARRAY[03] OF LREAL	
8	Group	Distance24 [0]	<u>#10</u>	9.0000000000000000e+003	LREAL	
9	Group	Distance24 [1]	± 10	-3.0000000000000000e+003	LREAL	
10	Group	Distance24 [2]	<u>±10</u>	0.00000000000000000e+000	LREAL	
11	Group	Distance24 [3]	<u>#10</u>	0.0000000000000000e+000	LREAL	

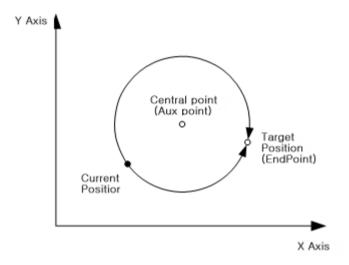
(b) Timing diagram

(c) XY graph

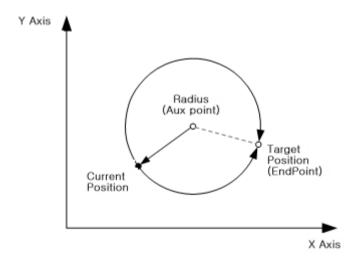

6.5.13 Absolute positioning circular interpolation operation (MC_MoveCircularAbsolute)

Motion Function Block MC_MoveCircularAbsolute BOOL — Execute Done — BOOL UINT — AxesGroup — AxesGroup — UINT UINT — CircMode Busy LREAL[] — AuxPoint Active — BOOL LREAL[] — EndPoint CommandAborted LREAL[] — Report CommandAborted BOOL — BOOL			
BOOL — Execute Done — BOOL UINT — AxesGroup AxesGroup — UINT UINT — CircMode Busy — BOOL LREAL[] — AuxPoint Active — BOOL LREAL[] — EndPoint CommandAborted — BOOL			
BOOL — Execute Done — BOOL UINT — AxesGroup AxesGroup — UINT UINT — CircMode Busy — BOOL LREAL[] — AuxPoint Active — BOOL LREAL[] — EndPoint CommandAborted — BOOL			
UINT — AxesGroup			
UINT — CircMode Busy — BOOL LREAL[] — AuxPoint Active — BOOL LREAL[] — EndPoint CommandAborted — BOOL			
LREAL[] — AuxPoint Active — BOOL LREAL[] — EndPoint CommandAborted — BOOL			
LREAL[] - EndPoint CommandAborted - BOOL			
UINT — PathChoice Error — BOOL			
LREAL — Velocity ErrorID — WORD			
LREAL — Acceleration LREAL — Deceleration			
LREAL — Jerk			
UINT — BufferMode			
UINT — TransitionMode			
LREAL — TransitionParameter			
Input-Output			
Set the group to do absolute position circular interpolati	Set the group to do absolute position circular interpolation operation. (1 ~ 16: Group		
UINT AxesGroup	1 ~ Group 16)		
1 ~ Gloup 10)			
Input			
Give absolute position circular interpolation operation	n command to the relevant		
BOOL Execute group in the rising Edge.			
UINT CircMode Circular interpolation method setting [0: Midpoint, 1: Ce	entral point 2: Radius		
Specify the position of auxiliary point depending of AuxPoint	on the circular interpolation		
method in an absolute coordinate.			
LREAL[] EndPoint Specify the end point of circular arc in an absolute coor	dinate.		
Circular route selection			
BOOL PathChoice	0: Clockwise, 1: Counterclockwise		
LREAL Velocity Specify the maximum speed of the route. [u/s]			
LREAL Acceleration Specify the maximum acceleration. [u/s²]			
LREAL Deceleration Specify the maximum deceleration. [u/s²]			
	./o31		
LREAL Jerk Specify the change rate of acceleration/deceleration. [u			
Specify the sequential operation setting of motion funct	ion block.		
UINT BufferMode (Refer to 6.1.4.BufferMode)	(Refer to 6.1.4.BufferMode)		
UINT TransitionMode Unused			
LREAL TransitionParameter Unused			

Output		
BOOL	Done	Indicate whether to reach the specified position.
BOOL	Busy	Indicate that the execution of motion function block is not completed.
BOOL	Active	Indicate that the current motion function block is controlling the relevant axis.
BOOL	CommandAborted	Indicate that the current motion function block is interrupted while it is running.
BOOL	Error	Indicate whether an error occurs or not.
WORD	ErrorID	Output the number of error occurred while motion function block is running.


- (1) This motion function block is to give an absolute position circular interpolation command to the axis group specified in AxesGroup input.
- (2) When this motion function block starts, each axis performs circular path interpolation control which refers to the set auxiliary point, and the movement direction is decided by PathChoice input. When setting PathChoice input to 0, circular interpolation operation is done clockwise, and when setting it to 1, circular interpolation operation is done counterclockwise.
- (3) Specify the absolute position of the auxiliary point to refer when doing circular interpolation of each axis in AuxPoint and EndPoint inputs as array. The entered array and the axis in the group correspond in the order of the specified axis ID [ID1, ID2, ID3, ···]. (The 3 LEAL type sized array should be entered in Position input as there are 3 axes which comprise the group to give a circular interpolation operation command.)
- (4) Specify the speed, acceleration, deceleration, and the change rate of acceleration of interpolation route in Velocity, Acceleration, Deceleration, and Jerk inputs respectively.
- (5) Set the circular interpolation method in CircMode input. The circular interpolation methods which are different from the value specified in CircMode are as below.
 - (a) Circular interpolation of midpoint specifying method (BORDER, CircMode = 0)

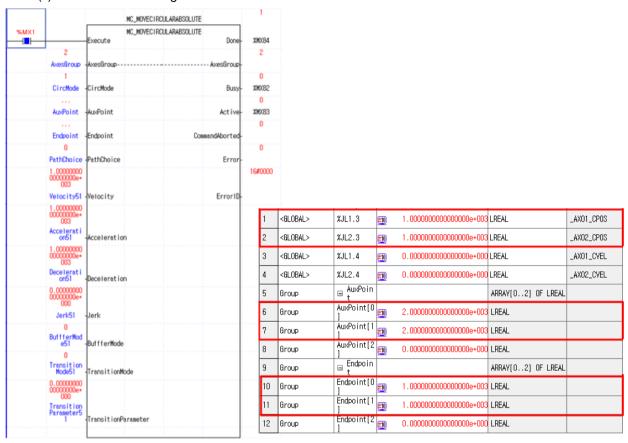
In this method, operation starts at the starting point and it does circular interpolation through the specified position of the central point to the target position. The Figure below shows that the coordinate of the axis group at the beginning of a command corresponds to the starting point, the coordinate entered in AuxPoint corresponds to the central point, and the coordinate entered in EndPoint corresponds to the target position in an absolute value.


(b) Circular interpolation of central point specifying method

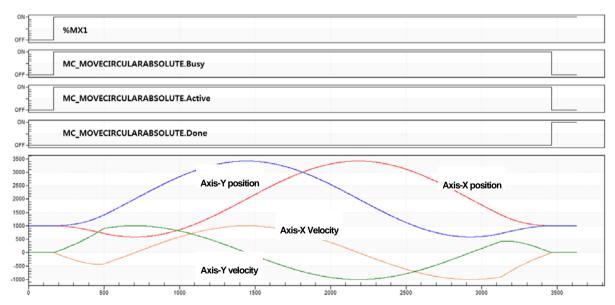
In this method, operation starts at the current position, and it does circular interpolation to the target position along the circular path, which has a radius of the distance to the specified central position. The Figure below shows that the coordinate of the axis group at the beginning of a command corresponds to the current position, the coordinate entered in AuxPoint corresponds to the central point, and the coordinate entered in EndPoint corresponds to the target point as an absolute value.

(c) Circular interpolation using the radius specifying method

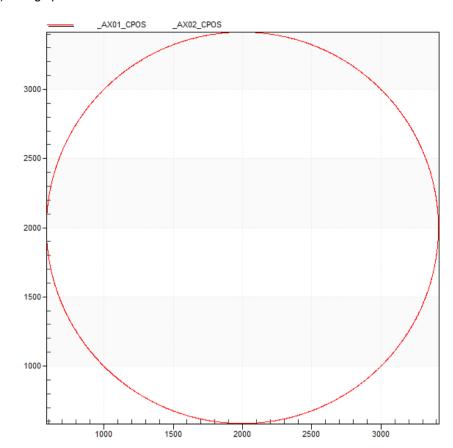
In this method, operation starts at the current position, and it does circular interpolation to the target position along the circular path which has a radius of the value specified in the radius. The Figure below shows that the coordinate of the axis group at the beginning of a command corresponds to the current position, the value entered in X-axis of AuxPoint corresponds to the radius, and the coordinate entered in EndPoint corresponds to the target point in an absolute value.

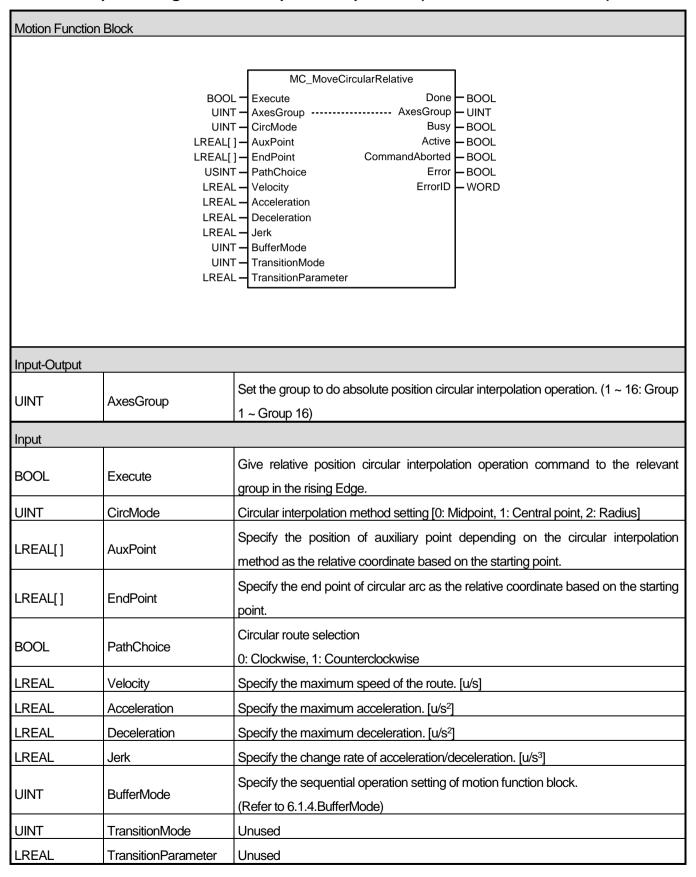


- (6) Refer to chapter 8.2.7 linear interpolation control part in motion controller's manual for more details.
- (7) The changed parameters can be applied by re-executing the function block (Execute input is On) before the command is completed. Only Velocity, Acceleration, Deceleration, Jerk, AuxPoint, EndPoint input can be updated.
- (8) Velocity input can be set to 0 or changed.


(9) Example program

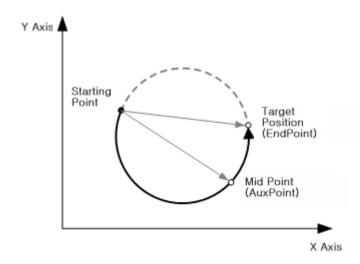
This example shows the circular interpolation to the target position (1000, 1000) by moving clock-wise after setting the center point (2000,2000) specification method when the current command position is (1000, 1000).


(a) Function block setting


(b) Timing diagram

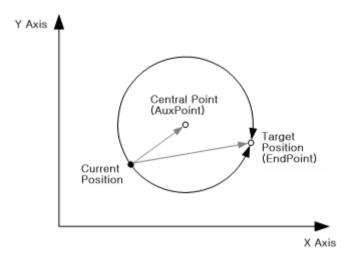
(c) XY graph

6.5.14 Relative positioning circular interpolation operation (MC MoveCircularRelative)

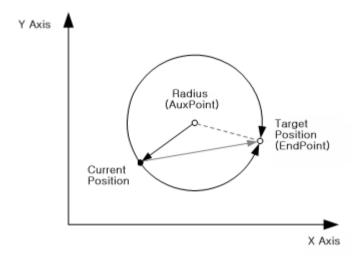


Output		
BOOL	Done	Indicate whether to reach the specified position.
BOOL	Busy	Indicate that the execution of motion function block is not completed.
BOOL	Active	Indicate that the current motion function block is controlling the relevant axis.
BOOL	CommandAborted	Indicate that the current motion function block is interrupted while it is running.
BOOL	Error	Indicate whether an error occurs or not.
WORD	ErrorID	Output the number of error occurred while motion function block is running.

- (1) This motion function block is to give a relative position circular interpolation command to the axis group specified in AxesGroup input.
- (2) When this motion function block starts, each axis performs circular path interpolation control which refers to the set auxiliary point, and the movement direction is decided by PathChoice input. When setting PathChoice input to 0, circular interpolation operation is done clockwise, and when setting it to 1, circular interpolation operation is done counterclockwise.
- (3) Specify the relative position of the auxiliary point to refer when doing circular interpolation of each axis in AuxPoint and EndPoint inputs as array. The entered array and the axis in the group correspond in the order of the specified axis ID [ID1, ID2, ID3, ···]. (The 3 LEAL type sized array should be entered in Position input as there are 3 axes which comprise the group to give a circular interpolation operation command.)
- (4) Specify the speed, acceleration, deceleration, and the change rate of acceleration of interpolation route in Velocity, Acceleration, Deceleration, and Jerk inputs respectively.
- (5) Set the circular interpolation method in CircMode input. The circular interpolation methods which are different from the value specified in CircMode are as below.
 - (a) Circular interpolation of midpoint specifying method (BORDER, CircMode = 0)


In this method, operation starts at the current position and it does circular interpolation through the specified position of the central point to the target position.

The Figure below shows that the coordinate of the axis group at the beginning of a command corresponds to the current position, the coordinate entered in AuxPoint corresponds to the central point, and the coordinate entered in EndPoint corresponds to the target position in a relative value.

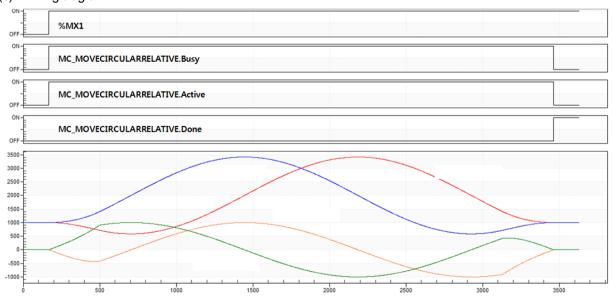

(b) Circular interpolation of central point specifying method

In this method, operation starts at the current position, and it does circular interpolation to the target position along the circular path, which has a radius of the distance to the specified central position. The Figure below shows that the coordinate of the axis group at the beginning of a command corresponds to the current position, the coordinate entered in AuxPoint corresponds to the central point, and the coordinate entered in EndPoint corresponds to the target point as a relative value.

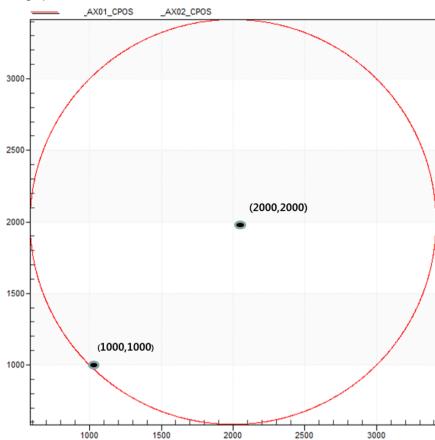
(c) Circular interpolation using the radius specifying method

In this method, operation starts at the current position, and it does circular interpolation to the target position along the circular path which has a radius of the value specified in the radius. The Figure below shows that the coordinate of the axis group at the beginning of a command corresponds to the current position, the value entered in X-axis of AuxPoint corresponds to the radius, and the coordinate entered in EndPoint corresponds to the target point in a relative value.

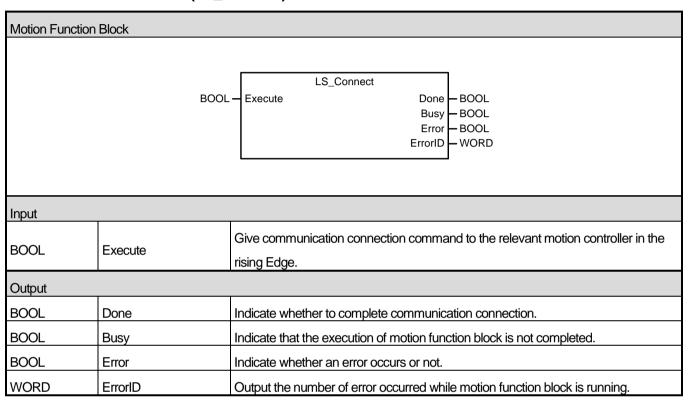
- (6) Refer to linear interpolation control part in motion controller's manual for more details.
- (7) If the function block is re-executed (Execute input is On) before the instruction is terminated, the changed parameters are applied. Only Velocity, Acceleration, Deceleration, Jerk, AuxPoint, and Endpoint inputs can be updated.
- (8) Velocity input can be set to 0 or changed.


(9) Example program

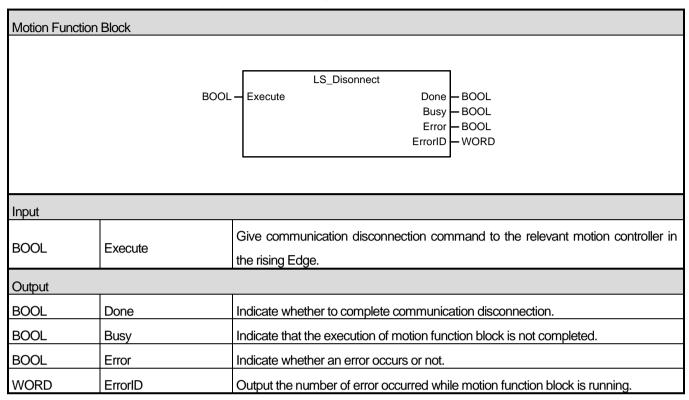
This example is to set the center point specification method when the current command position is (1000, 1000) (set the relative position from the current position to the center point to set: 1000, 1000), and move clock-wise to perform circular interpolation to the target position (set the relative position from the current position to the target position: 0, 0).


(a) Function block setting

(b) Timing diagram



(c) XY graph


Exclusive Function Blocks

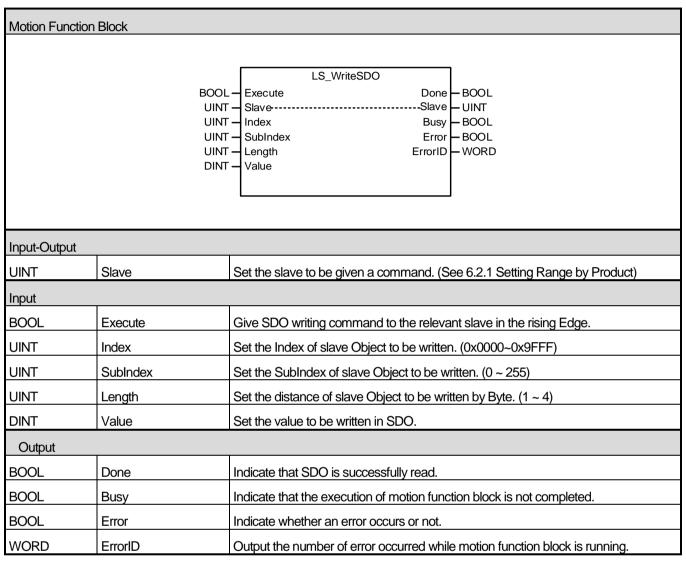
6.6.1 Connect servo drives (LS_Connect)

- (1) This motion function block is to give a command to connect communication with servo drive or external input/output apparatus to the motion controller.
- (2) When slave devicees are normally connected, Done is On and Busy is Off.
- (3) If an error occurs during the communication connection, Error is On and error number is output in ErrorID according to the cause.

6.6.2 Disconnect servo drives (LS_Disconnect)

- (1) This motion function block gives a command which orders the motion controller to disconnect the communication with servo drive or external input/output apparatuses.
- (2) If communication slave is disconnected, Done is On and Busy is off.
- (3) If an error occurs during the execution of communication disconnection, Error is On and error number is output in ErrorID according to the error situation.

6.6.3 Read SDO (LS_ReadSDO)

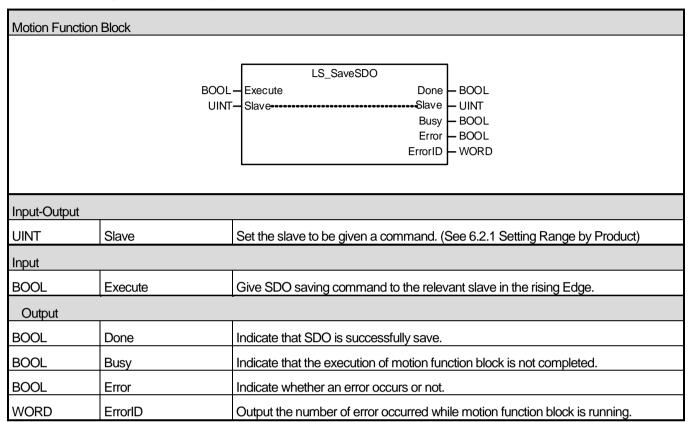

Motion Function	Motion Function Block			
			LS_ReadSDO	
			Execute Done BOOL	
			SlaveSlave — UINT — Index — BOOL	
			SubIndex Error — BOOL	
		UINT -	Length ErrorID — WORD	
			Value — DINT	
lines of October of				
Input-Output	I			
UINT	Slave		Set the slave to be given a command. (See 6.2.1 Setting Range by Product)	
Input				
BOOL	Execute		Give SDO reading command to the relevant slave in the rising Edge.	
UINT	Index		Set the Index of slaver Object to be read. (0x0000~0x9FFF)	
UINT	SubIndex		Set the SubIndex of slave Object to be read. (0 ~ 255)	
UINT	Length		Set the distance of slave Object to be read by Byte. (1 ~ 4)	
Output				
BOOL	Done		Indicate that SDO is successfully read.	
BOOL	Busy		Indicate that the execution of motion function block is not completed.	
BOOL	Error		Indicate whether an error occurs or not.	
WORD	ErrorID		Output the number of error occurred while motion function block is running.	
LREAL	Value		Output the value of SDO.	

- (1) This motion function block is to read the SDO (CoE Object) value of servo drive in the relevant axis, and reads the SDO value of the position specified in Index and SubIndex of the axis specified by Axis input as much as the size of Length and indicates it on Value output.
- (2) Value output is eliminated to 0 when motion function block is running, and it is output as the read value when the running is completed (Done output is On).
- (3) Index input can be set as below. If the value is set outside the range, "error 0x1F12" occurs.

	Variable	Description
	16#0000 ~ 16#0FFF	Data Type Description
	16#1000 ~ 16#1FFF	Communication objects
	16#2000 ~ 16#5FFF	Manufacturer Specific Profile Area
	16#6000 ~ 16#9FFF	Standardized Device Profile Area

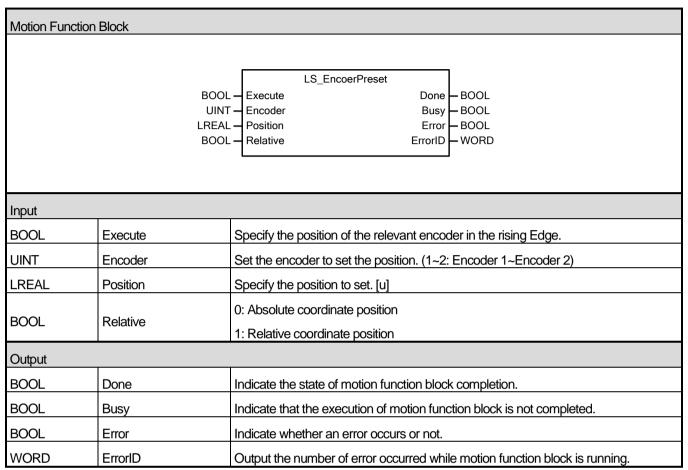
- (4) The value between 0~255 can be entered in SubIndex, and if the value is set outside the range, "error 0x1F12" occurs.
- (5) The value between 1~4 can be set in Length, which means 1~4 Byte. If the value is set outside the range, "error 0x1F12" occurs.

6.6.4 Write SDO (LS_SDO)

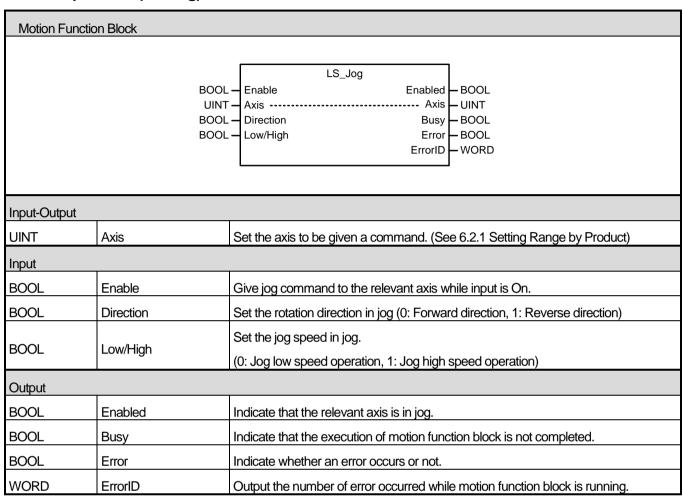


- (1) This motion function block is to write the SDO (CoE Object) value of the relevant slave, and it writes the value entered in Value as the size of the Length in SDO of the position specified as Index and SubIndex of the slave specified in slave input.
- (2) Index input can be set as below. When it is set to the value besides the set value, "error 0x1F12" occurs.

Value	Description
16#0000 ~ 16#0FFF	Data Type Description
16#1000 ~ 16#1FFF	Communication objects
16#2000 ~ 16#5FFF	Manufacturer Specific Profile Area
16#6000 ~ 16#9FFF	Standardized Device Profile Area


- (3) The value between the range of 0~255 can be entered in SubIndex, and if the value outside the range is set, "error 0x1F12" occurs.
- (4) The value between the range of 1~4 can be entered in Length, which means 1~4 Byte. If the value outside the range is set, "error 0x1F12" occurs.

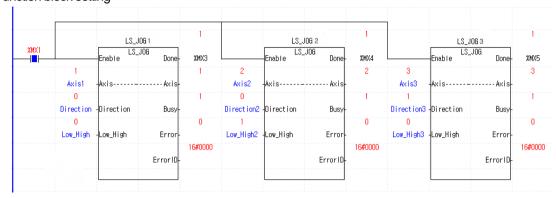
6.6.5 Save SDO (LS_SaveSDO)


⁽¹⁾ This motion function block is a command to save SDO of the designated slave to the memory of the slave.

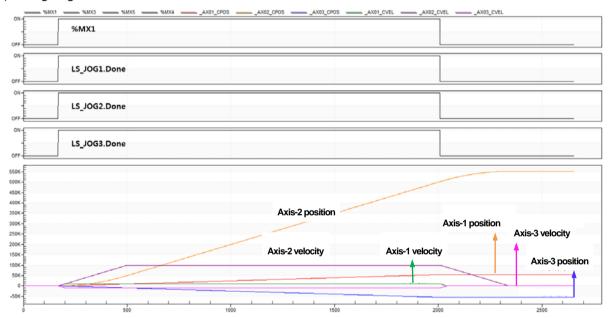
6.6.6 Encoder preset (LS_EncoderPreset)

- (1) This motion function block is to set the current position of the relevant encoder.
- (2) Specify the position in Position input. When executing motion function command, if Relative input is Off, the position of the current axis is replaced with the Position input value, and if the Relative input is On, the Position input value is added to the current position of the relevant axis.

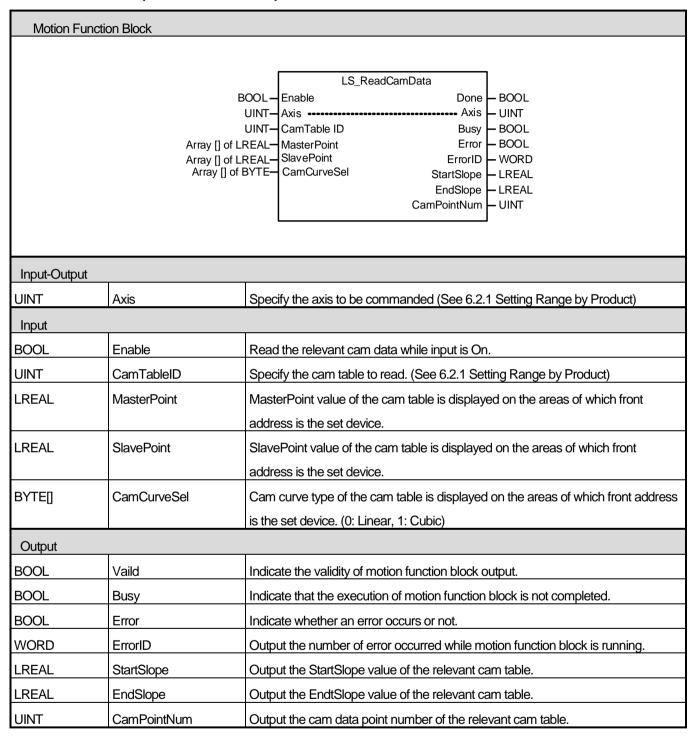
6.6.7 JOG operation (LS_Jog)



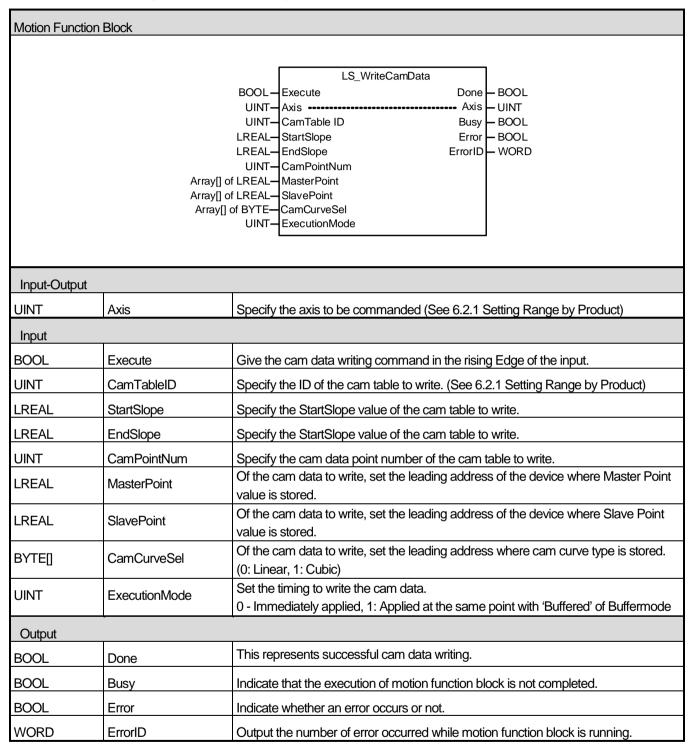
- (1) This motion function block is to make the relevant axis perform jog operation.
- (2) Jog is a manual operation function for test and is used to confirm the position address for system operation, wiring condition check, and teaching. Jog can be used by dividing the speed into high speed and low speed.
- (3) When Enable input is On (in jog), if the value set in Low/High is changed, speed change occurs without stop in jog, and if the value set in JOG_DIR is changed, Jog is continued by changing the direction after the deceleration pause.


(4) Example program

This example shows jog operation under the following settings when the current command position is 0.


(a) Function block setting

(b) Timing diagram



6.6.8 Read Cam data (LS_ReadCamData)

- (1) This function block displays the data of the cam table.
- (2) While Enable input is activated, the data values of the cam table are displayed in succession.
- (3) The first address of the variables to store "Main-axis Position" and "Sub-axis Position" read from the cam profile is set at the MasterPoint and the SlavePoint. If the size of the array variable is set smaller than the number of data in the cam table, the data of the entire cam table may not be read because the cam data is read only by the array size.

6.6.9 Write Cam data (LS_WriteCamData)

- (1) This motion function block is a command to write the data value of the cam table. Of the cam table data set by CamTableID input, use the value of the device set at MasterPoint and Slave Point at the value set at StartSlope and EndSlope and the set number at CamPointNum as the MasterPoint and SlavePoint values.
- (2) CamTableID input can be set to between 1 and 32. Setting a value outside the above range will cause "Error 16#000B"
- (3) You can enter a value below the number of settings set in the existing cam profile into CamPointNum, If the CamPointNum value is larger than the exiting cam profile, an error 16#111C"occurs.

Chapter5 Motin Functin Block

- (4) If the size of MasterPoint / SlavePoint / CamCurveSel array is set to a value smaller than CamPointNum, an "error 16#000B" occurs.
- (5) ExecutionMode input sets the setting timing. When the input is 0, setting is performed upon executing the command. When the input is 1, setting is performed at the same time as "Buffered" at the sequential operation. Setting an incorrect value will cause "Error 16#000B".

O(mcImmediately): Itchanges the (Upward Edge of Execute input) parameter value upon executing the function block. If the axis is in operation, the motion may be affected.

1(mcQueued): It is changed at the same point of time as in "Buffered" of Buffermode.

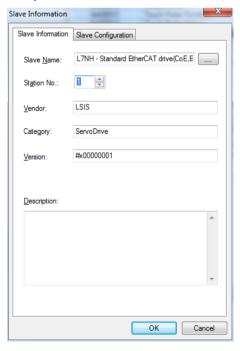
6.6.10 Read ESC (LS_ReadEsc)

Motion Function Block		
	UI UI UI	LS_ReadEsc OOL — Execute Done — BOOL INT — Adp Busy — BOOL INT — Ado Error — BOOL INT — Length ErrorID — WORD INT — EcatCmd Value — UDINT
Input		
BOOL	Execute	Give the ESC reading command to the slave controller in the rising Edge.
UINT	Adp	Set the slave controller address according to the EcatCmd.
UINT	Ado	Set the slave controller ESC address.
UINT	Length	Set the data length to read. (1 ~ 4 Byte)
UINT	EcatCmd	Set the EtherCAT command. (1: APRD, 4: FPRD, 7: BRD)
Output		
BOOL	Done	This represents successful ESC reading to complete normally.
BOOL	Busy	Indicate that the execution of motion function block is not completed.
BOOL	Error	Indicate whether an error occurs or not.
WORD	ErrorID	Output the number of error occurred while motion function block is running.
UDINT	Value	Output the ESC reading value of the slave controller
UINT	Wkc(Working Counter)	After the execution of the command, Working Counter value is displayed.

- (1) This motion function block is a function block to read the data of the address in Ado set from the ESC (EtherCAT Slave Controller) of the designated slave device.
- (2) Value and Wkc(Working Counter) is displayed as 0 when the motion function block is executed. When the execution is completed (Done output is on), the read data value is displayed at Value, and the Working Counter value is displayed at Wkc.
- (3) Adp(Address position) is designating the address of the EtherCAT slave device. The following values can be set depending on the EcatCmd setting. If EcatCmd setting is 7(BRD), Adp input value is ignored. If a value outside the range is set for Adp input, "Error 0x0F60" occurs.

EcatCmd	Adp range
	0x0000: The first slave connected
4 (4000)	0xFFFF: The second slave connected
1 (APRD)	0xFFFE: The third slave connected
	:
	0xFFC1: 64th slave connected
4 (FPRD)	1 ~ 64: slave 1~slave 64
7 (BRD)	-

- (4) (Length can be set to between 1 and 4, which means 1-4 bytes. Setting a value outside the above range will cause "Error 0x0F61. "
- (5) At EcatCmd, set the type of command to use when reading ESC (EtherCAT Slave Controller). One of the following commands can be used: Setting a value outside the above range at EcatCmd will cause "Error 0x0F62."


1) 1 - APRD (Auto Increment Physical Read)

This command is used when reading the slave device data following the order of physical connection before normal communication connection by the master. A slave device receiving Adp with 0 value will read data of the size designated by Length. Adp of each slave device increases when EtherCAT frame is received. For example, if EcatCmd is 1, and Adp is set to 0xFFFF, when executing ESC read function block, read motion is not performed because the Adp at the time of receiving EtherCAT frame from the first slave device is not 1, only increasing Adp by 1. When the second slve device receives EtherCAT frame, read motion is performed because the Adp value of the first slave value increased by 1 to 0. The Adp setting values depending on the slave device connection order are as follows.

Slave controller	Setting value
The first slave connected	0
The second slave connected	0xFFFF
:	:
64th slave connected	0xFFC1

2) 4 - FPRD (Configured Address Physical Read)

This order is used to read the data by designating the station address of the slave device after normal communication connection by the master. If the Station Address of the slave device set by EtherCAT master matches the transmitted Adp, the slave device reads data of the size designated by Length in the Ado area. The Station Address of slave device set by master can be checked in slave information dialog box when the slave is added.

3) 7 – BRD (Broadcast Read)

All connected slave devices read data of the size set by Length in the Ado area, and saves the result after Bitwise-OR (OR operation of each bit). The designated address value at Adp is ignored, and Wkc increase by 1due to all slaves that performed normal read operation

- (6) Wkc stands for Working Counter. If data is successfully read at the designated slave device, it increases by 1. If EcatCmd is 7(BRD), it increases by 1 due to all slaves that performed normal read operation.
- (7) After the execution of ESC read command, if normal data read operation is executed from the designated slave device, Done output is on.

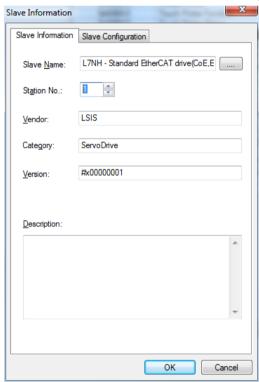
6.6.11 Write ESC (LS_WriteEsc)

Motion Function Block		
		LS_WriteEsc
	E	BOOL - Execute Done - BOOL
		UINT — Adp Busy — BOOL
		UINT – Ado Error – BOOL UINT – Length ErrorID – WORD
		UINT — Length ErrorID — WORD UINT — EcatCmd Wkc — UINT
		DINT — Value
Input		
BOOL	Execute	Give the ESC writing command to the slave controller in the rising Edge.
UINT	Adp	Set the slave controller address according to the EcatCmd.
UINT	Ado	Set the slave controller ESC address.
UINT	Length	Set the data length to write. (1 ~ 4 Byte)
UINT	EcatCmd	Set the EtherCAT command. (2: APWR, 5: FPWR, 8: BWR)
UDINT	Value	Output the ESC writing value of the slave controller
Output		
BOOL	Done	This represents successful ESC writing to complete normally.
BOOL	Busy	Indicate that the execution of motion function block is not completed.
BOOL	Error	Indicate whether an error occurs or not.
WORD	ErrorID	Output the number of error occurred while motion function block is running.
UINT	Wkc	After the execution of the command, Working Counter value is displayed.

- (1) This motion function block writes data using the address set by Ado to ESC (EtherCAT Slave Controller) of the slave device set by Adp.
- (2) Wkc value is displayed as 0 when the motion function block is executed, and the Working Counter value is displayed when execution is completed (Done output is on). Wkc increases by 1 through each slave device designated by EcatCmd and Adp.
- (3) Adp input designates the EtherCAT slave device address. The following values can be set depending on EcatCmd setting. If EcatCmd setting is 8(BWR), Adp input value is ignored. If a value outside the range is set for Adp input, "Error 0x0F70" occurs.

EcatCmd	Adp range
2 (APWR)	0x0000: The first slave connected 0xFFFF: The second slave connected 0xFFFE: The third slave connected :
	0xFFC1: 64th slave connected
5 (FPWR)	1~64: slave 1~slave 64
8 (BWR)	-

- (4) (Length can be set to between 1 and 4, which means 1-4 bytes. Setting a value outside the above range will cause "Error 0x0F71".
- (5) At EcatCmd, set the type of command to use when reading ESC (EtherCAT Slave Controller). The following write commands can be used. Setting a value outside the range at EcatCmd will cause "Error 0x0F72".

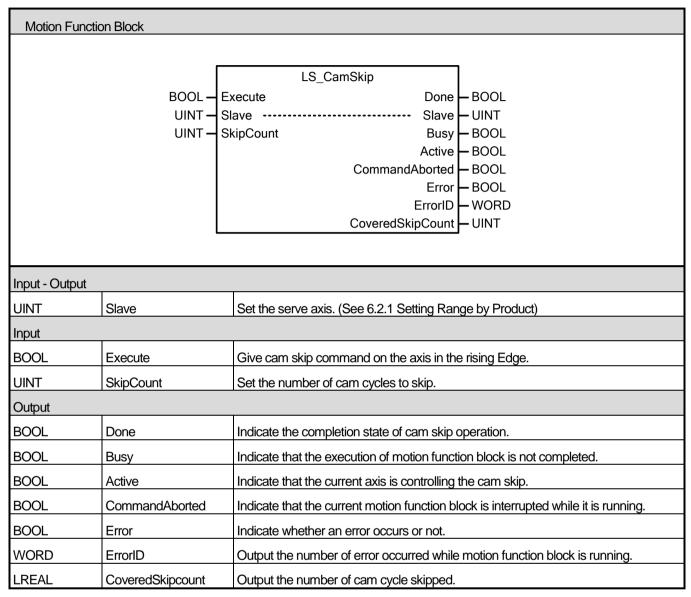

1) 2 - APW (Auto Increment Physical Write)

This command is used when reading the slave device data following the order of physical connection before normal communication connection by the master. A slave device receiving Adp with 0 value will read data of the size designated by Length. Adp of each slave device increases when EtherCAT frame is received. For example, if EcatCmd is 2, and Adp is set to 0xFFFF, when executing ESC read function block, reading is not performed because the Adp at the time of receiving EtherCAT frame from the first slave device is not 0, only increasing Adp by 1. When the second slave device receives EtherCAT frame, writing is performed because the Adp value of the first slave value increased by 1 to 0. The Adp values depending on the slave device connection order are as follows.

Slave controller	Setting value
The first slave connected	0
The second slave connected	0xFFFF
:	:
64th slave connected	0xFFC1

2) 5 - FPWR (Configured Address Physical Write)

This order is used to write the data by designating the station address of the slave device after normal communication connection by the master. If the Station Address of the slave device set by EtherCAT master matches the transmitted Adp, the slave device writes data of the size designated by Length in the Ado area. The Station Address of slave device set by master can be checked in slave information dialog box when the slave is added.



3) 8 –BWR, Broadcast Write

All connected slave devices write data of the size set by Length in the Ado area, and saves the result after Bitwise-OR (OR operation of each bit). The designated address value at Adp is ignored, and Wkc increase by 1 due to all slaves that performed normal write operation.

- (6) Wkc stands for Working Counter. If data is successfully written at the designated slave device, it increases by 1. If EcatCmd is 8(BWR), it increases by 1 due to all slaves that performed normal write operation.
- (7) After the execution of ESC writes command, if normal data write operation is executed in the designated slave device, Done output is on.

6.6.12 Skip Cam (LS_CamSkip)

- (1) This motion function block commands Cap Skip command which skip cam operation cycles as designated for the cam currently in operation.
- (2) SkipCount determines the number of cam cycles to skip. If 0 is entered, SkipCount Error (Error 0x111E) is displayed.
- (3) When Cam Skip command is issued on a sub-axis during cam operation, the skip motion starts when the current cam cycle is completed. During cam skip, the sub-axis is in stand-by at the end of the cam table.
- (4) CoveredSkipCount displays the number of cam cycles skipped. The count increases with each skipped cycle, and becomes 0 when Done output is off after the function block motion is completed
- (5) Done output is on when the set number of cycles are skipped after executing Cam Skip command.

6.6.13 Variable Cam operation (LS_VarCamIn)

Motion Function Block			
UDINT — UINT — LREAL — UINT — UINT — UINT —		LS_VarCamIn Execute InSync — BOOL VarOffset — VarOffset — UINT Slave — Slave — BOOL ContinousUpdate Busy — BOOL MasterOffset Active — BOOL SlaveOffset CommandAborted — BOOL MasterScaling Error — BOOL SlaveScaling ErrorID — WORD MasterStartDistance EndOfProfile — BOOL MasterSyncPosition StartMode MasterValueSource CamTableID BufferMode	
Input - Output	Input - Output		
UDINT	VarOffset	Set the offset value of the M device where the variable to be used as the main axis is located.	
UINT	Slave	Set the serve axis. (See 6.2.1 Setting Range by Product)	
Input			
BOOL	Execute	Give cam operation command on the axis in the rising Edge.	
BOOL	Specify the update setting of input value. ContinuousUpdate (Refer to 6.1.5.Changes in Parameters during Execution of Motion Function Block)		
LREAL	MasterOffset	Set the offset value of the main axis.	
LREAL	SlaveOffset	Set the offset value of the serve axis cam table.	
LREAL	MasterScaling	Specify the magnification of the main axis.	
LREAL	SlaveScaling	Specify the magnification of the serve axis cam table.	
LREAL	MasterStartDistance	Specify the position of the main axis where cam operation of the slave.	
LREAL	MasterSyncPosition	Specify the starting point at cam table when cam operation starts.	
UINT	StartMode	Set the cam operation mode. 0 : Cam table is applied as an absolute value (mcAbsolute) 1: Cam table is applied as a relative value based on the command starting point (mcRelative)	

UINT	MasterValueSource	Select the source of the main axis for cam operation. 0 : Synchronized in the target value of the main axis. 1 : Synchronized in the current value of the serve axis.	
UINT	CamTableID	Specify the cam table to operate. (See 6.2.1 Setting Range by Product)	
UINT	BufferMode	Specify the sequential operation setting of motion function block. (Refer to 6.1.4.BufferMode)	
Output			
BOOL	InSync	Indicate that cam operation is normally being fulfilled. (Indicate that the serve axis is following the cam table.)	
BOOL	Busy	Indicate that the execution of motion function block is not completed.	
BOOL	Active	Indicate that the current motion function block is controlling the relevant axis.	
BOOL	CommandAborted	Indicate that the current motion function block is interrupted while it is running.	
BOOL	Error	Indicate whether an error occurs or not.	
WORD	ErrorlD	Output the number of error occurred while motion function block is running.	

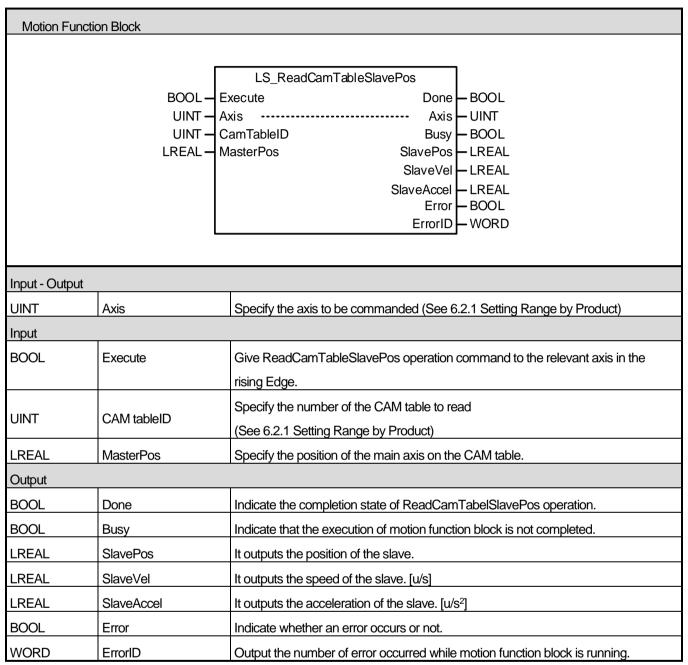
- (1) This motion function block is the function block that operates the sub-axis CAM along the main axis by setting the variable value designated by offset as the main axis.
- (2) The variable value specified as the main axis should be the LREL type. Example). When specifying the variable to be allocated to the memory by %ML100 as the main axis value, %ML100 should be LREAL type, and the offset value specifying a variable is UDINT type and you should input 100 to the VarOffset.
- (3) Remaining settings and functions are the same as the MC_CamIn function block.

6.6.14 Variable gear operation (LS_VarGearIn)

Motion Function Block			
Modern discloring season			
LS_VarGearIn BOOL — Execute InGear — BOOL UDINT — VarOffset — UINT UINT — Slave — UINT BOOL — ContinousUpdate Busy — BOOL INT — RatioNumerator Active — BOOL UINT — RatioDenominator CommandAborted — BOOL UINT — MasterValueSource Error LREAL — Acceleration ErrorID LREAL — Deceleration LREAL — Jerk UINT — BufferMode			
Input - Outpu	Input - Output		
UDINT	VarOffset	Set the offset value of the M device where the variable to be used as the main axis is located.	
UINT	Slave	Set the serve axis. (See 6.2.1 Setting Range by Product)	
Input			
BOOL	Execute	Give gear operation command to the relevant axis in the rising Edge.	
BOOL	ContinuousUpdate	Specify the update setting of input value. (Refer to 6.1.5.Changes in Parameters during Execution of Motion Function Block)	
LREAL	RatioNumerator	Specify the numerator of gear ratio. (-32768 ~ 32767)	
LREAL	RatioDenominator	Specify the denominator of gear ratio. (0 ~ 65535)	
LREAL	MasterValueSource	Select data of the main axis to be synchronized. 0: Synchronize in the command position of the main axis. 1: Synchronize in the current position of the main axis.	
LREAL	Acceleration	Specify the acceleration at the beginning of gear operation synchronization. [u/s²]	
LREAL	Deceleration	Specify the deceleration at the beginning of gear operation synchronization. [u/s²]	
LREAL	Jerk	Specify the change rate of acceleration/deceleration. [u/s³]	
UINT	BufferMode	Specify the sequential operation setting of motion function block. (Refer to 6.1.4.BufferMode)	

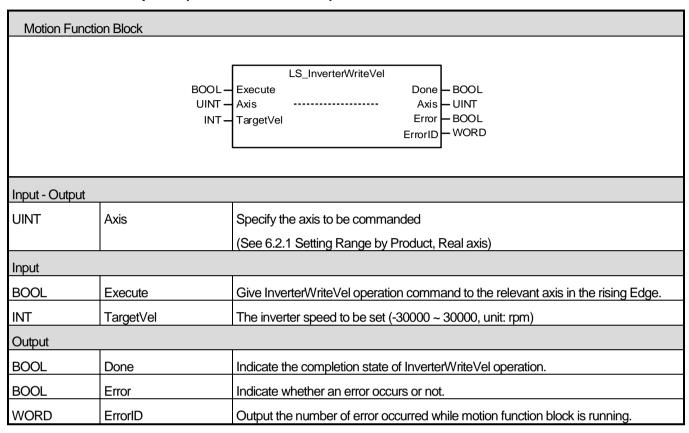
Output	Output		
BOOL	InGear	Indicate that gear operation is running by applying gear ration.	
BOOL	Busy	Indicate that the execution of motion function block is not completed.	
BOOL	Active	Indicate that the current motion function block is controlling the relevant axis.	
BOOL	CommandAborted	Indicate that the current motion function block is interrupted while it is running.	
BOOL	Error	Indicate whether an error occurs or not.	
WORD	ErrorID	Output the number of error occurred while motion function block is running.	

- (1) This motion function block is the function block that drives the main axis and the sub axis in gear operation (speed synchronization) by setting the variable value designated by offset as the main axis.
- (2) The variable value specified as the main axis should be the LREL type. Example). When specifying the variable to be allocated to the memory by %ML100 as the main axis value, %ML100 should be LREAL type, and the offset value specifying a variable is UDINT type and you should input 100 to the VarOffset.
- (3) Remaining settings and functions are the same as the MC_Gearln function block.

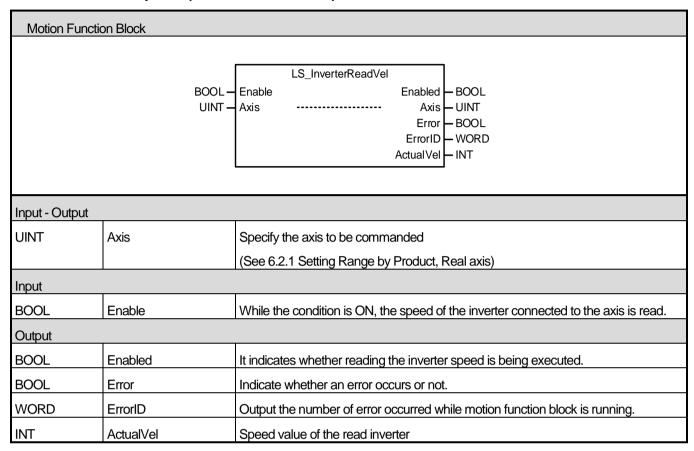

6.6.15 Variable positioning gear operation (LS_VarGearInPos)

Motion Function Block			
LS_VarGearInPos BOOL — Execute InGear — BOOL UDINT — VarOffset — UINT UINT — Slave — UINT INT — RatioNumerator Busy — BOOL UINT — RatioDenominator Active — BOOL UINT — MasterValueSource CommandAborted — BOOL LREAL — MasterSyncPosition Error — BOOL LREAL — SlaveSyncPosition Error — BOOL UINT — SyncMode LREAL — MasterStartDistance LREAL — Acceleration LREAL — Deceleration LREAL — Jerk UINT — BufferMode			
Input - Outp	ut		
UDINT	Master	Set the main axis. (1~32: real/virtual axis, 33~36: virtual axis)	
UINT	Slave	Set the serve axis. (See 6.2.1 Setting Range by Product)	
Input			
BOOL	Execute	Give gear operation command to the relevant axis in the rising Edge.	
INT	RatioNumerator	Specify the numerator of gear ratio. (-32768~32767)	
UINT	RatioDenominator	Specify the denominator of gear ratio. (0~65535)	
UINT	MasterValueSource	Select the standard of the main axis value to be synchronized. 0(mcSetValue): Synchronize in the target position of the main axis. 1(mcActualValue): Synchronize in the current position of the main axis.	
LREAL	MasterSyncPosition	Specify the position of the main axis where gear operation starts.	
LREAL	SlaveSyncPosition	Specify the position of the spindle where gear operation starts.	
UINT	SyncMode	Unused	
LREAL	MasterStartDistance	Specify the distance of the main axis where synchronization starts.	
LREAL	Velocity	Specify the maximum speed of the spindle at the beginning of synchronization. [u/s]	
LREAL	Acceleration	Specify the maximum acceleration of the spindle at the beginning of synchronization. [u/s²]	
LREAL	Deceleration	Specify the maximum deceleration of the spindle at the beginning of synchronization. [u/s²]	

LREAL	Jerk	Specify the change rate of acceleration/deceleration. [u/s³]
UINT	BufferMode	Specify the sequential operation setting of motion function block. (Refer to 6.1.4.BufferMode)
Output		
BOOL	InSync	Indicate that gear operation is normally being fulfilled as the specified gear ratio is applied.
BOOL	StartSync	Indicate synchronization is starting.
BOOL	Busy	Indicate that the execution of motion function block is not completed.
BOOL	Active	Indicate that the current motion function block is controlling the relevant axis.
BOOL	CommandAborted	Indicate that the current motion function block is interrupted while it is running.
BOOL	Error	Indicate whether an error occurs or not.
WORD	ErrorID	Output the number of error occurred while motion function block is running.


- (1) This motion function block is the function block that synchronizes the main axis and the servo axis according to the gear ratio set at the specific position by setting the variable value designated by the offset as the main axis
- (2) The variable value specified as the main axis should be the LREL type. Example). When specifying the variable to be allocated to the memory by %ML100 as the main axis value, %ML100 should be LREAL type, and the offset value specifying a variable is UDINT type and you should input 100 to the VarOffset.
- (3) Remaining settings and functions are the same as the MC_GearInPos function block.

6.6.16 Read the slave location of the CAM table (LS ReadCamTableSlavePos)


- (1) This motion function block outputs the position of the serve axis according to the position of the main axis in the specified
- (2) Set the position value of the main axis to be read in the CAM table as the MasterPos value. Offset / gear ratio / phase correction operation, etc. applied to the command axis are not reflected in the SlavePos output.
- (3) When reading the slave position on the CAM table is completed, the 'Done Output' will be turned on.

6.6.17 Write inverter speed (LS_InverterWriteVel)

- (1) This motion function block is the function block that sets the speed of the inverter to operate when controlling the inverter by
- (2) If you set the speed in TargetVel and execute the function block, the inverter connected to the axis will operate at the corresponding speed.
- (3) The speed value set in TargetVel is in units of rpm, and can be set to the value from -30000 to 30000.

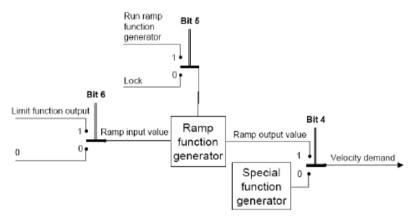
6.6.18 Read inverter speed (LS_InverterReadVel)

- (1) This motion function block is the function block that reads the speed of the connected inverter when controlling the inverter by the axis.
- (2) When the function block is executed, the current speed of the inverter connected to the axis is read and displayed in ActualVel.
- (3) The speed value set in ActualVel is in units of rpm, and can be displayed as the value from -30000 to 30000.

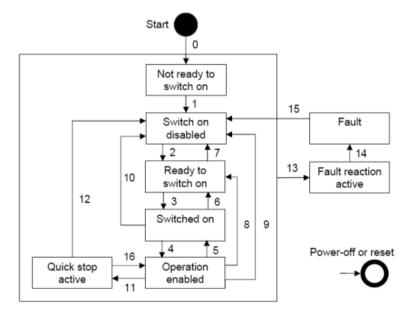
6.6.19 Write inverter control word (LS_InverterControl)

Motion Fu	nction Block					
IVIOUOTTPUI	TICLIOTI DIOCK					
	ROOL	LS_InverterControl — Execute Done — BOOL				
		Axis Axis UINT				
		SwitchOn Error BOOL				
		- VoltageEn ErrorID - WORD				
		QuickStopEnableOP				
	BOOL	■ EnableRamp				
		- UnlockRamp				
		ReferenceRamp - FaultReset				
		Halt				
Input - Outpu	ıt					
UINT	Axis	Specify the axis to be commanded				
		(See 6.2.1 Setting Range by Product, Real axis)				
Input						
BOOL	Execute	Set the inverter control word in the rising Edge.				
BOOL	SwitchOn	Switch On				
BOOL	VoltageEn	Voltage Enable				
BOOL	QuickStop	Quick Stop				
BOOL	EnableOP	Enable operation				
BOOL	EnableRamp	Enable ramp				
BOOL	UnlockRamp	Unlock ramp				
BOOL	ReferenceRamp	Reference ramp				
BOOL	FaultReset	Fault Reset				
BOOL	Halt	Halt				
Output						
BOOL	Done	It indicates whether or not the inverter control word setting is done normally.				
BOOL	Error	Indicate whether an error occurs or not.				
WORD	ErrorID	Output the number of error occurred while motion function block is running.				

⁽¹⁾ This motion function block is the function block that sets the control word of the connected inverter when controlling the inverter by the axis.

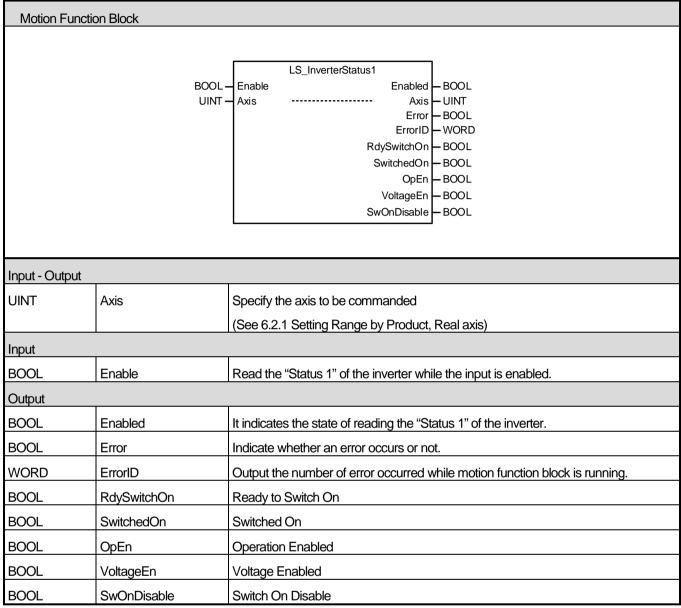

⁽²⁾ In order to operate the inverter, the control word must be set to enable operation.

(3) Please refer to the following.


Command bit used in Enable Operation

Bit	Value	Description			
.,, _ ,	0	Holding previous operation status			
4 (Enable Ramp)	1	Inverter operation by command bit			
	0	Holding of output frequency			
5 (Unlock Ramp)	1	Operatin to target frequency			
	0	Input target frequency as 0			
6 (Reference Ramp)	1	Input target frequency as settting value			
8 (Halt)	Х	Unused			

Inverter status according to the bit setting of the control word


Change the inverter status according to the bit setting of the control word

Command	Bi	ts of th	T			
Command	Bit 7	Bit 3	Bit 2	Bit 1	Bit 0	Transitions
Shutdown	0	Х	1	1	0	2,6,8
Switch on	0	0	1	1	1	3
Switch on + enable operation	0	1	1	1	1	3 + 4 (NOTE)
Disable voltage	0	Х	Х	0	Х	7,9,10,12
Quick stop	0	Х	0	1	X	7,10,11
Disable operation	0	0	1	1	1	5
Enable operation	0	1	1	1	1	4,16
Fault reset	<u>_</u>	х	х	Х	Х	15

NOTE Automatic transition to Enable operation state after executing SWITCHED ON state functionality.

6.6.20 Read inverter status 1 (LS_InverterStatus1)

⁽¹⁾ This motion function block is the function block that reads and displays the "Status 1" of the connected inverter when controlling the inverter by the axis.

(2) RdySwitchOn, SwitchedOn, OpEn, VoltageEn, SwOnDisable are respectively the lower bit values of the Status Word among the inverter PDO Data.

٠.	nong are arrener i De Data.						
	RdySwitchOn	Bit 0					
	SwitchedOn	Bit 1					
	OpEn	Bit 2					
	VoltageEn	Bit 4					
	SwOnDisable	Bit 6					

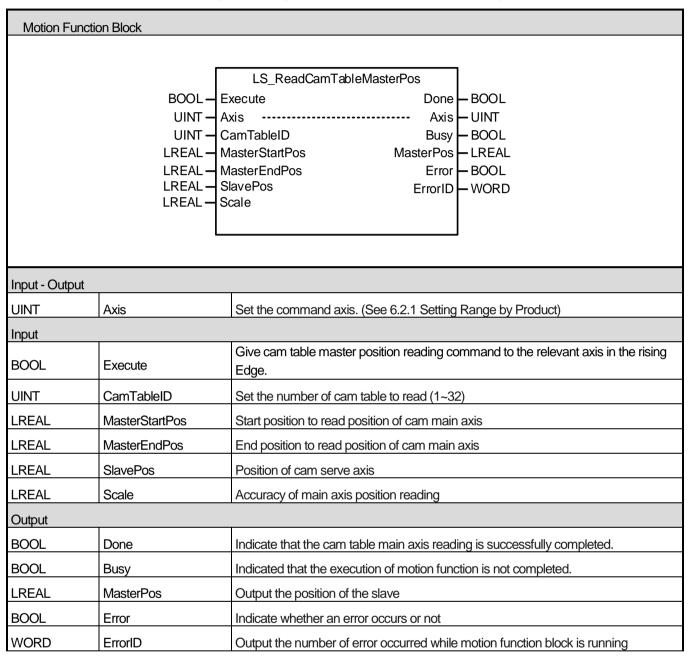
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
nu	nu	nu	Nu	lla	tr	rm	nu	w	sod	qз	Ve	f	oe	30	rtso

6.6.21 Read inverter status 2 (LS_InverterStatus2)

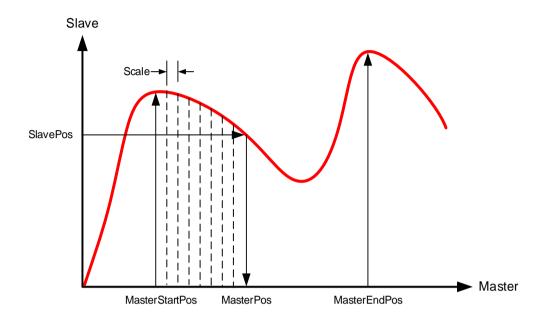
Motion Function Block						
		LS_InverterStatus2 DL — Enable Enabled — BOOL NT — Axis				
	UIF	Axis OUNI Error BOOL Fault BOOL QuickStop BOOL Warning BOOL Remote BOOL TargetReach LimitActive BOOL				
Input - Output						
UINT	Axis	Specify the axis to be commanded (See 6.2.1 Setting Range by Product, Real axis)				
Input						
BOOL	Enable	Read the "Status 2" of the inverter while the input is enabled.				
Output						
BOOL	Enabled	It indicates the state of reading the "Status 2" of the inverter.				
BOOL	Error	Indicate whether an error occurs or not.				
WORD	ErrorID	Output the number of error occurred while motion function block is running.				
BOOL	Fault	Fault(trip)				
BOOL	QuickStop	Quick stop				
BOOL	Warning	Warning				
BOOL	Remote	Remote				
BOOL	TargetReach	Target Reached				
BOOL	LimitActive	Internal Limit active				

- (1) This motion function block is the function block that reads and displays the "Status 2" of the connected inverter when controlling the inverter by the axis.
- (2) Fault, QuickStop, Warning, Remote, TagetReach, LimiActive are respectively the lower bit values of the Status Word among the inverter PDO Data.

iong the inverter i DO Data.					
Fault	Bit 3				
QuickStop	Bit 5				
Warning	Bit 7				
Remote	Bit 6				
TargetReach	Bit 10				
LimitActive	Bit11				


15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
nu	nu	nu	Nu	lla	tr	rm	nu	w	sod	qз	Ve	f	oe	30	rtso

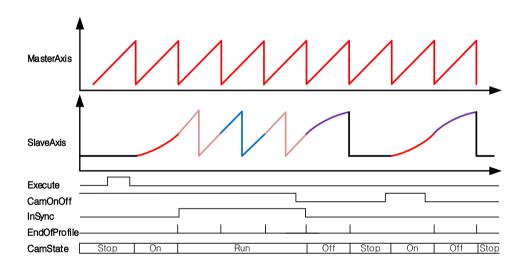
6.6.22 Speed control operation (CSV mode) (LS_SyncMoveVelocity)


Motion Fu	Motion Function Block						
	UINT LREAL BOOL	LS_SyncMoveVelocity Execute InVelocity — BOOL Axis — Axis — UINT Velocity Busy — BOOL CmdPosMode Active — BOOL BufferMode CommandAborted Error — BOOL ErrorID — WORD					
Input - Outpu	ut						
UINT	Axis	Specify the axis to be commanded (See 6.2.1 Setting Range by Product)					
Input							
BOOL	Execute	In the rising Edge, it performs speed control operation through the CSV mode.					
BOOL	CmdPosMode	0: Apply the current position to the command position.					
UINT	BufferMode	Specify the sequential operation setting of motion function block. (0: Aboritng, 1: Buffered, Refer to 6.1.4.BufferMode)					
Output							
BOOL	Done	Indicate whether to reach the specified distance.					
BOOL	Busy Indicate that the execution of motion function block is not completed.						
BOOL	Active	Indicate that the current motion function block is controlling the relevant axis.					
BOOL	CommandAborted	Indicate that the current motion function block is interrupted while it is running.					
BOOL	Error	Indicate whether an error occurs or not.					
WORD	ErrorID	Output the number of error occurred while motion function block is running.					

- (1) This motion function block is the function block that allows speed control using the CSV (Cyclic Synchronous Velocity) mode of CiA402 profile on the set axis.
- (2) In order to stop the specified speed operation, you can make a stop command or execute another motion function block.
- (3) Velocity input specifies the speed to operate. When the sign of the operation speed value is positive (+ or no sign), it moves in the forward direction and when it is negative (-), it moves in the reverse direction.
- (4) CmdPosMode is used to set the update methods of the current position at the time of command. Only the initial value of 0 is available and the current position of the command is updated using the feedback current position.
- (5) The output InVelocity is turned on when the axis reaches the specified speed, and it is turned off when the specified speed operation is stopped.
- (6) When this Motion Function Block is running, the axis status is 'Continuous Motion'.

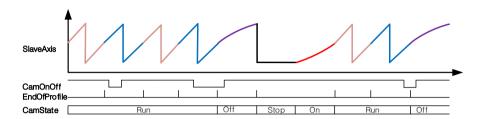
6.6.23 Read CAM table master position (LS_ReadCamTableMasterPos)

⁽¹⁾ This motion function block outputs the position of the main axis corresponding to the position of the serve axis set in SlavePos, among the values between MasterStartPos and MasterEndPos in the specified cam table.


- (2) Set the position of serve axis to read in the cam table as SlavePos value. Offset/Gear ratio/Phase correction operation applied to the command axis is not reflected in the MasterPos output.
- (3) When the cam table master position reading operation is completed, the Done output turns on.
- (4) The 'Scale', which is the accuracy value of the cam table master position reading, can't input 0. If the 'Scale' is 0, an error (error number: 0x0B) occurs. If the 'Scale' value is large, an error may occur between the magnified MasterPos value and the actual spindle position. Also, if the 'Scale' value is small, the execution time of the function block may become long.
- (5) If the position of the main axis corresponding to the position of the serve axis set in SlavePos does not exist among the values between MasterStartPos and MasterEndPos, Error is On and "0x1124" occurs in ErrorID.
- (6) The value of MasterEndPos must be greater than the value of MasterStartPos. If the MasterEndPos value is less than or equal to MasterStartPos, Error is On and "0x0B" occurs in ErrorID.

6.6.24 OnOff CAM Operation (LS_OnOffCam)

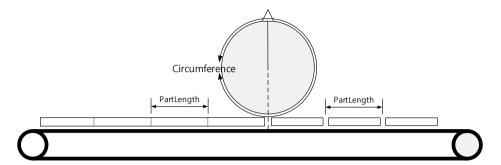
Motion F	Function Block						
	200	LS_OnOffCam					
		L — Execute InSync — BOOL T — Master Master — UINT					
	UIN						
	BOO						
	BOO	L — SkipOnCam Active — BOOL					
	BOO	'					
	UIN UIN						
	UIN						
	UIN						
	UIN						
	LREA	L — StartModeParam					
Innuit Outo	4						
Input-Outp UINT	Master	Sat the main axis (See 6.2.1 Satting Bange by Bradust)					
		Set the main axis. (See 6.2.1 Setting Range by Product)					
UINT	Slave	Set the serve axis. (See 6.2.1 Setting Range by Product)					
Input		O' attack O O'' and a continuous attack and a stack of the Stack Education					
BOOL	Execute	Give the OnOff cam operation command to the relevant axis on the rising Edge.					
		Set the on/off state of the cam operation.					
BOOL	CamOnOff	1: Complete OnCam and switch to RunCam.					
		0: Complete OffCam in RunCam and switch the cam to the stop status					
BOOL	SkipOnCam	Exclude OnCam from OnOff cam operation and carry out RunCam->OffCam in					
DOOL	Okiporioam	order.					
BOOL	SkipRunCam	Exclude RunCam from OnOff cam operation and carry out OnCam->OffCam in					
BOOL	Skipikuricarri	order.					
		Select the source of the main axis for cam operation.					
UINT	MasterValueSource	0: Synchronizes to the command position of the main axis.					
		1: Synchronizes to the current position of the main axis.					
		Specify the cam table to operate in the OnCam state.					
UINT	OnCam_ID	(See 6.2.1 Setting Range by Product)					
		Specify the cam table to operate in the RunCam state.					
UINT	RunCam_ID	(See 6.2.1 Setting Range by Product)					
		Specify the cam table to operate in the OffCam state.					
UINT	OffCam_ID	(See 6.2.1 Setting Range by Product)					
		Specify the method for starting the cam operation.					
		0: Start when CamOnOff is set to 1.					
l	0	1: Start when CamOnOff is set to 1 and the main axis reaches the position set in					
UINT	StartMode	StartModeParam.					
		2: Start when CamOnOff is set to 1 and the main axis moves the distance set in					
		StartModeParam.					
		3: Use the profile generated with LS_CrossSealCamGen.					
LREAL	StartModeParam	Set the parameter according to the method for starting the cam operation.					


Output		
BOOL	InSync	Indicates that cam operation has entered the RunCam state.
BOOL	Busy	Indicates that the execution of the motion function block is not completed.
BOOL	Active	Indicates that the current motion function block is controlling the relevant axis.
BOOL	CommandAborted	Indicates that the current motion function block is interrupted by another command.
BOOL	Error	Indicates whether an error occurs or not.
WORD	ErrorID	Outputs the error ID that occurred while the motion function block is running.
BOOL	EndOfProfile	Indicates the end of the current cam operation.
		0: Stop state
UINT	CamState	1: Executing OnCam
Olivi	Camolale	2: Executing RunCam
		3: Executing OffCam

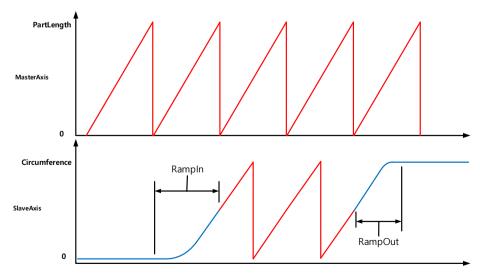
(1) This motion function block uses three cam tables to carry out the cam operation that is switched to a Stop state->OnCam->RunCam or a RunCam->OffCam->Stop state depending on the CamOnOff input.

- (2) The cam operation runs under a state where Execute is the rising Edge. The cam operation does not stop even if Execute is changed to Off during the operation. To stop the OnOffCam operation, you must give the MC_CamOut command or run another motion function block.
- (3) If StartMode is set to 0, OnCam runs as soon as 1 is input in CamOnOff. If StartMode is set to 1, OnCam does not run as soon as 1 is input in CamOnOff, but when the position of the main axis passes by the position set in StartModeParam. If StartMode is set to 2, OnCam runs when 1 is input in CamOnOff and the main axis then moves in the distance set in StartModeParam.
- (4) If you are using a cam generated with the LS_CrossSealCamGen function block, set StartMode to 3. If StartMode is set to 3 and the length of OnCam_ID is 270, the same operation is conducted as if StartMode is set to 1 and StartModeParam is 270. If OnCam_ID is 180, the same operation is conducted as if StartMode is set to 1 and StartModeParam is set to 0.
- (5) EndOfProfile outputs On when passing the end of a profile during the operation of each OnCam/OffCam/RunCam cam profile.

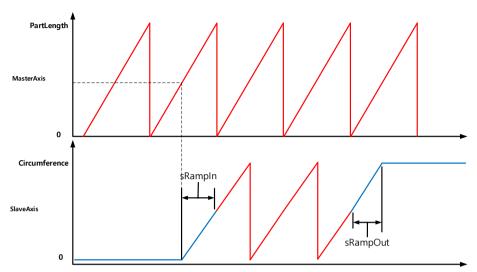
(6) If the CamOnOff signal is Off, the operation to switch to RunCam->OffCam->Stop state is performed. If the CamOnOff signal is switched from Off to On in the RunCam state, the RunCam state is maintained if OffCam is not yet executed. In a state where OffCam is executed, the state switches to the OnCam->RunCam state again after switching to the OffCam->Stop state. (When turning off CamOnOff in RunCam, the operation must be maintained until an EndOfProfile signal is generated.)


- (7) If the SkipOnCam signal is On, RunCam is executed instantly without OnCam. If CamOnOff turns off after executing RunCam, perform the operation to switch to RunCam->OffCam->Stop state. In an operation where the SkipOnCam signal is On, the operation is executed from the middle of RunCam.
- (8) If the SkipRunnCam signal is On, OffCam is executed without executing RunCam after executing OnCam. If CamOnOff is On at this time, the operation repeats in the order of OnCam->OffCam->Stop->OnCam->OffCam->Stop.
- (9) To stop the OnOffCam operation completely, use the halt (MC_Halt) or immediate stop (MC_Stop) motion function block.
- (10) The CamState value is output as Stop(0) / OnCam(1) / RunCam(2) / OffCam(3) depending on the state of cam operation.
- (11) Once the cam operation set in RunCam_ID is executed, InSync outputs On.
- (12) MasterValueSource selects the source of the main axis for synchronization. If set to 0, the serve axis performs cam operations based on the command position of the main axis calculated in the motion controller, and if set to 1, the serve axis performs cam operations based on the current position received via communication from the serve drive of the main axis.
- (13) RunCam_ID sets the cam profile to execute during the operation of OnOffCam. Before executing RunCam in a Stop state, set the cam profile to run as OnCam_ID. OffCam_ID sets the cam profile to execute before RunCam reaches the Stop state. The setting range for each ID is 1-32, and an input value outside of the range causes a "0x1115" error in the motion function block.
- (14) Any changes made to the MasterValueSource/OnCam_ID/RunCam_ID/OffCam_ID value during operation are not reflected.
- (15) The value of the major axis can be changed during OnCam/RunCam/OffCam operation. (V1.50 and more)
- (16) The corresponding axis is in a "SynchronizedMotion" state when this motion function block is running.
- (17) For more information, see Chapter 8.6 RotaryKnife Operation under Chapter 8 Motion Control Function.

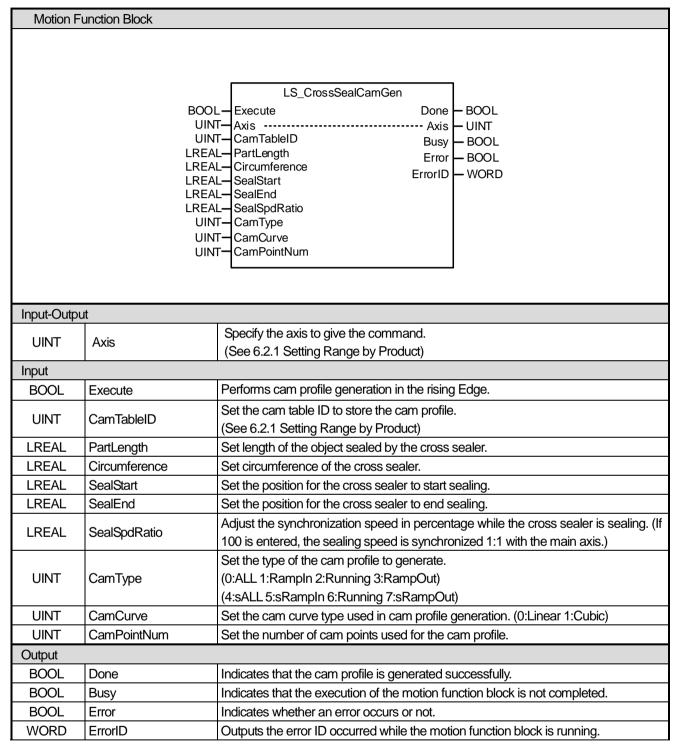
6.6.25 RotaryKnife cam profile generation (LS_RotaryKnifeCamGen)


Motion F	unction Block					
	U U LRE LRE LRE LRE U U	LS_RotaryKnifeCamGen OL — Execute Done Axis ————————————————————————————————————				
Input-Outpu	ut					
UINT	Axis	Specify the axis to give the command. (See 6.2.1 Setting Range by Product)				
Input						
BOOL	Execute	Performs cam profile generation in the rising Edge.				
UINT	CamTableID	Set the cam table ID where the profile is stored. (See 6.2.1 Setting Range by Product)				
LREAL	PartLength	Set the length of the object to cut by the RotaryKnife.				
LREAL	Circumference	Set the circumference of the RotaryKnife.				
LREAL	CuttingStart	Set the position for the RotaryKnife to start cutting.				
LREAL	CutingEnd	Set the position for the RotaryKnife to end cutting.				
LREAL	CuttingSpdRatio	Adjust the synchronization speed by a percentage while the RotaryKnife is cutting. (If 100 is entered, the cutting speed is synchronized 1:1 with the main axis.)				
UINT	CamType	Set the type of the cam profile to generate. (0:ALL 1:RampIn 2:Running 3:RampOut) (4:sALL 5:sRampIn 6:Running 7:sRampOut)				
UINT	CamCurve	Set the cam curve type used in cam profile generation. (0:Linear 1:Cubic)				
UINT	CamPointNum	Set the number of cam points used for the cam profile.				
Output						
BOOL	Done	Indicates that the cam profile is generated successfully.				
BOOL	Busy	Indicates that the execution of the motion function block is not completed.				
BOOL	Error	Indicates whether an error occurs or not.				
WORD	ErrorID	Outputs the error ID occurred while the motion function block is running.				

- (1) This motion function block generates the cam profile which performs the RotaryKnife action.
- (2) Use the cam profile generated through LS_RotaryKnifeCamGen in the LS_OnOffCam function block.
- (3) On the PartLength input, enter the length of the object to perform cutting using the RotaryKnife.


(4) On the Circumference input, enter the circumference of the RotaryKnife.

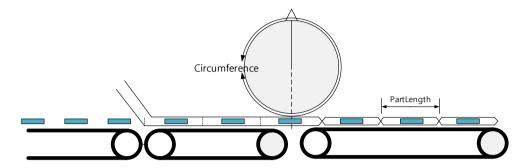
- (5) On the CuttingStart input, enter the starting position for the RotaryKnife to start cutting. On the CuttingStart input, enter the ending position for the RotaryKnife to end cutting. The speed of the conveyor and the RotaryKnife are synchronized between CuttingStart and CuttingEnd. (If you want a cutting region of 10 when the Circumference is 360, set CuttingStart to 175 and CuttingEnd to 185.)
- (6) On the generated cam profile, the movement amount of the main axis is 360Degree in ratio to PartLength. This means that you must set the gear ratio of the motor and the machine in the parameter so that 1 rotation of the main axis equals PartLength.
- (7) On the generated cam profile, the movement amount of the serve axis is 360Degree in ratio to the Circumference. This means that you must set the gear ratio of the motor and the machine in the parameter so that 1 rotation of the serve axis equals the Circumference.
- (8) For CuttingStart, you cannot enter a value that is less than 1/8 of the Circumference or greater than CuttingEnd. A "0x1172" error occurs if there is an error in the CuttingStart value.
- (9) For CuttingEnd, you cannot enter a value that is greater than 7/8 of the Circumference or smaller than CuttingEnd. A "0x1172" error occurs if there is an error in the CuttingEnd value. To set the cutting region to the minimum, set CuttingEnd and CuttingStart as equal values.
- (10) On the CamType, enter the type of cam profile to generate. Available values are 1:Rampln 2:Running 3:RampOut 5:sRampIn 6:Running 7:sRampOut. If you enter 0, RampIn/Running/RampOut will be generated at once. The Running type generates a cam profile which performs repeated cutting actions. The RampIn type generates a profile that includes the stop state to the action of the Running cam profile performing the cutting action. The RampOut type generates a profile to switch RotaryKnife from a running state to a stop state. A "0x1176" error occurs if the CamType value is outside of the range.



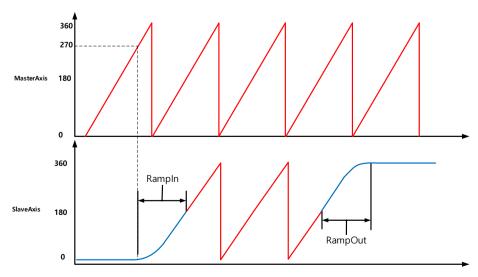
(11) The sRampIn and sRampOut types generate a shortened cam profile of RampIn and RampOut respectively. When operating using sRampIn and sRampOut and you want to main axis to reach the 1/2Circumference position of the serve axis, the main axis must start at the 1/2 position of PartLength.

- (12) On the CuttingSpdRatio input, set the speed ratio for the cutting region. If CuttingSpdRatio is set to 100, a cam profile is generated which operates by synchronizing 1:1 with the speed of the main axis in the cutting region. As the CuttingSpdRatio value is higher, the faster the synchronization speed on the cutting region. The setting range of CuttingSpdRatio is 50-200 and a "0x1174" error occurs if there is an error in the CuttingSpdRatio value.
- (13) On the CamCurve, enter the curve of the cam profile to generate. If you enter 0:Linear, a cam profile is generated using linear interpolation. Once you select linear interpolation, you must specify the number of cam profile points to generate by setting CamPointNum. Take care when setting the number of points as too little can lead to a shock due to the acceleration or deceleration of cam operation and too many can lead to an overload in the program due to the amount of computing resources for saving cam profiles. If you enter 1:Cubic, a cam profile is generated that uses cubic interpolation. A "0x1176" error occurs if the CamCurve value is outside of the range.
- (14) The minimum number of cam points required for CamPointNum is 10 and a "0x1177" error occurs if there is an error in the CamPointNum value. The maximum CamPointNum is 1024.

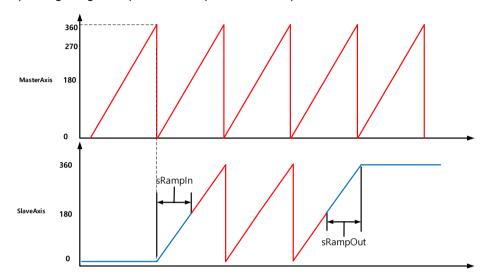
6.6.26 Cross sealer cam profile generation (LS CrossSealCamGen)



⁽¹⁾ This motion function block generates the cam profile which performs the cross sealer action. Use the cam profile generated through LS_CrossSealCamGen in the LS_OnOffCam function block.

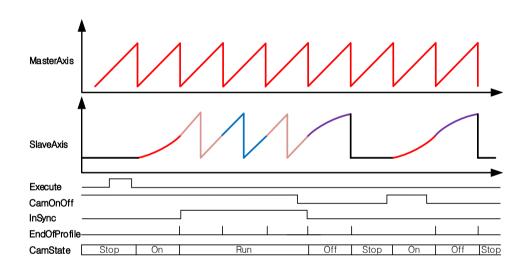

⁽²⁾ On the PartLength input, enter the length of the object to perform sealing using the cross sealer.

⁽³⁾ On the Circumference input, enter the circumference of cross sealer.

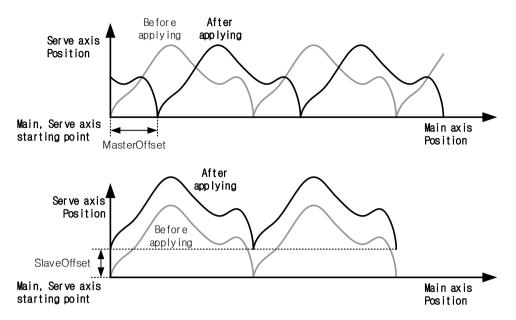

(4) Both the main and serve axes of the generated cam profile is output within the 0-360 range. For the PartLength and Circumference values, you must enter the distance moved by the main axis when the main and serve axes move in 360 value.

- (5) On the SealStart input, enter the starting position for the cross sealer to start sealing. On the SealStart input, enter the starting position for the cross sealer to end sealing. The speed of conveyor and the cross sealer are synchronized between SealStart and SealEnd. (If you want a sealing region of 10 when the Circumference is 360, set SealStart to 175 and SealEnd to 185.)
- (6) On the generated cam profile, the movement amount of the main axis is 360 in ratio to PartLength. This means that you must set the gear ratio of the motor and the machine in the parameter so that when the main axis moves 360, the real distance equals PartLength.
- (7) On the generated cam profile, the movement amount of the serve axis is 360 in ratio to Circumference. This means that you must set the gear ratio of the motor and the machine in the parameter so that when the serve axis moves 360, the real distance equals Circumference.
- (8) For SealStart, you cannot enter a value that is less than 1/8 of the Circumference or greater than SealEnd. A "0x1172" error occurs if there is an error in the SealStart value.
- (9) For SealEnd, you cannot enter a value that is greater than 7/8 of the Circumference or smaller than SealEnd. A "0x1172" error occurs if there is an error in the SealEnd value. To set the sealing region to the minimum, set SealEnd and SealStart as equal values.
- (10) On the CamType, enter the type of cam profile to generate. Available values are 1:Rampln 2:Running 3:RampOut 5:sRampln 6:Running 7:sRampOut. If you enter 0, Rampln/Running/RampOut will be generated at once. The Running type generates a cam profile which performs repeated sealing actions. The Rampln type generates a profile that includes the stop state to the action of the Running cam profile performing the sealing action. The RampOut type generates a profile to switch the cross sealer from a running state to a stop state. A "0x1176" error occurs if the CamType value is outside of the range.

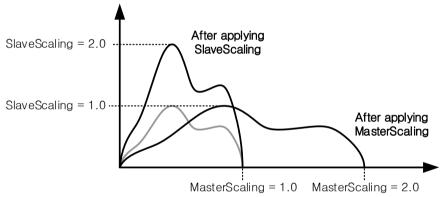
- (11) The cam profile generated in the LS_CrossSealCamGen function is similar to the cam profile generated in the LS_RotaryCutCamGen. For the RampIn profile, the operation starts when the main axis is at 270 and not at 0. The profile also starts to perform sealing when the main axis is at 180 degrees.
- (12) The sRampIn and sRampOut types generate a shortened cam profile of RampIn and RampOut respectively. When operating using sRampIn and sRampOut, the cam operation starts when the main axis is at 0.

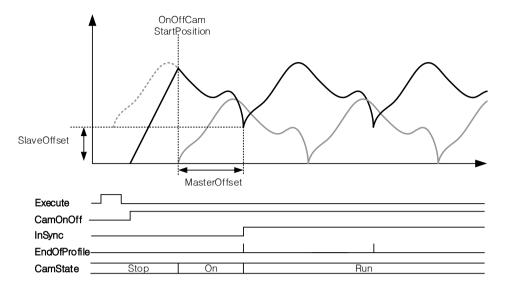

- (13) On the SealSpdRatio input, set the speed ratio for the sealing region. If SealSpdRatio is set to 100, a cam profile is generated which operates by synchronizing 1:1 with the speed of the main axis in the sealing section. The higher the SealSpdRatio value, the faster the synchronization speed in the cutting region. The setting range of SealSpdRatio is 50-200 and a "0x1174" error occurs if there is an error in the SealSpdRatio value.
- (14) On the CamCurve, enter the curve of the cam profile to generate. If you enter 0:Linear, a cam profile is generated using linear interpolation. Once you select linear interpolation, you must specify the number of cam profile points to generate by setting CamPointNum. Take care when setting the number of points as too little can lead to a shock due to the acceleration or deceleration of cam operation and too many can lead to an overload in the program due to the amount of computing resources for saving cam profiles. If you enter 1:Cubic, a cam profile is generated that uses cubic interpolation. A "0x1176" error occurs if the CamCurve value is outside of the range.
- (15) The minimum number of cam points required for CamPointNum is 10 and a "0x1177" error occurs if there is an error in the CamPointNum value. The maximum CamPointNum is 1024.

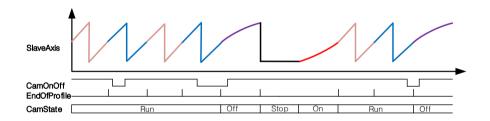
6.6.27 Expand OnOff CAM Operation (LS_OnOffCamEx)


Motion Function Block type				
Motion FC		LS_OnOffCamEx BOOL — Execute InSync — BOOL UINT — Master — Master — UINT Slave — Slave — UINT BOOL — CamOnOff Busy — BOOL BOOL — SkipOnCam Active — BOOL BOOL — SkipRunCam CommandAborted UINT — MasterValueSource Error ID UINT — OnCam_ID ErrorID — WORD UINT — RunCam_ID EndOfProfile UINT — OffCam_ID CamState LREAL — MasterCoffset LREAL — MasterScaling LREAL — SlaveScaling UINT — StartMode LREAL — StartMode LREAL — StartModeParam		
Input-Output				
UINT	Master	Set the main axis (See 6.2.1 Setting Range by Product), Available to set variables only		
UINT	Slave	Set the serve axis (See 6.2.1 Setting Range by Product), Available to set variables only		
Input				
BOOL	Execute	Give the OnOff Cam operation command to the relevant axis in the rising Edge		
BOOL	CamOnOff	Set whether the Cam operation is On or Off. 1: Completing OnCam and switch to RunCam. 0: Complete OffCam in RunCam and switch the cam operation to the stop status.		
BOOL	SkipOnCam	Exclude OnCam from OnOff cam operation and carry out RunCam->OffCam in order.		
BOOL	SkipRunCam	Exclude RunCam from OnOff cam operation and carry out OnCam->OffCam in order.		
UINT	MasterValueSource	Select the source of the main axis for the cam operation. 0: Synchronizes to the command position of the main axis. 1: Synchronizes to the current position of the main axis.		
UINT	OnCam_ID	Specify the cam table to operate in the OnCam state.		
UINT	RunCam_ID	Specify the cam table to operate in the RunCam state.		
UINT	OffCam_ID	Specify the cam table to operate in the OffCam state.		
LREAL	MasterOffset	Set the offset value of the main axis.		
LREAL	SlaveOffset	Set the offset value of the serve axis.		
LREAL LREAL	MasterScaling SlaveScaling	Specify the magnification of the main axis. Specify the magnification of the serve axis.		
UINT	StartMode	Select the method to start the cam operation. 0: Start when CamOnOff is set to 1. 1: Start when CamOnOff is set to 1 and the main axis reaches the position set in StartModeParam. 2: Start when CamOnOff is set to 1 and the main axis moves the distance set in StartModeParam. 3: Use the profile generated with LS_CrossSealCamGen.		

LREAL	StartModeParam	Set parameters according to the method to start the cam operation.	
Output			
BOOL	InSync	Indicate that the cam operation has entered the RunCam state.	
BOOL	Busy	Indicate that execution of the motion function block is not completed.	
BOOL	Active	Indicate whether the current motion function block is controlling the relevant axis.	
BOOL	CommandAborted	Indicate that the current motion function block is interrupted by another command.	
BOOL	Error	Indicate whether an error occurs.	
WORD	ErrorID	Output the error number that occurred while the motion function block is running.	
BOOL	EndOfProfile	Indicate the end of the current cam operation.	
UINT	CamState	0: Stop state	
		1: Executing OnCam	
		2: Executing RunCam	
		3: Executing OffCam	


(1) This motion function block uses three cam tables to carry out the cam operation that is switched to Stop state->OnCam->RunCam or RunCam->OffCam->Stop state depending on the CamOnOff input.

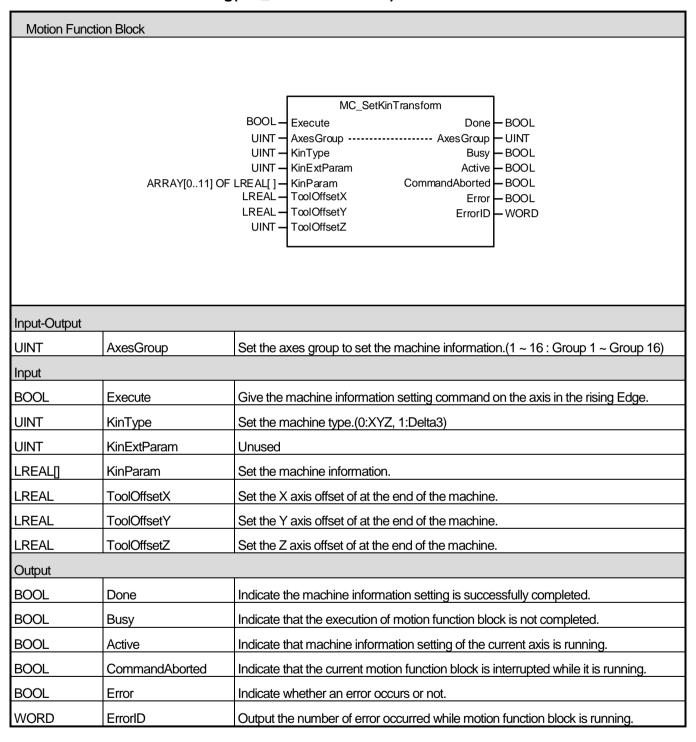

- (2) The cam operation runs under a state where Execute is the rising Edge. The operation does not stop even if Execute is changed to Off during the operation. To stop the OnOffCam operation, you must give the MC_CamOut command or run another motion function block.
- (3) Set the offset of the cam table to be applied in MasterOffset and SlaveOffset. MasterOffset sets the offset with the starting point of the main axis, and SlaveOffset sets the offset with the starting point of the serve axis. Refer to the Figure below.


(4) Set the magnification of the CAM data to be applied in MasterScaling and SlaveScaling. Set the magnification of the main axis data in MasterScaling, and set the magnification of the serve axis data in SlaveScaling. Refer to the Figure below.

- (5) If StartMode is set to 0, OnCam runs immediately when 1 is input in CamOnOff. If StartMode is set to 1, OnCam does not run immediately when 1 is input in CamOnOff. But OnCam runs when the position of the main axis passes by the position set in StartModeParam. If StartMode is set to 2, OnCam runs when 1 is input in CamOnOff and then the main axis moves the distance set in StartModeParam.
- (6) If you are using a cam generated by the LS_CrossSealCamGen function block, set StartMode to 3. If StartMode is set to 3 and the length of OnCam_ID is 270, the same operation is conducted as if StartMode is set to 1 and StartModeParam is set to 270. If the length of OnCam_ID is 180, the same operation is conducted as if StartMode is set to 1 and StartModeParam is set to 0.
- (7) When MasterOffset/SlaveOffset is set, if 1 is input in CamOnOff, operation starts at the OnOffCam start position set in StartMode and StartModeParam. The OnOffCam operation is conducted when reaching the OnOffCam start position. If MasterOffset/SlaveOffset is set, StartMode is set to 0 and the OnOffCam operation is conducted, impact can occur when starting operation.

- (8) The EndOfProfile signal outputs On when passing the end of a profile during operation of each OnCam/OffCam/RunCam cam profile.
- (9) If the CamOnOff signal is Off, the operation is performed to switch to RunCam->OffCam->Stop state. If the CamOnOff signal is switched from Off to On in the RunCam state, the RunCam state is maintained if OffCam is not yet executed. In a state where OffCam is executed, the state switches to the OnCam->RunCam state again after switching to the OffCam->Stop state. (When turning off CamOnOff in RunCam, the operation must be maintained until the EndOfProfile signal is generated.)

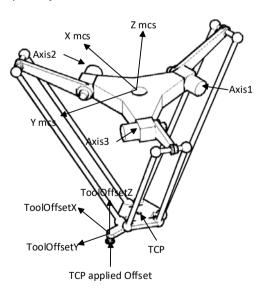
- (10) If the SkipOnCam signal is On, RunCam runs immediately without OnCam. If CamOnOff turns off after executing RunCam, the operation is performed to switch to RunCam->OffCam->Stop state. In an operation where the SkipOnCam signal is On, the operation is executed from the middle of RunCam.
- (11) If the SkipRunnCam signal is On, OffCam is executed without RunCam being executed after OnCam is executed. If CamOnOff is On at this time, the operation repeats in the order of OnCam->OffCam->Stop->OnCam->OffCam->Stop.
- (12) To stop the OnOffCam operation completely, you can use the halt (MC_Halt) or immediate stop (MC_Stop) motion function block.
- (13) The CamState value is output as Stop (0) / OnCam (1) / RunCam (2) / OffCam (3) depending on the state of the cam operation.
- (14) Once the cam operation set in RunCam ID is executed, InSync output turns On.
- (15) MasterValueSource selects the source of the main axis for synchronization. If set to 0, the serve axis performs cam operations based on the command position of the main axis calculated in the motion controller. If set to 1, the serve axis performs cam operations based on the current position received via communication from the servo drive of the main axis.
- (16) The cam profile to execute during operation of OnOffCam is set to RunCam_ID. Before executing RunCam in the Stop state, the cam profile to run is set to OnCam_ID. The cam profile to execute is set in OffCam_ID before RunCam reaches the Stop state. If the setting range for each ID is 1-32 and the input value passes over the range, the "0x1115" error occurs in the motion function block.
- (17) Any changes made to the MasterValueSource/OnCam_ID/RunCam_ID/OffCam_ID value during operation are not


Chapter5 Motin Functin Block

reflected.

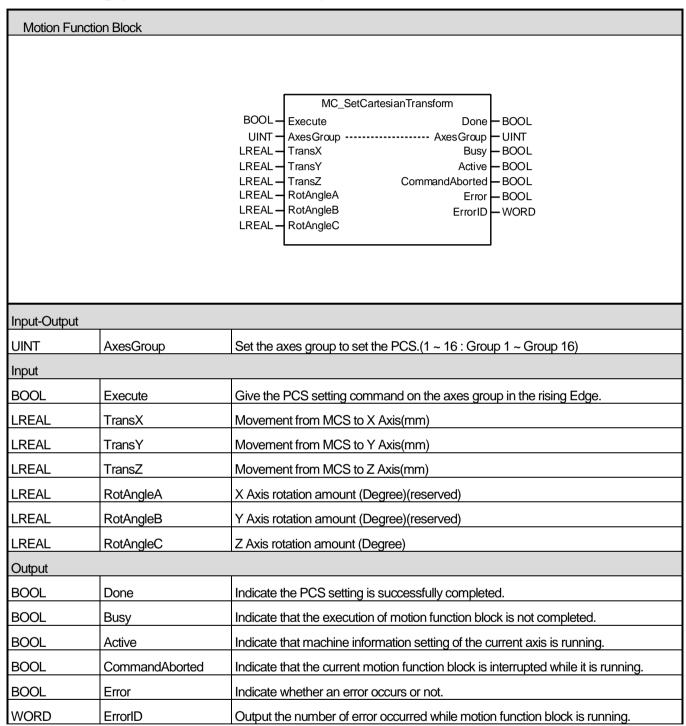
- (18) The value of the major axis can be changed during OnCam/RunCam/OffCam operation. (V1.5 and later)
- (19) The corresponding axis is in the "SynchronizedMotion" state when this motion function block is running.
- (20) For more information, see Chapter 8.6 RotaryKnife Operation under Chapter 8 Motion Control Function.

6.7 Coordinate System Operation Function Block


6.7.1 Machine information setting(MC_SetKinTransform)

- (1) This motion function block sets the ACS and MCS conversion based on the machine model defined in advance at AxesGroup.
- (2) The same setting can be applied to the XG5000 group parameter settings.

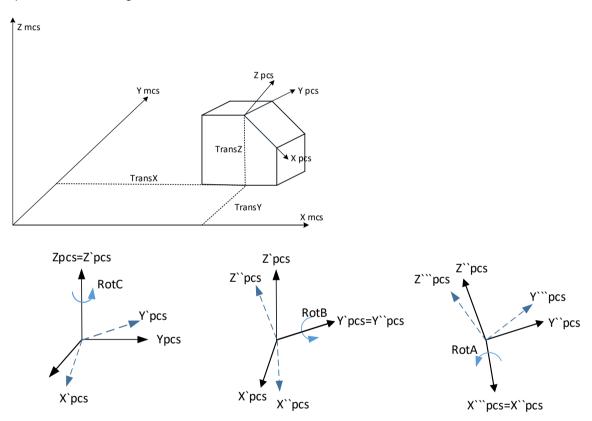
Group	Name	Axis group 1
	Coordinate system Type	0: None
	Coordinate system parameter1	0
Coordinate	Coordinate system parameter2	0
system	Coordinate system parameter3	0
configuration	Coordinate system parameter4	0
	Coordinate system parameter5	0
	Coordinate system parameter6	0
	X-axis offset	0 mm
Tool configuration	Y-axis offset	0 mm
	Z-axis offset	0 mm


- (3) The KinType input is used to set the type of the device. You can set the device as shown below.
 - 1) 0: None
 - 2) 1: XYZ
 - 3) 2: Delta3
 - 4) 3: Delta3R
 - 5) 4: LinearDelta3
 - 6) 5: LinearDelta3R
- (4) KinParam input is used to set the device information. (It is not set for XYZ type.)
- (5) ToolOffsetX / ToolOffsetY / ToolOffsedZ are the functions to set the offset at the end point of the device. In order to cope with the case where a separate device is connected to the end of the TCP of the robot, the tool offset function is provided separately from the device information.

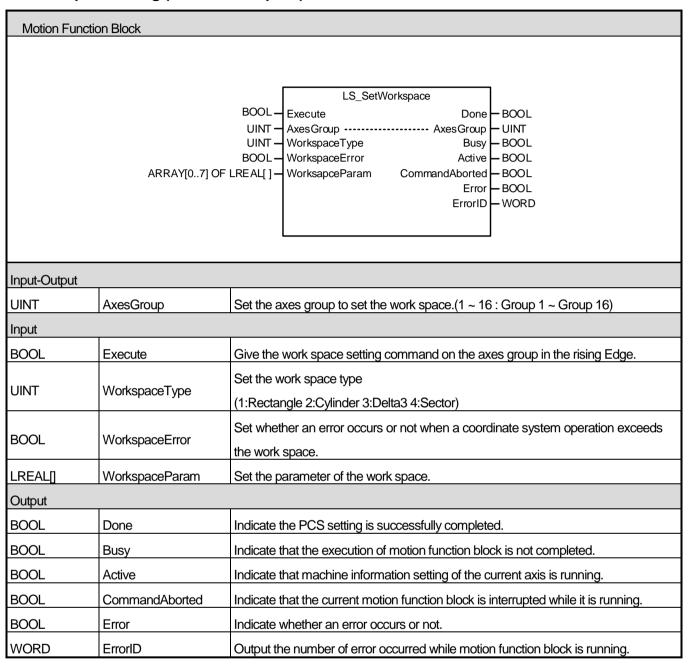
(6) When using Delta3, the device setting information is as follows. For more information, refer to 8.4.4 Machine information setting.

Rf	Parameter	Description
CTO	KinParam[0]	Lf: Link length of the fixed frame (mm)
	KinParam[1]	Lm: Link length of the moving frame (mm)
	KinParam[2]	Rf: Length from the center of the fixed frame to
		the link of the fixed frame (mm)
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	KinParam[3]	Rm: Length from the center of the moving frame
		to the link of the moving frame (mm)
Rm → ←		

6.7.2 PCS setting (MC_SetCartesianTransform)



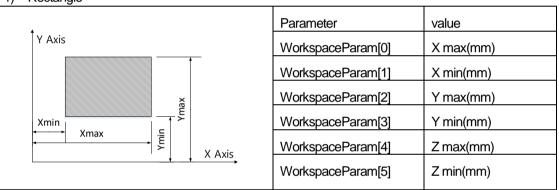
⁽¹⁾ This motion function block sets the perpendicular coordinate conversion between MCS and PCS at AxesGroup.


(2) Axis group setting can be performed in the same way at XG5000 axis group parameter setting.

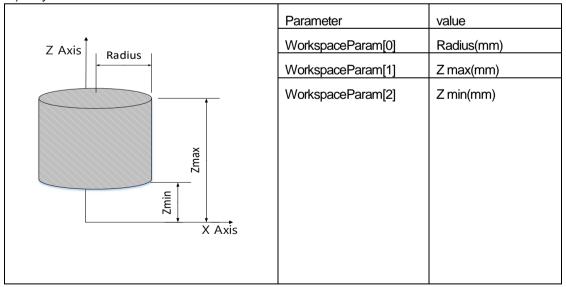
Group	Name	Axis group 1
	X-axis feed amount	0 mm
PCS Configuration	Y-axis feed amount	0 mm
	Z-axis feed amount	0 mm
	X-axis rotation	0 deg
	Y-axis rotation	0 deg
	Z-axis rotation	0 deg

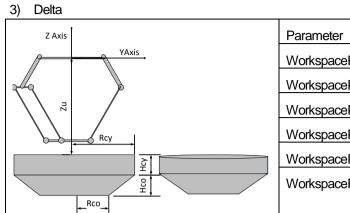
(3) TransX/TransY/TransZ is the move distance from MCS origin to PCS origin. RotA/RotB/RotC is the rotation value of PCS, RotA is the value that rotates PCS on the X-axis of PCS, RotB is the value that rotates PCS on the Y-axis of PCS, RotC is the value that rotates PCS on the Z-axis of PCS. The rotation of PCS must be done the order of RotC, RotB, RotA. Refer to chapter 8.4.3 PCS setting in motion controller's manual for more details.

6.7.3 Work space setting (LS_SetWorkspace)

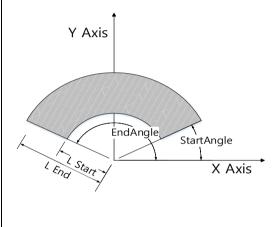

(1) This motion function block sets the work space based on the coordinate system at the axes group designated by AxesGroup input.

(2) The same setting can be performed in XG5000 group parameter setting.

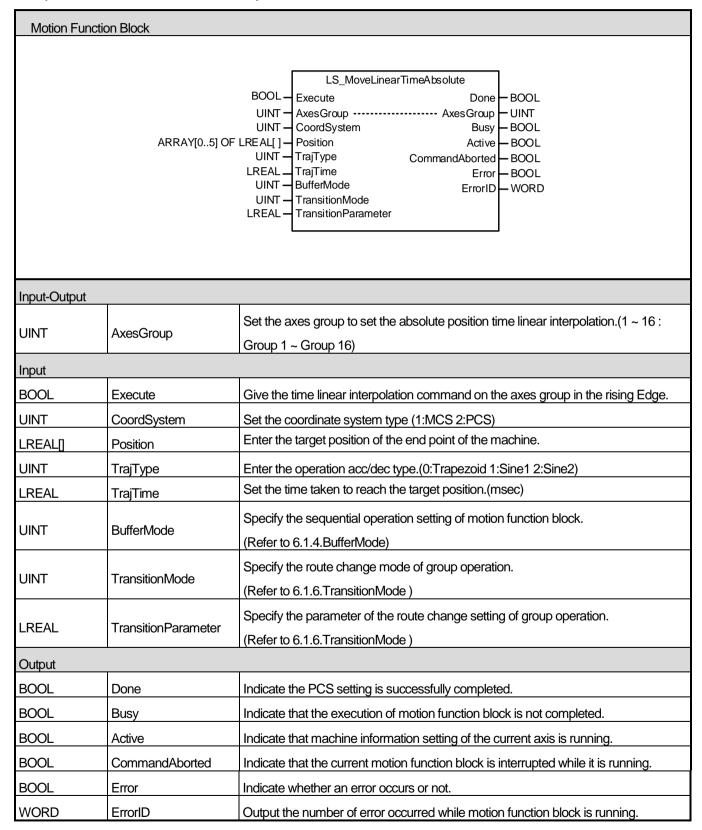

	Workspace type	0: Rectangle
	Workspace error check	0: Disable
	Workspace Parameter1	170 mm
	Workspace Parameter2	-170 mm
Workspace	Workspace Parameter3	170 mm
configuration	Workspace Parameter4	-170 mm
	Workspace Parameter5	-380 mm
	Workspace Parameter6	-580 mm
	Workspace Parameter7	0
	Workspace Parameter8	0


- (3) WorkspaceType can be selected from 4 types (1: Rectangle 2: Cylinder 3: Delta3 4: Sector).
- (4) WorkspaceError input determines whether an error occurs when a coordinate system operation exceeds the work space.
- (5) WorkspaceParam input sets the parameters depending on the work space type.
- (6) The parameter setting of work space is explained as follows. Refer to chapter 8.4.5 Workspace setting in motion controller's manual for more details.

Rectangle

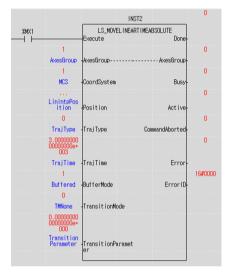

Cylinder

Parameter	value
WorkspaceParam[0]	Zu(mm)
WorkspaceParam[1]	Hcy(mm)
WorkspaceParam[2]	Hco(mm)
WorkspaceParam[3]	Rcy(mm)
WorkspaceParam[4]	Rco(mm)
WorkspaceParam[5]	-

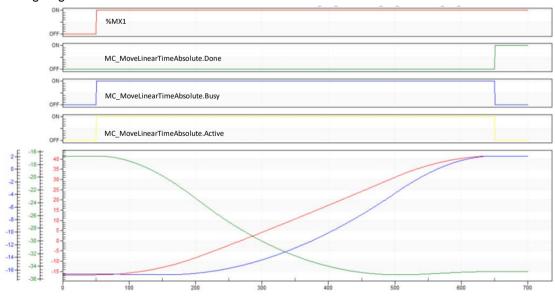

Sector

Parameter	value
WorkspaceParam[0]	L end (mm)
WorkspaceParam[1]	L start(mm)
WorkspaceParam[2]	Z max(mm)
WorkspaceParam[3]	Z min(mm)
WorkspaceParam[4]	EndAngle(degree)
WorkspaceParam[5]	StartAngle(degree)

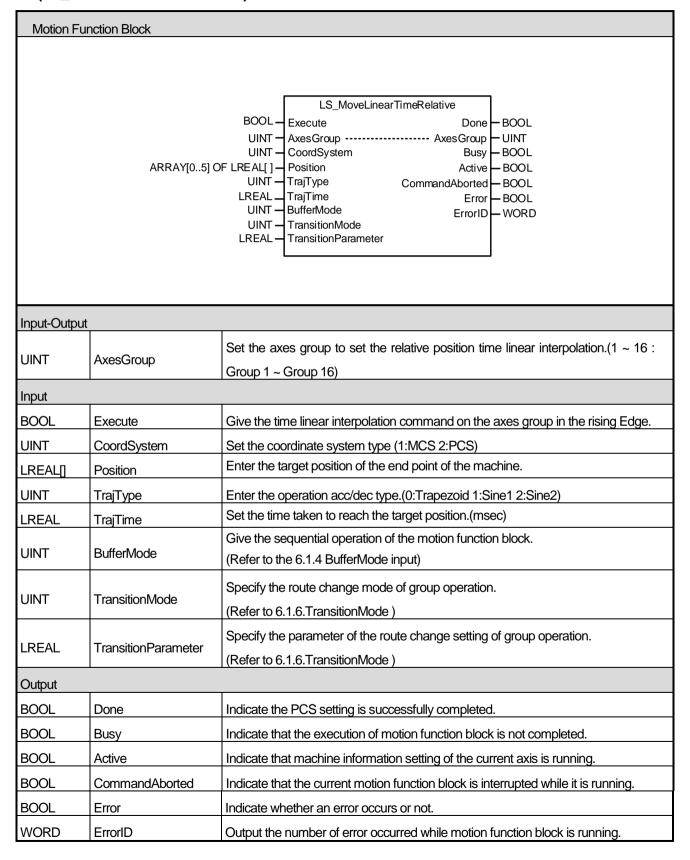
6.7.4 Time-linear interpolation operation for absolute position of coordinate system


(LS_MoveLinearTimeAbsolute)

- (1) This motion function block issues absolute position/time linear interpolation command based on coordinate system on the axes group designated by AxesGroup input
- (2) When this motion function block is executed, interpolation control is performed in a linear trajectory from the machine end point of each axes group to the target position.
- (3) TrajType input sets the type of velocity, acceleration, deceleration of interpolation trajectory. The type can be selected from three types: Trapezoid/Sine1/Sine2.
- (4) TrajTime sets the time taken to reach the target position.
- (5) Please refer to 8. 4. 6 Coordinate System Absolute Position/Time Linear Interpolation Control for further details.
- (6) Example program


This example shows the linear interpolation to the target position of MCS (100, 200,-380) when the current command position is 0,0,-380 of MCS coordinate system.

(a) Function block setting


1	_AX01_CPOS	±10	-1.3572036743164063e+0	01 LREAL		
2	_AX02_CPOS	±10	-1.6653305053710937e+0	D1 LREAL		
3	_AX03_CPOS	±10	-1.6653121948242188e+0	1 LREAL		
4	_AX04_CPOS	±10	0.00000000000000000e+0	00 LREAL		
5	⊟ LinIntpPosition			ARRAY[0	5] OF	
6	LinIntpPosition[0]	±10	1.00000000000000000e+0	02 LREAL		
7						
(LinIntpPosition[1]	±10	2.00000000000000000e+0	02 LREAL		
8	LinIntpPosition[1] LinIntpPosition[2]	_	2.000000000000000000e+0 -3.800000000000000000e+0		١.	Foundt moditio
1		_		02 LREAL	-	Farget positio
8	LinIntpPosition[2]	210	-3.80000000000000000e+0	02 LREAL 00 LREAL	-	Target positio

(b) Timing diagram

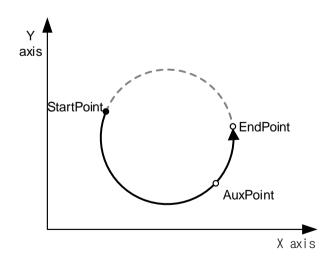
6.7.5 Time-linear interpolation operation for relative position of coordinate system

(LS_MoveLinearTimeRelative)

Chapter5 Motin Functin Block

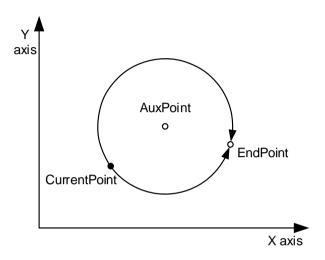
- (1) This motion function block issues relative position/time linear interpolation command based on coordinate system on the axes group designated by AxesGroup input
- (2) When this motion function block is executed, interpolation control is performed in a linear trajectory from the machine end point of each axes group to the target position.
- (3) TrajType inputs set the type of velocity, acceleration, deceleration of interpolation trajectory. The type can be selected from three types: Trapezoid/Sine1/Sine2.
- (4) TrajTime sets the time taken to reach the target position.
- (5) Please refer to 8. 4. 6 Coordinate System Relative Position/Time Linear Interpolation Control for further details.

6.7.6 Circular interpolation operation for absolute position of coordinate system

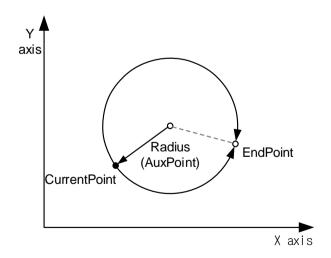

(MC_MoveCircularAbsolute2D)

Motion Fund	Motion Function Block				
	UII LREAL LREAL UII LRE. LRE. LRE. UII UII	MC_MoveCircularAbsolute2D Execute Done AxesGroup			
Input-Output	t				
UINT	AxesGroup	Set the axes group to set the absolute position circular interpolation.(1 \sim 16 : Group 1 \sim Group 16)			
Input					
BOOL	Execute	Give the circular interpolation command on the axes group in the rising Edge.			
UINT	CircMode	The way to set the circular interpolation [0: Middle point Aux point, 1: Center point, 2: Radius]			
LREAL[]	AuxPoint	The auxiliary point position for circular interpolation is designated as an absolute coordinate.			
LREAL[]	EndPoint	Set the circular end point as an absolute coordinate.			
BOOL	PathChoice	Set the circular path. 0: clockwise direction, 1: counter-clockwise direction			
LREAL	Velocity	Set the maximum velocity of the path [u/s]			
LREAL	Acceleration	Set the maximum acceleration. [u/s²]			
LREAL	Deceleration	Set the minimum deceleration. [u/s²]			
LREAL	Jerk	Set the maximum acc/dec jerk. [u/s³]			
UINT	CoordSystem	Set the coordinate system's type. (1:MCS 2:PCS)			
UINT	BufferMode	Specify the sequential operation setting of motion function block. (Refer to 6.1.4.BufferMode)			
UINT	TransitionMode	Unused			
LREAL	TransitionParameter	Unused			

Output		
BOOL	Done	Indicate whether to reach the specified point.
BOOL	Busy	Indicate that the execution of motion function block is not completed.
BOOL	Active	Indicate that whether or not motion function block is controlling the group.
BOOL	CommandAborted	Indicate that the current motion function block is interrupted while it is running.
BOOL	Error	Indicate whether an error occurs or not.
WORD	ErrorID	Output the number of error occurred while motion function block is running.


- (1) This motion function block issues absolute position circular interpolation command based on coordinate system on the axis group designated by AxesGroup input.
- (2) When this motion function block starts, each axis performs circular trajectory interpolation control referring to the auxiliary point input, and the movement direction is determined by Path Choice input. If PathChoice input is set to 0, circular interpolation is operated in a clockwise direction, and if it is set to 1, circular interpolation is operated in a counter-clockwise direction.
- (3) At AuxPoint and EndPoint input, designate the arrangement of the absolute position of auxiliary points to refer to for circular interpolation of each axis. The input corresponds in the order of X, Y, Z, unlike MC_MoveCircularAbsolute.
- (4) Velocity, Acceleration, Deceleration, Jerk input sets the velocity, acceleration, deceleration, and acceleration/deceleration rate change of the interpolation path, respectively.
- (5) CircMode input sets the circular interpolation method. The circular interpolation methods corresponding to CircMode values are as follows.
 - (a) Circular Interpolation Using Midpoint Specification (CircMode = 0)

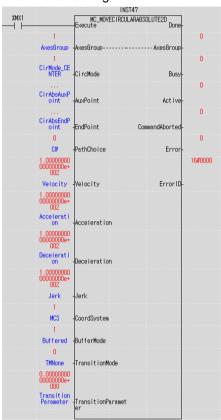
This method performs circular interpolation by starting operation at the start position, passing the designated midpoint, and reaching the target position. In the figure below, the start position corresponds to the axes group coordinate at the start of the command, the midpoint corresponds to the coordinate input for the AuxPoint, and the target position corresponds to the absolute coordinate input for the EndPoint.


(b) Circular Interpolation Using Center Point Specification (CircMode = 1)

This method performs circular interpolation to the target position by starting operation at the current position, and following a circular trajectory of which diameter corresponds to the distance to the designated center point. In the figure below, the current position corresponds to the axes group coordinate at the start of the command, the center point corresponds to the coordinate input for the AuxPoint, and the target position corresponds to the absolute coordinate input for the EndPoint.

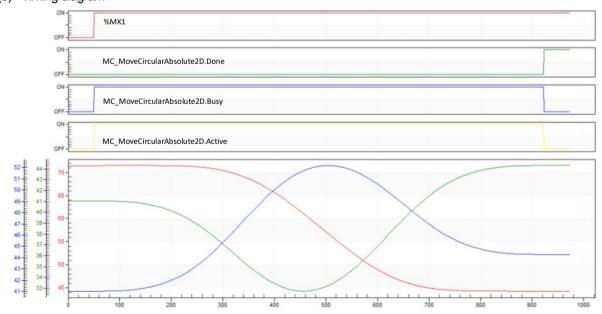
(c) Circular Interpolation using Radius Speciation (CircMode = 2)

This method performs circular interpolation to the target position by starting operation at the current position, and following a circular trajectory with a designated radius from the current position to the target position. In the figure below, the current position corresponds to the axes group coordinate at the start of the command, the radius corresponds to the X coordinate input for the AuxPoint, and the target position corresponds to the absolute coordinate input for the EndPoint.



- (6) Refer to chapter 8.4.7 circular interpolation control in motion controller's manual for more details.
- (7) The changed parameters are applied by re-executing the function block (Execute input is On) before the command is completed. Only, Velocity, Acceleration, Deceleration, Jerk, AuxPoint, Endpoint input can be updated.
- (8) Velocity input can be set to 0 or changed.

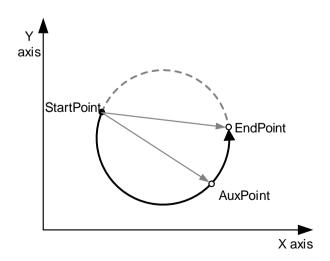
(9) Example program


This example is to set the center point at (0, 75, -580) when the current command position is MCS (0,150,-580), and perform circular interpolation to the target position MCS(0,0,-580) by moving in a clockwise direction.

(a) Function block setting

1	_AX01_CPOS	±10	7.1485269050584748e+001	LREAL	
2	_AX02_CP0S	±10	4.1026455810822632e+001	LREAL	
3	_AXO3_CPOS	±10	4.1026455810822632e+001	LREAL	
4	⊟ CirAbsAuxPoint			ARRAY[02] OF LREAL	
5	CirAbsAuxPoint[0]	±10	0.0000000000000000000e+000	LREAL	
6	CirAbsAuxPoint[1]	±10	7.50000000000000000e+001	LREAL	CenterPoint
7	CirAbsAuxPoint[2]	±10	-5.80000000000000000e+002	LREAL	Conten onit
8	⊟ CirAbsEndPoint			ARRAY[U2] OF LREAL	
9	CirAbsEndPoint[0]	±10	0.00000000000000000e+000	LREAL	
10	CirAbsEndPoint[1]	±10	0.0000000000000000e+000	LREAL	EndPoint
11	CirAbsEndPoint[2]	±10	-5.80000000000000000e+002	LREAL	

(b) Timing diagram

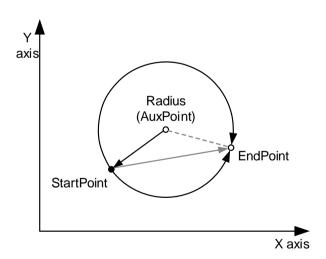

6.7.7 Circular interpolation operation for relative position of coordinate system

(MC_MoveCircularRelative2D)

Motion Function Block				
	UII LREAI LREAI UII LRE LRE LRE UII UII	MC_MoveCircularRelative2D DOL — Execute Done AxesGroup — BOOL — UINT — BOOL — WORD —		
Input-Output	t			
UINT	AxesGroup	Set the group to do relative position circular interpolation operation. (1 \sim 16: Group 1 \sim Group 16)		
Input	_			
BOOL	Execute	Give relative position circular interpolation operation command on the group in the rising Edge.		
UINT	CircMode	Circular interpolation method setting [0: Midpoint, 1: Central point, 2: Radius]		
LREAL[]	AuxPoint	Specify the position of auxiliary point depending on the circular interpolation method in a relative coordinate.		
LREAL[]	EndPoint	Specify the end point of the circular trajectory as a relative coordinate from the start point.		
BOOL	PathChoice	Set the circular path. 0: clockwise direction, 1: counter-clockwise direction		
LREAL	Velocity	Set the maximum velocity of the path. [u/s]		
LREAL	Acceleration	Set the maximum acceleration. [u/s²]		
LREAL	Deceleration	Set the minimum deceleration. [u/s²]		
LREAL	Jerk	Set the maximum acc/dec jerk. [u/s³]		
UINT	CoordSystem	Set the coordinate system's type. (1:MCS 2:PCS)		
UINT	BufferMode	Specify the sequential operation setting of motion function block. (Refer to 6.1.4.BufferMode)		

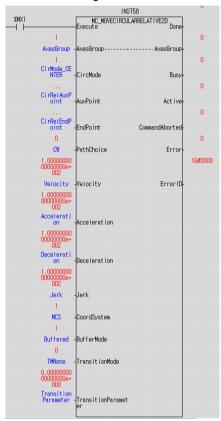

UINT	TransitionMode	Unused
LREAL	TransitionParameter	Unused
Output		
BOOL	Done	Indicate whether to reach the specified point.
BOOL	Busy	Indicate that the execution of motion function block is not completed.
BOOL	Active	Indicate that whether or not motion function block is controlling the group.
BOOL	CommandAborted	Indicate that the current motion function block is interrupted while it is running.
BOOL	Error	Indicate whether an error occurs or not.
WORD	ErrorID	Output the number of error occurred while motion function block is running.

- (1) This motion function block issues relative position circular interpolation command on the axes group designated by AxesGroup input.
- (2) When this motion function block is executed, each axis performs circular interpolation control referring to the auxiliary point input, and the direction is determined by Path Choice input. If PathChoiceinput is set to 0, circular interpolation is operated in a clockwise direction, and if it is set to 1, circular interpolation is operated in a counter-clockwise direction.
- (3) At AuxPoint and EndPoint input, designate the arrangement of the relative position of auxiliary points to refer to for circular interpolation of each axis. The input arrangement and the axes of the group correspond to the designated axis IDs [ID1, ID2, ID3, ...], in that order. (Since the number of axes comprising a group to issue circular interpolation command is 3, arrangements of three sizes should be input for the Position input.)
- (4) In Velocity, Acceleration, Deceleration, Jerk inputs, the acceleration, deceleration, change rate of acceleration, velocity of the interpolation path are specified, respectively.
- (5) CircMode input sets the circular interpolation method. The circular interpolation methods corresponding to CircMode values are as follows.
 - (a) Circular Interpolation Using Midpoint Specification (BORDER, CircMode = 0) This method is to perform the circular interpolation to the target position through the midpoint position after starting operation at the current position. In the figure below, the current position corresponds to the axes group coordinate at the start of the command, the midpoint corresponds to the coordinate input for the AuxPoint, and the target position corresponds to the relative coordinate input for the EndPoint.

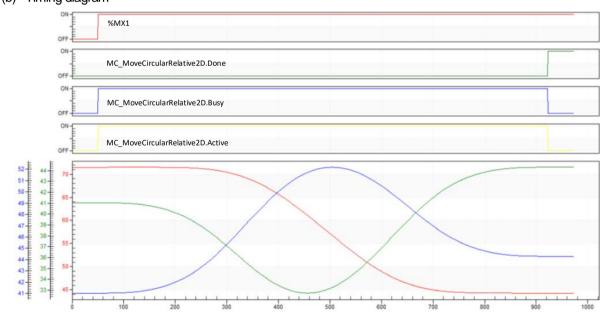

(b) Circular Interpolation Using Center Point Specification (CircMode = 1)

This method is to perform the circular interpolation to the target position by starting operation at the start position, and following a circular trajectory of which diameter corresponds to the distance to the designated center point. In the figure below, the current position corresponds to the axes group coordinate at the start of the command, the center point corresponds to the coordinate input for the AuxPoint, and the target position corresponds to the relative coordinate input for the EndPoint.

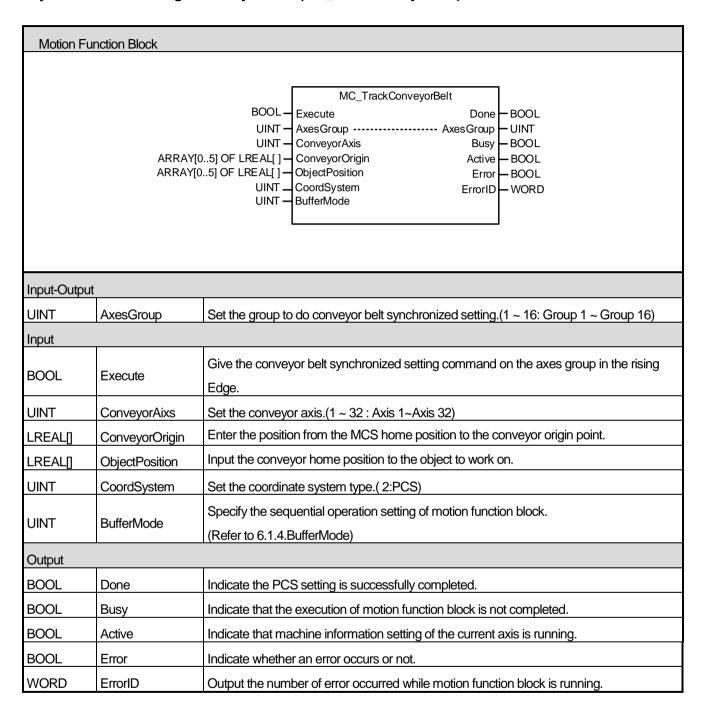
(c) Circular Interpolation using Radius Speciation (CircMode = 2)


This method is to perform the circular interpolation to the target position by starting operation at the current position, passing the designated center point, and reaching the target position. In the figure below, the current position corresponds to the axes group coordinate at the start of the command, the diameter corresponds to the X coordinate input for the AuxPoint, and the target position corresponds to the relative coordinate input for the EndPoint.

- (6) Refer to chapter 8.4.7 circular interpolation control in motion controller's manual for more details.
- (7) The changed parameters are applied by re-executing the function block (Execute input is On) before the command is completed. Only, Velocity, Acceleration, Deceleration, Jerk, AuxPoint, Endpoint input can be updated.
- (8) Velocity input can be set to 0 or changed.
- (9) Example program


This example is to set the center point specification when the current command position is 1000, 1000 (set the relative position from the center point to set from the current position), and move clock-wise to perform circular interpolation to the target position (set the relative position to the target position from the current position: 0, 0).

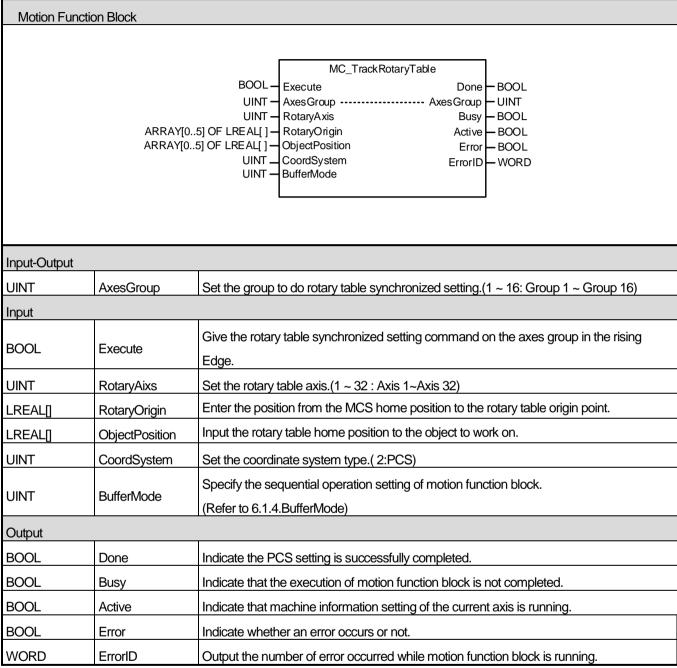
(a) Function block setting



1	_AX01_CPOS	±10	7.1485269050584748e+001	LREAL	
2	_AX02_CPOS	±10	4.1026455810822632e+001	LREAL	
3	_AXO3_CPOS	±10	4.1026455810822632e+001	LREAL	
4	☐ CirRelAuxPoint			ARRAY[02] OF LREAL	
5	CirRelAuxPoint[U]	±10	U.UUUUUUUUUUUUUUUUe+UUU	LREAL	
6	CirRelAuxPoint[1]	±10	-7.5000000000000000e+001	LREAL (enter point
7	CirRelAuxPoint[2]	<u>±10</u>	0.0000000000000000e+000	LREAL	, , , , , , , , , , , , , , , , , , ,
8	⊡ CirRe∣EndPoint			AKKAY[U2] OF LREAL	
9	CirRelEndPoint[0]	±10	0.00000000000000000e+000	LREAL	
10	CirRelEndPoint[1]	±10	-1.50000000000000000e+002	LREAL	End point
11	CirRelEndPoint[2]	±10	0.00000000000000000e+000	LREAL	

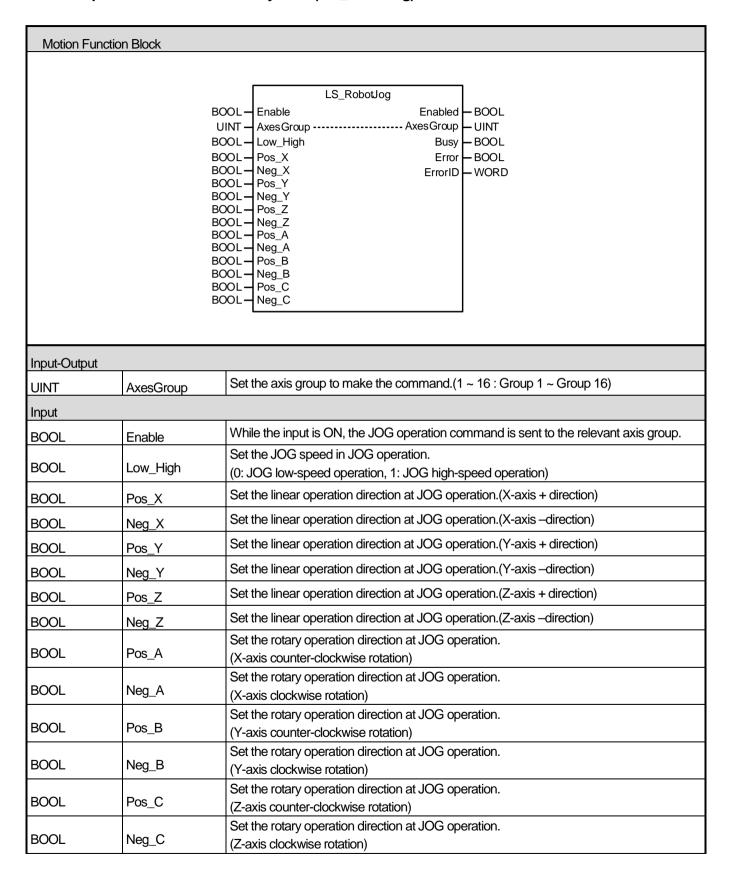
(b) Timing diagram

6.7.8 Synchronization setting of conveyor belt (MC_TrackConveyorBelt)



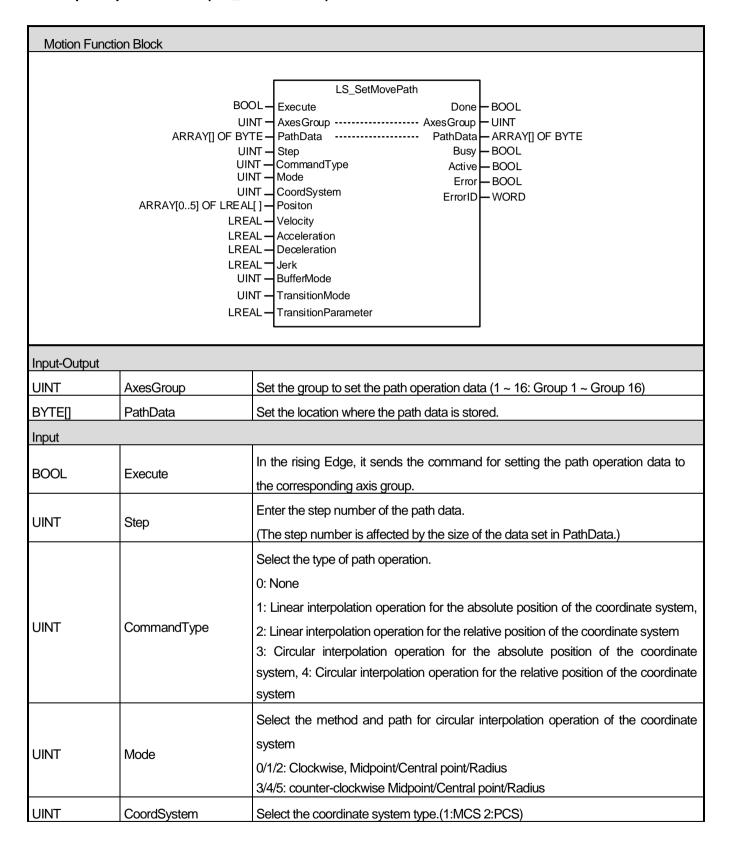
- (1) This motion function block sets conveyor belt synchronized operation for the axes group designated by AxesGroup input.
- (2) This motion function block is not directly involved in operation. When this function block is executed, the coordinate system operation using the PCS coordinate system is synchronized to the designated conveyor belt axis.

Chapter5 Motin Functin Block


- (3) ConveyorAxis can be set to between 1 and 32. An axis belonging to the axes group set as AxesGroup cannot be designated.
- (4) The operation parameter of the axis designated as ConveyorAxis must be in mm/inch.
- (5) Infinite running repeat must be set for the operation parameter of the axis designated as ConveyorAxis
- (6) Synchronized conveyor operation is terminated by performing coordinate system operation using the PCS coordinate system or performing PCS setting with MC SetCartesianTransform function block.
- (7) Refer to chapter 8.4.9 synchronized conveyor operation in motion controller's manual for more details

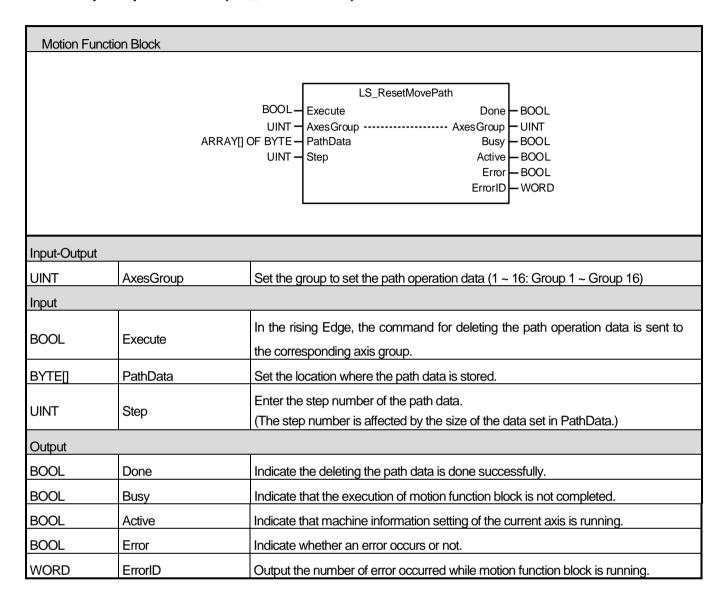
6.7.9 Synchronization setting of the rotary table (MC TrackRotaryTable)

- (1) This motion function block sets rotary table synchronized operation for the axes group designated by AxesGroup input.
- (2) This motion function block is not directly involved in operation. When this function block is executed, the coordinate system operation using the PCS coordinate system is synchronized to the designated rotary tablet axis.
- (3) RotaryAxis can be set to between axis 1 and axis 32 belonging to the axes group set as AxesGroup cannot be designated.
- (4) The operation parameter of the axis designated as RotaryAxis must be in mm/inch.
- (5) Infinite running repeat must be set for the operation parameter of the axis designated as RotaryAxis
- (6) Synchronized rotary table operation is terminated by performing coordinate system operation using the PCS coordinate system or performing PCS setting with MC_SetCartesianTransform function block.
- (7) Refer to chapter 8.4.9 synchronized rotary table operation in motion controller's manual for more details

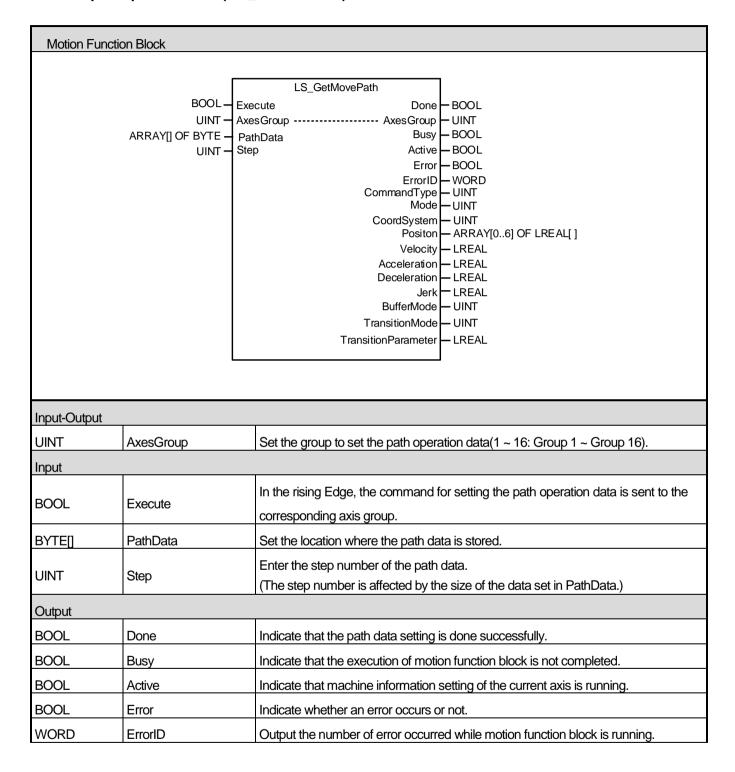

6.7.10 JOG operation of the coordinate system (MC_RobotJog)

Output			
BOOL	Enabled	It indicates that the axis group is in the process of JOG operation.	
BOOL	Busy	Indicate that the execution of motion function block is not completed.	
BOOL	Error	Indicate whether an error occurs or not.	
WORD	ErrorID	Output the number of error occurred while motion function block is running.	

- (1) This motion function block executes the JOG operation of the coordinate system for the corresponding axis group.
- (2) The JOG operation is a manual operation function for testing. It is used for checking system operations, wiring status, and position address for teaching. It can be respectively applied to both high speed and low speed.
- (3) If you change the value set in Low / High when the Enable input is On (JOG operation status), the speed will change without stopping JOG operation.
- (4) If both the forward (Pox_) / reverse (Neg_) inputs are set for the same axis, the axis will stop.

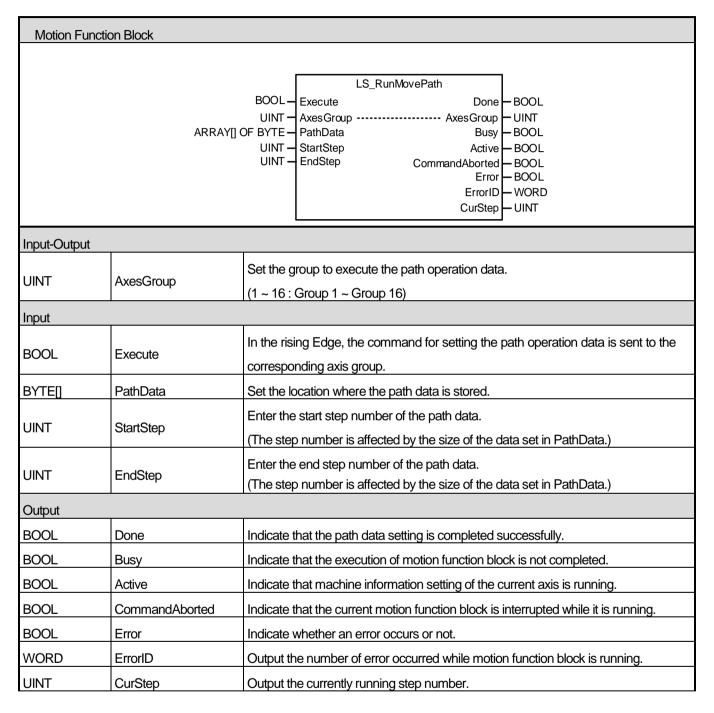

6.7.11 Set path operation data (MC SetMovePath)

LREAL[]	Position	Enter the target position of the end point of the machine. In the circular interpolation, the Central point/Waypoint should be set in Position [3] Position [4] Position [5]. In the circular interpolation, the Radius should be in Position [3].	
LREAL	Velocity	Specify the maximum speed of the path. [u/s]	
LREAL	Acceleration	Specify the acceleration. [u/s²]	
LREAL	Deceleration	Specify the deceleration. [u/s²]	
LREAL	Jerk	Specify the change rate of acceleration/deceleration. [u/s³]	
UINT	Direction	Specify the operation direction. (0~4: 0-Not specified, 1-Forward direction, 2-Shortest distance, 3-Reverse direction, 4-Current direction)	
UINT	BufferMode	Specify the sequential operation setting of motion function block. (Refer to 6.1.4.BufferMode)	
UINIT	TransitionMode	Unused	
UREAL	TransitionParameter	Unused	
Output			
BOOL	Done	Indicate that the path data setting is done successfully.	
BOOL	Busy	Indicate that the execution of motion function block is not completed.	
BOOL	Active	Indicate that machine information setting of the current axis is running.	
BOOL	Error	Indicate whether an error occurs or not.	
WORD	ErrorID	Output the number of error occurred while motion function block is running.	


- (1) This motion function block is the function block that sets the path data for the axis group specified in the AxesGroup input.
- (2) The step value can be set from 0, and the size of one step is 96 Bytes.
- (3) The path data is saved in the area of data set in PathData. The variable set in PathData should be set to 96 times or more of the number of the steps to use.
- (4) The CommandType value selects the operation method for the path operation. If the CommandType value is set to 0, it is considered that the data for the corresponding step is not set during path operation.
- (5) The Mode value sets the direction of the circular interpolation when performing the circular interpolation operation.
- (6) The value of BufferMode should be set to 1(Buffered).
- (7) For more details, refer to Section 8.4.10, "Path Operation of the Coordinate System".

6.7.12 Delete path operation data (MC_RestMovePath)

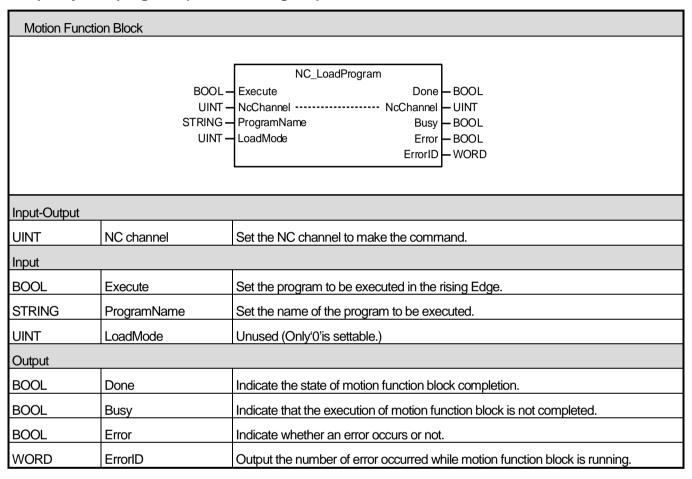
- (1) This motion function block is the function block to delete the path data of the axis group specified in the AxesGroup input.
- (2) The step value can be set from 0, and the size of one step is 96 Bytes.
- (3) The path data is saved in the area of data set in PathData. The variable set in PathData should be set to 96 times or more of the number of the steps to use.
- (4) For more details, refer to Section 8.4.10, "Path Operation of the Coordinate System".


6.7.13 Read path operation data (MC_GetMovePath)

	CommandType	Output the type of path operation.
		0: None
		1: Linear interpolation operation for the absolute position of the coordinate system,
UINT		2: Linear interpolation operation for the relative position of the coordinate system
		3: Circular interpolation operation for the absolute position of the coordinate
		system, 4: Circular interpolation operation for the relative position of the coordinate
		system
UINT	Mode	Output the operation mode.
UINT	CoordSystem	Output the coordinate system type.(1:MCS 2:PCS)
LREAL[]	Position	Output the target position.
LREAL	Velocity	Output the maximum speed of the path. [u/s]
LREAL	Acceleration	Output the maximum acceleration [u/s²]
LREAL	Deceleration	Output the maximum deceleration [u/s²]
LREAL	Jerk	Output the change rate of acceleration/deceleration. [u/s³]
	BufferMode	Specify the sequential operation setting of motion function block.
UINT		(Refer to 6.1.4.BufferMode)
UINT	TransitionMode	Unused
LREAL	TransitionParameter	Unused

- (1) This motion function block is the function block to read the path data to the axis group specified in AxesGroup input.
- (2) The step value can be set from 0, and the size of one step is 96 Bytes.
- (3) The path data is saved in the area of data set in PathData. The variable set in PathData should be set to 96 times or more of the number of the steps to use.
- (4) For more details, refer to Section 8.4.10, "Path Operation of the Coordinate System ".

6.7.14 Perform path operation (MC RunMovePath)

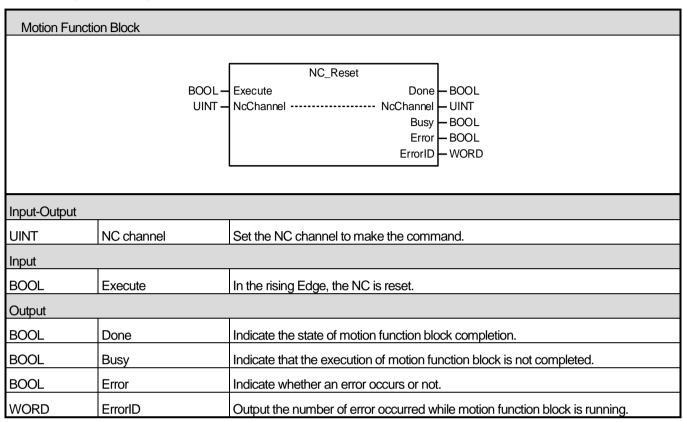

- (1) This motion function block is the function block to execute the path operation for the axis group specified in the AxesGroup
- (2) The step value can be set from 0, and the size of one step is 96 Bytes.
- (3) The path data is saved in the area of data set in PathData. The variable set in PathData should be set to 96 times or more of the number of the steps to use.
- (4) The difference between StartStep and EndStep cannot be set to 100 or more. (Up to 100 step operations can be executed at one time.)

Chapter5 Motin Functin Block

- (5) If the CommandType of path data is 0 during the path operation, the operation is terminated even if EndStep is not reached.
- (6) If the path operation is executed, the current step number in operation is output to the CurStep.
- (7) For more details, refer to Section 8.4.10, "Path Operation of the Coordinate System".

6.8 NC Control Function Block

6.8.1 Specify NC program (NC_LoadProgram)

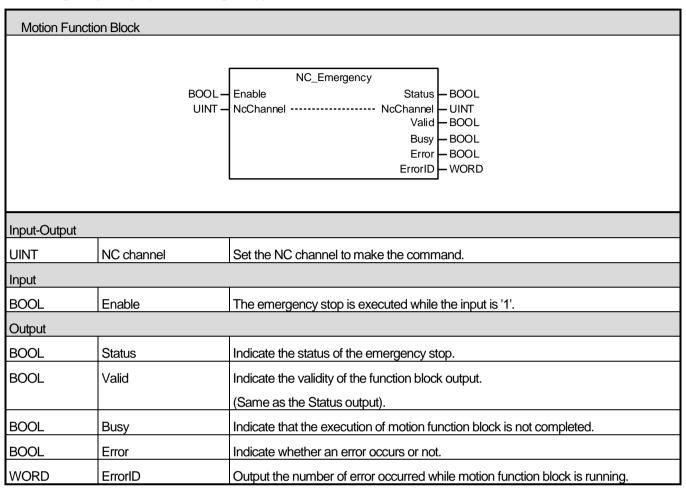

- (1) This motion function block is the function block to specify the NC program to be executed when NC control is performed.
- (2) When the program to be operated by the channel set in NC channel is set to ProgramName and the function block is executed, the program is designated as the one to be executed.

6.8.2 Specify block operation (NC_BlockControl)

Motion Function Block				
	UINT BOOL	NC_BlockControl Enable Enabled — BOOL NcChannel NcChannel — UINT SingleBlock Busy — BOOL OptionalStop Error — BOOL ErrorID — WORD		
Input-Output	Input-Output			
UINT	NC channel	Set the NC channel to make the command.		
Input				
BOOL	Enable	While the input is enabled, the corresponding channel becomes the status of Single Block or Optional Stop.		
BOOL	SingleBlock	Set the Single Block operation signal.		
BOOL	OptionalStop	Set the Optional Stop operation signal.		
Output				
BOOL	Done	Indicate the state of Block Control completion.		
BOOL	Busy	Indicate that the execution of motion function block is not completed.		
BOOL	Error	Indicate whether an error occurs or not.		
WORD	ErrorID	Output the number of error occurred while motion function block is running.		

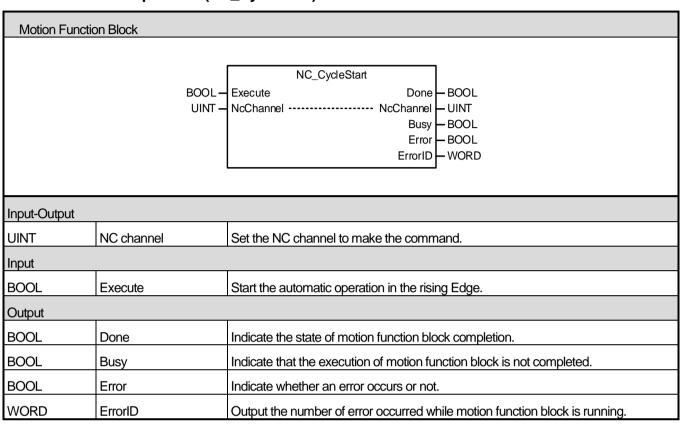
- (1) This motion function block determines the method to execute the program under the NC control.
- (2) If SingleBlock is set to '1', NC_CycleStart executes one block at a time and stops after execution. If SingleBlock becomes '1' during the automatic operation and NC_BlockControl function block is executed, it will be stopped after terminating the currently executing block.
- (3) If OptionalStop is set to '1', and M01 is commanded during the program, it will wait until NC_CycleStart function block is executed again.
- (4) When both SingleBlock and OptionalStop are set to '1', SingleBlock setting is applied.

6.8.3 Reset (NC_Reset)

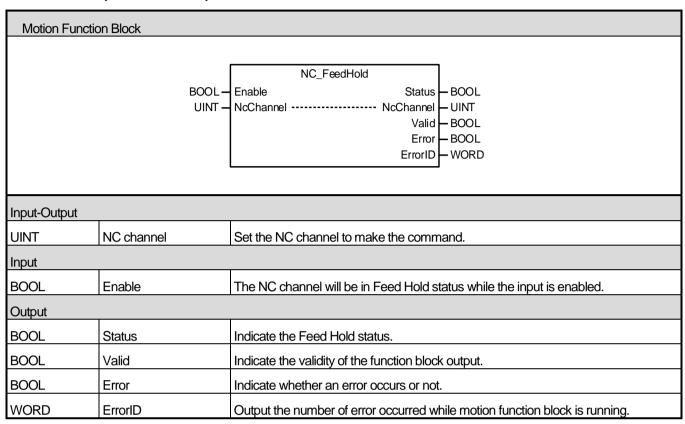


- (1) This motion function block is to make the NC reset state under the NC control.
- (2) If NC_Reset is executed during the automatic operation, it stops the automatic operation and changes into the reset state.
- (3) The Reset state is as follows.

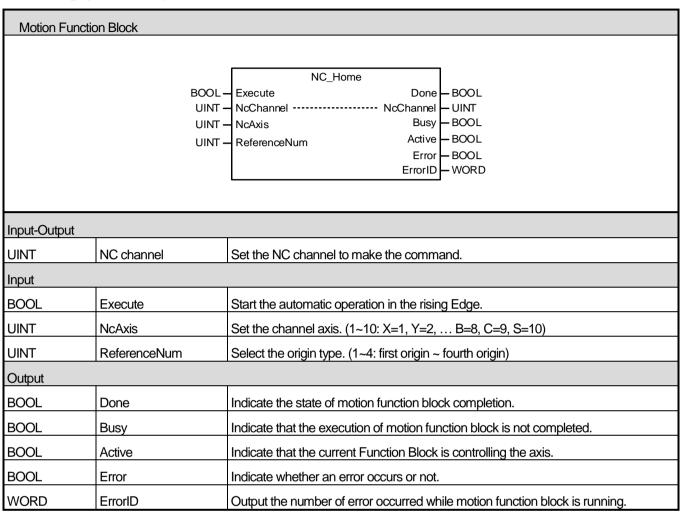
	Status	
Setting Data	Offset Value	Hold
	Parameter	Hold
Various Data	Program in Memory	Hold
	Contents in the buffer storage	MDI: Hold
		Other cancel
	Display of Sequence Number	Hold
	One shot G code	Cancel
	Modal G code	Hold
	F	Hold
	S, T, M	Hold
	K (Number of repeats)	Cancel
Work coordinate value		Hold


	Status	
Action in operation	Movement	Cancel
	Dwell	Cancel
	Issuance of M, S, T code	Cancel
	Tool Length compensation	MDI: Hold
		Other cancel
	Cutter compensation	MDI: Hold
		Other cancel
	Storing called subprogram number	MDI: Hold
		Other cancel
Output Signal	CNC Alarm signal AL	Extinguish if there is no cause
		for the alarm
	Reference position return completion	Hold
	LED	Cancel(Emergency Stop)
	S, T, B Code	Hold
	M Code	Cancel
	M, S, T strobe signal	Cancel
	Spindle revolution signal(S analog signal)	Hold
	CNC ready signal MA	Hold
	Servo ready signal SA	ON
	Cycle Start LED	Cancel
	Feed hold LED	Cancel

6.8.4 Emergency stop (NC_Emergency)


- (1) This motion function block is to execute the emergency stop on the corresponding NC channel under the NC control.
- (2) If the emergency stop is executed, the current operation must be stopped immediately.

6.8.5 Start automatic operation (NC_CycleStart)


- (1) This motion function block is to execute the automatic operation on the corresponding NC channel under the NC control.
- (2) The program set in NC LoadProgram is automatically operated.
- (3) When the automatic operation is stopped due to M00, M01(Optional Stop) and single block, the automatic operation is restarted.

6.8.6 Feed hold (NC_FeedHold)

- (1) This motion function block is to make the Feed Hold command to the corresponding NC channel under the NC control.
- (2) If the NC_FeedHold is executed during the automatic operation, the automatic operation is stopped.
- (3) If the NC_CycleStart is performed during the execution of the NC_FeedHold command, the NC_CycleStart command is ignored.

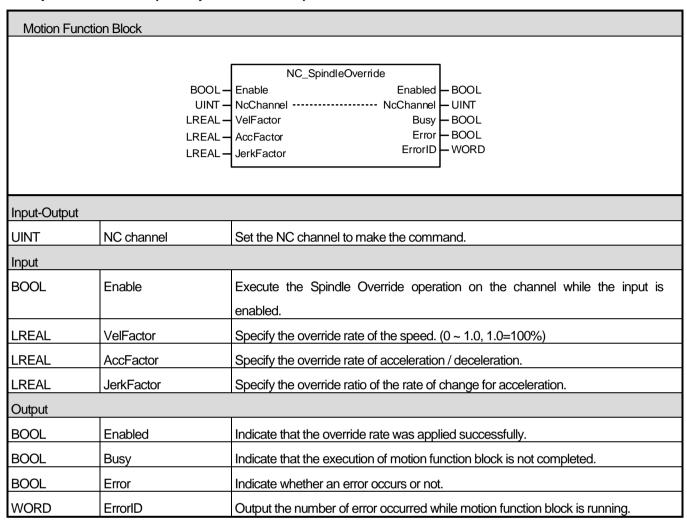
6.8.7 Homing (NC_Home)

- (1) This motion function block performs homing to the corresponding NC channel under the NC control.
- (2) Homing to the 1st origin, 2nd origin, 3rd origin, and 4th origin is executed according to the values set in ReferenceNum. The origin coordinates can be set for each axis parameters of NC parameters in XG5000.

Group	Name	X Axis
Axis Settings	Command direction for the Modular Axis	0: Bidirectional
Home Settings	Position of 2nd home	0 mm
	Position of 3rd home	0 mm
	Position of 4rd home	0 mm

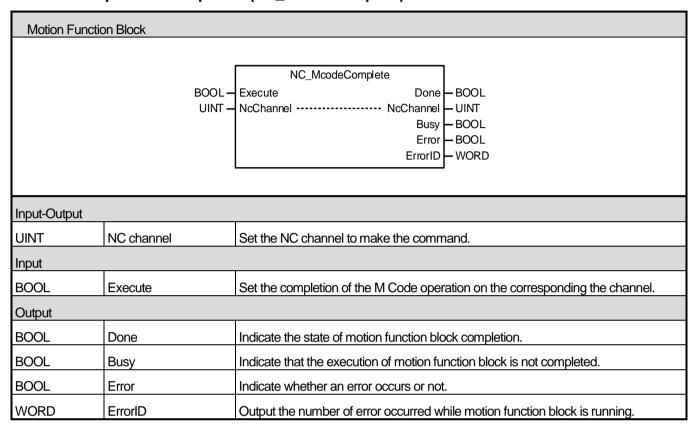
6.8.8 Rapid traverse override (NC_RapidTraverseOverride)

Motion Funct	ion Block	
		NC_RapidTraverseOverride
		Enable Enabled BOOL
		NcChannel — UINT
		VelFactor Busy – BOOL AccEactor BOOL
		- ID WOOD
	LREAL -	JerkFactor ErrorID WORD
Input-Output		
UINT	NC channel	Set the NC channel to make the command.
Input		
BOOL	Enable	Execute the Rapid Traverse Override operation on the channel while the input is
		enabled.
LREAL	VelFactor	Specify the override rate of the speed. (0 ~ 1.0, 1.0=100%)
LREAL	AccFactor	Specify the override rate of acceleration / deceleration.
LREAL	JerkFactor	Specify the override ratio of the rate of change for acceleration.
Output		
BOOL	Enabled	Indicate that the override rate was applied successfully.
BOOL	Busy	Indicate that the execution of motion function block is not completed.
BOOL	Error	Indicate whether an error occurs or not.
WORD	ErrorID	Output the number of error occurred while motion function block is running.

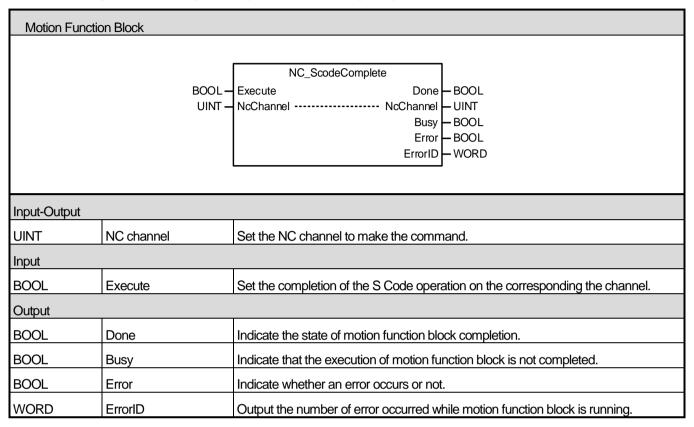

- (1) This motion function block makes the Rapid Traverse Override command for the corresponding NC channel under the NC
- (2) Specify the speed override ratio for the VelFactor input. If the specified value is 0.0, the axis stops.
- (3) The default value of each factor is 1.0, which means 100% of the command speed of the currently executing function block.
- (4) Specify the acceleration / deceleration for the AccFactor input and the override rate of the jerk (rate of change of acceleration) for the JerkFactor input, respectively.
- (5) Negative numbers cannot be entered into each factor.

6.8.9 Cutting feed override (NC_CuttingFeedOverride)

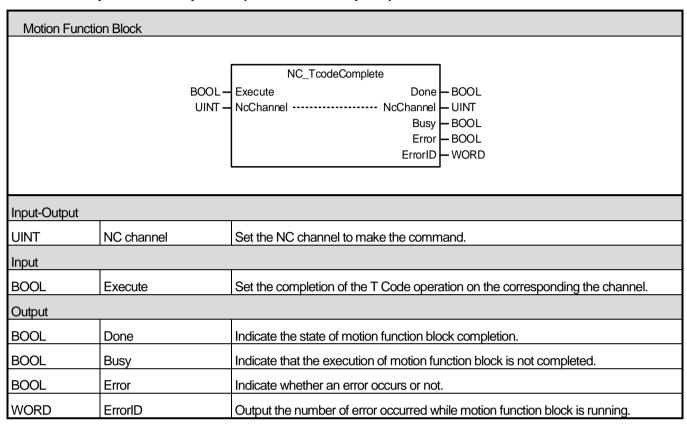
Motion Fu	nction Block	
	BOO UIN LREA LREA	NC_CuttingFeedOverride L - Enable
Input-Output	<u> </u>	
UINT	NC channel	Set the NC channel to make the command.
Input		
BOOL	Enable	Execute the Cutting Feed Override operation on the channel while the input is enabled.
LREAL	VelFactor	Specify the override rate of the speed. (0 ~ 1.0, 1.0=100%)
LREAL	AccFactor	Specify the override rate of acceleration / deceleration.
LREAL	JerkFactor	Specify the override ratio of the rate of change for acceleration.
Output		
BOOL	Enabled	Indicate that the override rate was applied successfully.
BOOL	Busy	Indicate that the execution of motion function block is not completed.
BOOL	Error	Indicate whether an error occurs or not.
WORD	ErrorlD	Output the number of error occurred while motion function block is running.


- (1) This motion function block makes the Cutting Feed Override command for the corresponding NC channel under the NC
- (2) Specify the speed override ratio for the VelFactor input. If the specified value is 0.0, the axis stops.
- (3) The default value of each factor is 1.0, which means 100% of the command speed of the currently executing function block.
- (4) Specify the acceleration / deceleration for the AccFactor input and the override rate of the jerk (rate of change of acceleration) for the JerkFactor input, respectively.
- (5) Negative numbers cannot be entered into each factor.

6.8.10 Spindle override (NC_SpindleOverride)


- (1) This motion function block makes the Spindle Override command for the corresponding NC channel under the NC control.
- (2) Specify the speed override ratio for the VelFactor input. If the specified value is 0.0, the axis stops.
- (3) The default value of each factor is 1.0, which means 100% of the command speed of the currently executing function block.
- (4) Specify the acceleration / deceleration for the AccFactor input and the override rate of the jerk (rate of change of acceleration) for the JerkFactor input, respectively.
- (5) Negative numbers cannot be entered into each factor.

6.8.11 M Code operation completed (NC_McodeComplete)


- (1) This motion function block makes the completion command of the M Code operation for the corresponding NC channel under the NC control.
- (2) It is the command to check the M code on the corresponding channel and set that the M code operation is completed.

6.8.12 S Code operation completed (NC_ScodeComplete)


- (1) This motion function block makes the completion command of the S Code operation for the corresponding NC channel under the NC control.
- (2) It is the command to check the S code on the corresponding channel and set that the S code operation is completed.

6.8.13 T Code operation completed (NC_TcodeComplete)

- (1) This motion function block makes the completion command of the T Code operation for the corresponding NC channel under the NC control.
- (2) It is the command to check the T code on the corresponding channel and set that the T code operation is completed.

6.8.14 Read NC parameters (NC_ReadParameter)

- (1) This motion function block is to read and output the parameters of the channel and channel / axis of the corresponding channel.
- (2) While the Enable input is active, the values of the relevant parameters are output continuously.
- (3) ParameterGroup input specifies the parameter group number to read.
- (4) ParameterNumber input specifies the number in the group of the parameters to be read.

(5) The group number and the number in the group of each parameter are as follows.

Parameters	Group	No.	Item	Description
1. Channel	1. Basic	1	Target machining quantity	Set the target machining quantity.
parameters	setting			(0 ~ 2,147,483,647)
		2	Target machining quantity	Set the target machining quantity for repeated
			at M99 repeated	machining with M99. If the set value matches the
			machining	current machining quantity, the cycle automatically
				stops.
				(0 ~ 2,147,483,647)
		3	Check of decimal point	Set whether to check decimal point of the NC
				program.
				0: Decimal point check
				(Mm if there is a decimal point, um if there is no
				decimal point)
				1: No decimal point check (mm)
		4	Keep workpiece	Set whether to keep the workpiece coordinate
			coordinate system	system when resetting.
				0: Keep
				1: Do not keep
		5	Whether to call the macro	Set whether to call the macro program (9000.nc ~
			when the T code is	9009.nc) when the T code is commanded.
			commanded	0: Do not call
				1: Call
		6	Dwell Method	Set the dwell function (G04) to use the data
				corresponding to X, P as time or the number of
				revolutions of the spindle.
				If the data is set to the number of revolutions of the
				spindle, it is applied in the status of feed per
				revolution (G95).
				0: Time
			Calanta non mana blank at	1: Number of revolutions
		7	Select a progress block at	Set whether to initialize to the start block of the
			reset	program at reset.
				If you want to set to 0 (keep the current block), the
				parameters of "Keep workpiece coordinate system"
				should be set to 0 (keep). 0: Keep the current block
				·
				1: Initialize to the start block of the main program
				2: Initialize to the current block of the main program

Parameters	Group	No.	Item	Description
1. Channel	1. Basic	8	Whether or not to search	The number of buffers that can store the program's
parameters	setting		the Statement Number	Statement Number (N) is limited to 1,000 in the
				system.
				This buffer is needed if the program changes the
				sequence using a GOTO statement.
				If more than 1,000 blocks have the N_ command,
				an alarm will occur.
				This parameter is used to input whether or not to
				execute such Statement Number search.
				Because high- capacity CAM programs do not have
				GOTO using the Statement Number and in the
				majority of cases, there are more than 1,000
				Statement Numbers, you should set this parameter
				as 1.
				0: Search
				1: Do not search
		12	Minimum command unit	When decimal point check is applied, set the
				minimum unit of the commanded value.
			14/1 / 0001	(0 ~ 0.999mm)
		18	Whether to use G22 No	0: 'No Travelling Area' is valid.
			Travelling Area	1: 'No Travelling Area' is invalid.
		19	Set the inner/outer side of	0: Inner side
			G22 No Travelling Area	1: Outer side
		20	Whether to use the 3rd 'No	0: 'No Travelling Area' is valid.
			Travelling Area	1: 'No Travelling Area' is invalid.
		22	Rotary axis of Cylindrical	In the cylindrical interpolation mode, the axis maps
			interpolation	the axis of rotation during the circular
				interpolation. The axes are X, Y, Z and perform the
				circular interpolation by mapping the axis of rotation to the selected axis.
				For example, if the axis of rotation is mapped to the X
				axis under the state of the XY plane (G17), the width
				becomes the axis of rotation and the height becomes
				Y axis. When ZX (G18) is selected as the plane, the
				width becomes the Z axis and the height becomes
				the axis of rotation. However, if you set the plane to
				YZ (G19), you cannot perform the circular
				interpolation on the commanded axis of rotation.
				0: X-axis,
				1: Y-axis,
				2: Z-axis
		23	Linear axis for interpolating	0: Unused
			the polar coordinate	1: X, 2: Y, 3: Z, 4: A, 5: B, 6: C, 7: U, 8: V, 9: W
		24	Rotary axis for	0: Unused
		-	interpolating the polar	1: X, 2: Y, 3: Z, 4: A, 5: B, 6: C, 7: U, 8: V, 9: W
			coordinate	,,,,,,,
			ooordii idio	

Group	No.	ltem	Description
1. Basic	33	Monitoring time for in-	0 ~ 65,535ms
setting		position completion	
	34	The spindle operation of	0: Automatic operation continues
	01	the spindle axis. How to	1: Operation continues after completing commands
		treat M/S-codeNote1)	
2. Circular	1	Regenerate the circular	Set whether to recreate the central point of the arc
milling setting		center when the circular	without generating an arc alarm when the distance
		alarm occurs	between the start point and the end point exceeds
			the tolerance of the difference between the two radii
			under the I, J, K circular commands.
			0: An alarm occurs.
			1: The central point of the arc is regenerated.
	2	Speed-limiting function for	0: Unused
			1: Used
	3	Tolerance of arc radius	Set the tolerance of the difference between the two
			radii at the start point and the end point under the
			circular arc command. If this value is large, the
			accuracy of the end part of the arc may be degraded.
			When set to 0, it is recognized as 0.001.
			(0~ 1 unit, real number)
	5		(0 ~ 10,000 unit, real number)
		<u> </u>	
	6		The maximum speed is limited to the set value for
		of the circular milling	the circular arc below "Circular radius with the speed-
			limiting function for the circular milling ".
	7	Lauren er itting op oed lineit	(0 ~ 10,000 unit/min, real number)
	1		If "Speed-limiting function for the circular milling ON/OFF" is set to ON, the cutting speed is limited to
		of the circular milling	the set value or more.
			(0 ~ 10,000 unit/min, real number)
	0	Circular milling	Set the acceleration at the circular milling.
	3	_	Set the acceleration at the circular milling.
	10		Set the deceleration at the circular milling.
	10	_	Cot a lo deceleration at a lo enedial mining.
	11		Set the jerk at the circular milling.
3. Cutting		• • • • • • • • • • • • • • • • • • • •	If the cutting speed exceeding the set value is
•	•		commanded, the cutting speed is limited to the set
			value and an alarm occurs.
			(0 ~ 100,000 unit/min, real number)
	2	Set the lower speed limit of	It is applied only when the cutting speed is not
	-	•	commanded in the feed mode per minute.
		J 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(0 ~ 100,000 unit/min, real number)
	4	Acceleration / deceleration	1: Acceleration / deceleration before interpolation
		operation	
	setting 2. Circular	setting 34 2. Circular milling setting 2 3 5 6 7 9 10 11 3. Cutting feed setting 2	setting position completion The spindle operation of the spindle axis. How to treat M/S-codeNote1) 2. Circular milling setting 2 Speed-limiting function for the circular milling oN/OFF 3 Tolerance of arc radius 5 Circular radius with the speed-limiting function for the arc machining 6 Upper cutting speed limit of the circular milling 7 Lower cutting speed limit of the circular milling 9 Circular milling 2 Circular milling 3 Circular milling 3 Circular milling 4 Circular milling 5 Circular milling 7 Lower cutting speed limit of the circular milling 9 Circular milling 10 Circular milling deceleration 11 Circular milling jerk 3 Set the upper speed limit of the cutting feed 4 Acceleration / deceleration method of the interpolation

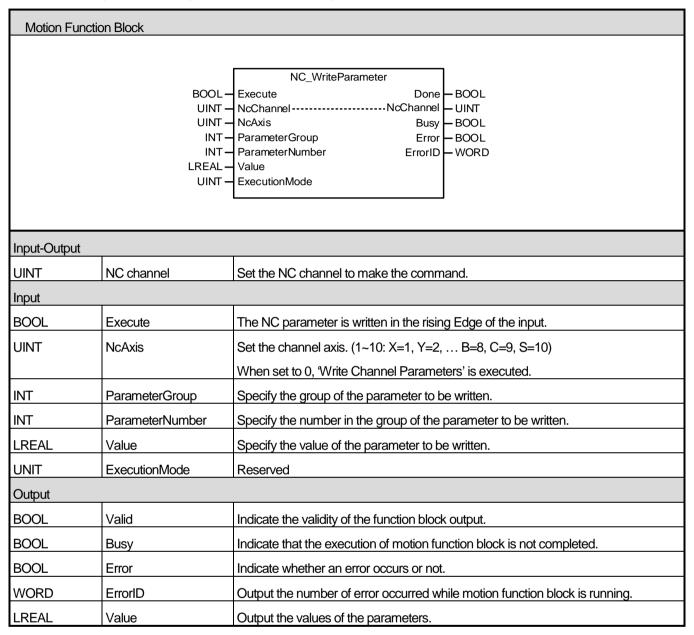
Parameters	Group	No.	ltem	Description
1. Channel	3. Cutting	7	Operating method of the	When executing the consecutive blocks, it creates
parameters	feed setting		continuous blocks for	the connecting trajectory that draws an arc on the
			acceleration / deceleration	corner of the connecting trajectory with the speed set
			before interpolation	with the next block. 1: When it is set to Buffered, the
				circular arc is not inserted.
				1: Buffered
				2: Blending Low
				3: Blending Previous
				4: Blending Next
				5: Blending High
		9	Acceleration at the time of	Acceleration at the time of cutting feed
			cutting feed (before	
			interpolation)	
		10	Deceleration at the time of	Deceleration at the time of cutting feed
			cutting feed (before	
			interpolation)	
		11	Jerk at the time of cutting	Jerk at the time of cutting feed
			feed (before interpolation)	
	8.Tool	129	How to apply the	Set the method of applying the compensation
	diameter		compensation value of the	amount of the tool diameter when compensating the
	compensation		tool diameter	tool diameter.
				0: Apply the diameter value
				1: Apply the radius value
		130	Compensation type of the	Tool diameter Sets the type of traversing method at
			tool diameter	the beginning and end of the calibration.
				•
				7명을 지장을 기장을 Type 1 Type 2
				0: Type 1(Bypass traverse)
				1: Type 2(Direct traverse)
		131	Whether to check the tool	Set whether to check the tool interference during tool
			interference during tool	diameter compensation
			diameter compensation	0: Do not check
				1: Check
		1	Compensation amount of	Compensation amount 1 to be used to compensate
			the tool diameter 1	the tool diameter
		128	Compensation amount of	Compensation amount 128 to be used to
			the tool diameter 128	compensate the tool diameter

Parameters	Group	No.	Item	Description
1. Channel	9. Tool length	1	Compensation amount 1	Compensation amount 1 to be used to compensate
parameters	compensation		of the tool length	the tool length
		128	Compensation amount	Compensation amount 128 to be used to
			128 of the tool length	compensate the tool length
	10.	1	Whether to use the	Set whether to use the workpiece coordinate system
	Workpiece		workpiece coordinate	shift amount.
	coordinate		system shift amount.	0: Unused
	system			1: Used
		11	workpiece coordinate	Set the workpiece coordinate system shift amount for
			system Shift amount 1	the X axis.
				Set the workpiece coordinate system shift amount for
				the 7 axes; Y, Z, A, B, C, U, V.
		19	workpiece coordinate	Set the workpiece coordinate system shift amount for
			system shift amount 9	the W axis.
		41	G54 workpiece coordinate	Set the workpiece coordinate system value for the X
			system value 1	axis.
				Set the G54 workpiece coordinate system values for
				the 7 axes; Y, Z, A, B, C, U, V.
		49	G54 workpiece coordinate	Set the G54 workpiece coordinate system value for
			system value 9	the W axis.
		51	G55 workpiece coordinate	Set the G55 workpiece coordinate system value for
			system value 1	the X axis.
				Set the G55 workpiece coordinate system values for
				the 7 axes; Y, Z, A, B, C, U, V.
		59	G55 workpiece coordinate	Set the G55 workpiece coordinate system values for
			system value 9	the W axis.
		61	G56 workpiece coordinate	Sets the G56 workpiece coordinate system values
			system value 1	for the X axis.
				Set the G56 workpiece coordinate system values for
				the 7 axes; Y, Z, A, B, C, U, V
		69	G56 workpiece coordinate	Set the G56 workpiece coordinate system values for
			system value 9	the W axis.
		71	G57 workpiece coordinate	Set the G57 workpiece coordinate system values for
			system value 1	the X axis.
				Sets the G57 workpiece coordinate system values
		70	057 1	for the 7 axes; Y, Z, A, B, C, U, V
		79	G57 workpiece coordinate	Set the G57 workpiece coordinate system values for
		0.1	system value 9	the W axis.
		81	G58 workpiece coordinate	Set the G58 workpiece coordinate system values for
			system value 1	the X axis.
				Set the G58 workpiece coordinate system values for
		00	OFO worksings as a sufficient	the 7 axes; Y, Z, A, B, C, U, V
		89	G58 workpiece coordinate	Set the G58 workpiece coordinate system values for
			system value 9	the W axis.

Parameters	Group	No.	Item	Description
1. Channel	10.	91	G59 workpiece coordinate	Set the G59 workpiece coordinate system values for
parameters	Workpiece		system value 1	the X axis.
	coordinate			Set the G59 workpiece coordinate system values for
	system			the 7 axes; Y, Z, A, B, C, U, V
		99	G59 workpiece coordinate	Set the G59 workpiece coordinate system values for
			system value 9	the W axis.
	11. Macro	1	Whether to apply the	Set whether to apply the single block stop function to
	program		single block stop function	the macro program(9000.nc ~ 9999.nc)
			to the macro program	0: Stop
				1: Do not stop
		2	Display the macro	Set whether to display the progress status of the
			program block	block on the screen when operating the macro
				program (9000.nc ~ 9999.nc).
				0: Do not display
		9	T code call Macro program	Enter the number of the macro program (9000.nc ~
			number	9009.nc) to be called when the T code is
				commanded.
				(9000 ~ 9009, integer)
		10	Macro program call G	Set the G code number to call the macro program
			code (9010.nc)	(9010.nc ~ 9019.nc) that can be called by the G
				code.
				※ The setting values 0, 1, 2, 3 are ignored.
				(0~255.9, real number)
		19	Macro program call G	Set the G code number to call the macro program
			code (9019.nc)	(9010.nc ~ 9019.nc) that can be called by the G
				code.
				The setting values 0, 1, 2, 3 are ignored.
				(0~255.9, real number)
		20	Macro program call M	Assign the M code number to call the macro
			code (9020.nc)	program (9020.nc ~ (9020.nc ~ 9029.nc) with the M
				code.
				0, 30 of the input values are ignored.
				(0~255, integer)
		29	Macro program call M	Assign the M code number to call the macro
			code (9029.nc)	program (9020.nc ~ (9020.nc ~ 9029.nc) with the M
				code.
				0, 30 of the input values are ignored.
		<u> </u>		(0~255, integer)

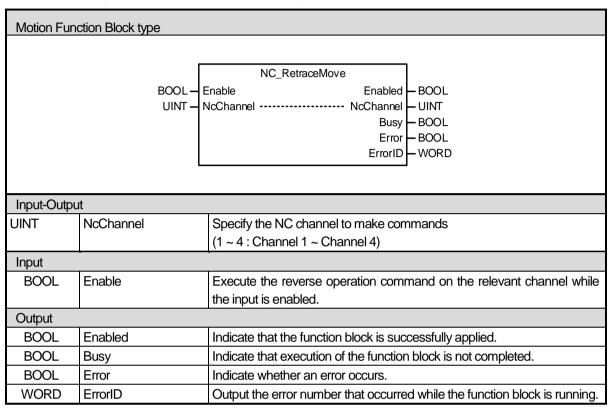
Parameters	Group	No.	Item	Description
1. Channel	14. Default	1	Modal traverse of default	If there is no G00 or G01, select the G code to be
parameters	setting		settings	applied as the default modal.
	_			0: Rapid Traverse(G00)
				1: cutting feed(G01)
		2	Modal plane of default	If there is no G code instruction for G17, G18, G19
			settings	group, select the G code to be applied as the default
				modal.
				0: XY plane(G17)
				1: XZ plane(G18)
				2: YZ plane(G19)
		3	Modal absolute /	If there is no G code instruction for G90, G91 group,
			increment with default	select the G code to be applied as the default modal.
			settings	0: Absolute command (G90)
				1: Incremental command (G91)
		5	Check the modal	If there is no G code instruction for G22, G23 group,
			prohibited area with default	select the G code to be applied as the default modal.
			settings	0: Stroke On(G22)
				1: Stroke Off(G23)
	15. Spindle	4	A reference axis when	Set the reference axis that operates in connection
	Setting	-	controlling constant	with a spindle when controlling constant surface
	Jetting .		surface speedNote1)	speed.
			Surface Specurioter)	0: Disable
				1: X, 2: Y, 3: Z, 4: A, 5: B, 6: C, 7: U, 8: V, 9: W
		5	The maximum number of	Set the maximum number of spindle rotation when
		3		controlling constant surface speed. When being
			spindle rotation when controlling constant	commanded by the S code of G92 (set the
			surface speedNote1)	maximum speed of the main axis), the S code data is
			Surface Specurioler)	saved as this parameter value.
				(0 ~ 100,000, real number)
		6	The minimum number of	Set the minimum number of spindle rotation when
			spindle rotation when	controlling constant surface speed.
			controlling constant	(0 ~ 100,000, real number)
			surface speedNote1)	(0 ~ 100,000, real fluiriber)
	16. Relative	1	Relative coordinate's offset	Set the relative coordinate's offset value for the X
	coordinate	'	value #1	
				axis.
	setting	2	Relative coordinate's offset	Set the relative coordinate's offset value for the Y
		2	value #2	axis.
		3	Relative coordinate's offset	Set the relative coordinate's offset value for the Z
		1	value #3 Relative coordinate's offset	axis. Set the relative coordinate's offset value for the A
		4		
			value #4	axis.
		5	Relative coordinate's offset	Set the relative coordinate's offset value for the B
			value #5	axis.
		6	Relative coordinate's offset	Set the relative coordinate's offset value for the C
		<u> </u>	value #6	axis.
		7	Relative coordinate's offset	Set the relative coordinate's offset value for the U
			value #7	axis.
		8	Relative coordinate's offset	Set the relative coordinate's offset value for the V
			value #8	axis.

Parameters	Group	No.	Item	Description
	_	9	Relative coordinate's offset	Set the relative coordinate's offset value for the W
			value #9	axis.
2. Channel	1. Axis setting	2	Setting the direction for the	Set the traverse command for the axis set as the
/Axis			modular axis	modular axis.
parameters				0: Unidirectional
				1: Bidirectional
	2. Origin	1	Coordinates of the 2 nd	Set the coordinates of the 2 nd origin.
			origin	
		2	Coordinates of the 3 rd	Set the coordinates of the 3 rd origin.
			origin	
		3	Coordinates of the 4 th	Set the coordinates of the 4 th origin.
			origin	T
	3. Rapid	2	Rapid traverse	The set value is used as the acceleration of the G00
	traverse		acceleration	block.
		3	Rapid traverse	The set value is used as the deceleration of the G00
			deceleration	block.
		4	Rapid traverse jerk	The set value is used as the jerk of the G00 block.
		5	Rapid traverse speed	The set value is used as the traverse speed of the
				G00 block.
	4 Troysons	4	Minima was value of the COO	(0~100000 unit/min, real number)
	4. Traverse	1	Minimum value of the G22	Set the minimum value of the G22 Traverse-
	area		Traverse-Prohibited Area range for the X, Y, and Z	Prohibited Area range for the X, Y, and Z axis. (-100,000~100,000 unit, real number)
			axis.	(-100,000~100,000 driit, fear fidiriber)
		2	Maximum value of the	Set the maximum value of the G22 Traverse-
		_	G22 Traverse-Prohibited	Prohibited Area range for the X, Y, and Z axis.
			Area range for the X, Y,	(-100,000~100,000 unit, real number)
			and Z axis.	(100,000 100,000 dring 10d Harrison)
		3	Minimum value of the 3rd	Set the minimum value of the 3rd Traverse-Prohibited
			Traverse-Prohibited Area	Area range for the X, Y, and Z axis.
			range for the X, Y, and Z	(-100,000~100,000 unit, real number)
			axis.	
		4	Maximum value of the 3 rd	Set the maximum value of the 3 rd Traverse-
			Traverse-Prohibited Area	Prohibited Area range for the X, Y, and Z axis.
			range for the X, Y, and Z	(-100,000~100,000 unit, real number)
			axis.	
	5. Sub setting	2	Overrun feed rare of single	Set the overrun feed rate of the 9 axes; X, Y, Z, A, B,
			direction positioning	C, U, V, W when using the single direction
				positioning function (G60).
				1
				the command position to eliminate the effect of backlash.
				O
				+0
				•
				-0
				After stopping at the position separated by the set value for the G60 command block's axis, it moves the command position to eliminate the effect of

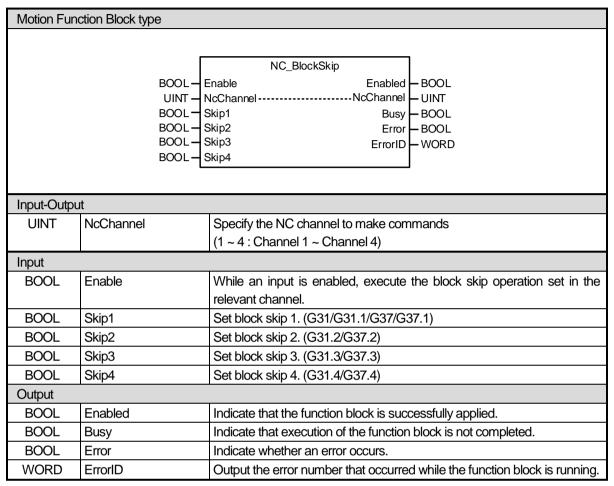

Chapter5 Motin Functin Block

Parameters	Group	No.	Item	Description
				(-100 ~ 100 unit, real number)

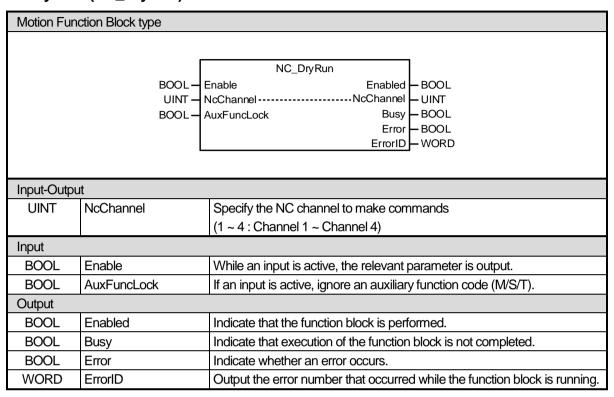
Note


Note 1) Available to use it on O/S V1.30 or greater of a single motion controller

6.8.15 Write NC parameters (NC_WriteParameter)


- (1) This motion function block is the function block that writes the values specified in the parameters of the NC channel and channels/axes.
- (2) The parameters will be written in the rising edge of the Execute input.
- (3) ParameterGroup input specifies the group number of the parameter to be written.
- (4) ParameterNumber input specifies the number in the group of the parameter to be written. If the value that cannot be set is applied, "Error 16 # 000B" occurs.
- (5) In the Value input, specify the value to be written in the parameter.
- (6) For the group number and the number in the group of each parameter, refer to 6.7.14 Reading NC parameters.

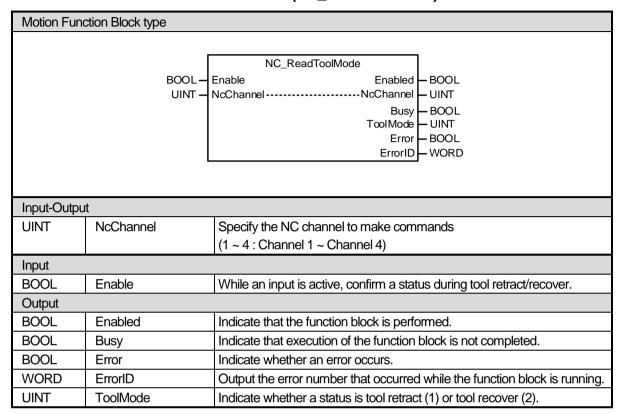
6.8.16 Reverse Operation (NC_RetraceMove)


- (1) This motion function block is the function block that makes the reverse operation command on the relevant NC channel.
- (2) While the Enable input is active, execute operation in the reverse direction.
- (3) The reverse operation is possible only for G00, G01, G02 and G03 blocks.

6.8.17 Block skip (NC_BlockSkip)

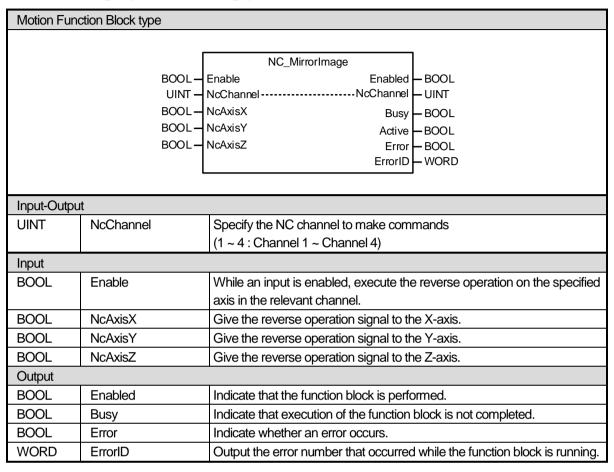
- (1) This motion function block is the function block that the relevant NC channel gives commands such as block skip or automatic measurement of tool length.
- (2) While the Enable input is active, skip blocks such as Skip1 (G31/G31.1), Skip2 (G31.2), Skip3 (G31.3) and Skip4 (G31.4).
- (3) When the Enable input is active, if there are commands such as G31/G31.1 (Skip1), G31.2 (Skip2), G31.3 (Skip3) and G31.4 (Skip4), skip the block that is currently performed and then, the next block is performed. If there are M/S/T codes, the relevant code is performed and then, the next block is performed.
- (4) When the Enable input is active, if there are commands such as G37/G37.1 (Skip1), G37.2 (Skip2), G37.3 (Skip3) and G37.4 (Skip4), perform the automatic measurement of tool length command in the block that is currently performed.
- (5) If the function block is executed, the skipped position can be known as the current position of machine is saved in flags for each NC channel/axis.

6.8.18 Dry Run (NC_DryRun)


- (1) This motion function block is the function block that conducts a dry run on the relevant NC channel.
- (2) While the Enable input is active, conduct a dry run.
- (3) When conducting a dry run, conduct 0: Dry running speed operation and 1: High transfer speed operation according to the set parameter in G00.
- (4) If the AuxFuncLock input is active, strobe signals of auxiliary function codes (M/S/T) excluding M00, M01, M02, M30, M98 and M99 are not output.

6.8.19 Tool Retract/Recover Operation (NC_ToolMode)

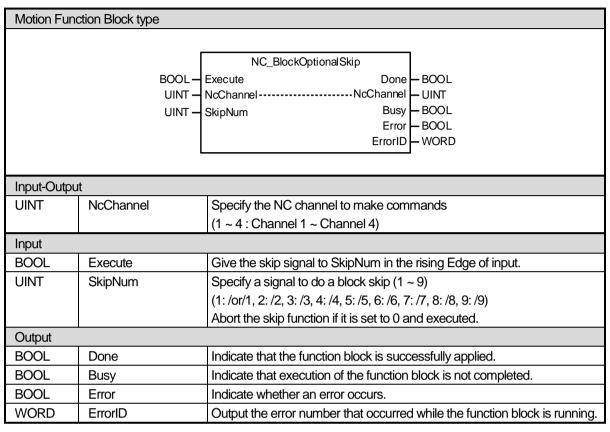
Motion Function Block type		
	UINT	NC_ToolMode Execute Done NcChannel
Input-Output		
UINT	NcChannel	Specify the NC channel to make commands
		(1 ~ 4 : Channel 1 ~ Channel 4)
Input		
BOOL	Execute	Give the tool retract or recover operation command to the rising Edge of
		input.
UINT	ToolMode	Give the tool retract (1) or recover (2) operation command.
Output		
BOOL	Done	Indicate that the function block is successfully applied.
BOOL	Busy	Indicate that execution of the function block is not completed.
BOOL	Error	Indicate whether an error occurs.
WORD	ErrorID	Output the error number that occurred while the function block is running.


- (1) This motion function block is the function block that the relevant NC channel gives commands, such as tool retract or recover operation commands, to the relevant channel.
- (2) Give the tool retract or recover operation command to ToolMode in the rising Edge of the Execute input.
- (3) When conducting the tool retract operation, the retract operation should be conducted by the JOG operation. While the retract operation is conducted by the JOG operation, a position at the time that an operation axis changes is remembered up to 10 times.
- (4) When conducting the tool retract operation, the JOG operation must be written not to select more than 2 axes simultaneously.
- (5) When conducting the tool recover operation, the tool should be recovered at the remembered position.

6.8.20 Read Tool Retract/Recover Modes (NC ReadToolMode)

- (1) This motion function block is the function block that the relevant NC channel gives the command to confirm whether a status is tool retract or tool recover to the relevant channel.
- (2) While the Enable input is active, the ToolMode output helps you to understand whether a status is tool retract (1) or tool recover (2).
- (3) When the status is tool retract, more than 2 axes should not be operated.

6.8.21 Mirror Image (NC_MirrorImage)


- (1) This motion function block is the function block that conducts the operation to reverse the transfer position on NC axes (X, Y and Z) in the relevant channel.
- (2) While the Enable input is active, conduct an operation by reversing the transfer position on the set axis.
- (3) Conduct the reverse operation only for G00, G01, G02, G03, G31.x and G37.x among G codes.

6.8.22 Spindle Operation Control (NC_SpindleControl)

Motion Function Block type			
		NC_SpindleControl	
	BOOL - Enable Enabled - BOOL		
	UINT - NcChannel NcChannel - UINT		
	BOOL — TgtVelReached Busy — BOOL		
	BOOL ZeroVelReached Error BOOL BOOL SS_Control ErrorID WORD		
	BOOL-	33_CONIO	- WORD
Input-Outpu	t		
UINT	NcChannel	Specify the NC channel to make comr	nands
		(1 ~ 4 : Channel 1 ~ Channel 4)	
Input			
BOOL	Enable	While an input is enabled, conduct the	ne specified operation on the main
		spindle in the relevant channel.	
		Conduct an operation.	
BOOL	TgtVelReached	Convey whether the main spindle rea	aches the target speed to the NC
		function module.	
		0: The target speed is not reached	
		1: The target speed is reached	
BOOL	ZeroVelReached	Convey whether the main spindle re	eaches the zero speed to the NC
		function module.	
		0: The zero speed is not reached	
		1: The zero speed is reached	
BOOL	SS_Control	Start the SS control mode of the main	spindle. (support later)
		0: Start SS controls	
		1: End SS controls	
Output			
BOOL	Enabled	Indicate that the function block is perfo	rmed.
BOOL	Busy	Indicate that execution of the function I	olock is not completed.
BOOL	Error	Indicate whether an error occurs.	
WORD	ErrorID	Output the error number that occurred	while the function block is running.

- (1) This motion function block performs the user's specified operations for the main spindle on the NC channel specified by the function block if the spindle control is conducted on NC.
- (2) When the spindle axis of the channel is not enabled to be automatically operated on the NC function module, the error '0x36D0' occurs.
- (3) When the axis specified as the main spindle of the channel is not ready for operation, the error '0x36D1' occurs.
- (4) For more information about automatic operation on the NC function module, see '9.5.1 How to Operate Spindle Axes'.

6.8.23 NC optional block skip(NC BlockOptionalSkip)

- (1) This motion function block is the function block that gives the optional skip command to the NC channel.
- (2) Skip the block that "/n" is used in front of the block of NC programs according to SkipNum input values in the rising edge of the Execute input. For example, if SkipNum is 3, skip the block that /3 is written in front of it. After skipping the block that is currently conducted, the next block is conducted. If there are M/S/T codes, the relevant code is implemented and the next block is executed.
- (3) When setting 0 to SkipNum and executing commands, the skip function is aborted.
- (4) When setting values other than 0~9 to SkipNum, the error "0x36A0" occurs.

6.8.24 Manual Measurement of Compensation Amount (NC_ManualToolComp)

Motion Function Block type		
	UINT - UINT - BOOL - BOOL -	JOG_MPG Error BOOL Direction ErrorID WORD Low_High Pinput
Input-Outpu	ut.	
UINT	NcChannel	Specify the NC channel to make commands (1 ~ 4 : Channel 1 ~ Channel 4)
UINT	NcAxis	Set channel axes. (1~3: X=1, Y=2, Z=3)
Input		
BOOL	Execute	Give the compensation amount input mode setting command in the rising Edge of input.
BOOL	JOG_MPG	Choose operation methods (0: JOG, 1: MPG)
BOOL	Direction	The direction in JOG operation
		(0: Forward direction, 1: Reverse direction)
BOOL	Low_High	The speed in JOG operation (0: Low speed, 1: High speed)
BOOL	PInput	The input signal measured in forward direction
BOOL	NInput-	The input signal measured in reverse direction
Output		
BOOL	Done	Indicate that the function block is successfully applied.
BOOL	Busy	Indicate that execution of the function block is not completed.
BOOL	Error	Indicate whether an error occurs.
WORD	ErrorID	Output the error number that occurred while the function block is running.
LREAL	CompValue	Output the calculated compensation amount.

- (1) This motion function block is the function block that gives the manual measurement of the tool compensation amount command to the axis set to NcAxis in the relevant NC channel.
- (2) Give the manual measurement of the tool compensation amount command in the rising Edge of the Execute input.
- (3) If a command is conducted, start the operation selected in JOG_MPG. If the signal selected in PInput or NInput becomes 1, stop the operation and calculate a compensation amount by using the relevant position value.
- (4) The compensation amount is calculated by the following formula: Compensation amount = Position of an axis when PInput/NInput is On - Measured reference position
- (5) The measured reference position is selected from "+ measured reference distance X of automatic tool offsets" to "measured reference distance Z of automatic tool offsets" of channel parameters according to an axis. For example, if NcAxis is selected as Y and NInput is On, the value set in "- measured reference distance Y of automatic tool offsets" becomes the measured reference position.
- (6) The calculated compensation amount is output to CompValue and Done becomes 1.
- (7) If PInput and NInput are On simultaneously, the amount is recognized with PInput.
- (8) If setting axes other than X~Z to NcAxis and executing function blocks, the error "0x36B0" occurs.

6.8.25 NC spindle gear change(NC_ChgSpindleGear)

Motion Function Block type		
	Г	NC_ChgSpindleGear
	BOOL	- · ·
		NcChannelNcChannel - UINT
		Change Velocity Busy BOOL
		GearChangeCmpl Error BOOL
		MaxVelocity ErrorID - WORD
		GearOfMotor GearChangeEnable - BOOL
		GearOfMachine
	LREAL -	Backlash
LREAL -		
	LREAL —	
		Analog10Vrpm
		g
Input-Outpu	t	
UINT	NcChannel	Specify the NC channel to make commands
		(1 ~ 4 : Channel 1 ~ Channel 4)
Input		,
BOOL	Execute	Give the spindle gear conversion command in the rising Edge of input.
LREAL	ChangeVelocity	Set the speed value to change
BOOL	GearChangeCmpl	The signal that gear changes have been completed. Each setting value
		of Operand is set as the relevant parameter after turning On
LREAL	MaxVelocity	The maximum setting value for velocity parameters
UINT	GearOfMotor	The gear ratio parameter of a motor
UINT	GearOfMachine	The gear ratio parameter of machine
LREAL	Backlash	Backlash value
LREAL	P_Gain	Setting value for the P gain
LREAL	FF_Gain	Setting value for the Feed Forward gain
LREAL	Analog10Vrpm	Not applied
Output		
BOOL	Done	Indicate that the function block is successfully applied.
BOOL	Busy	Indicate that execution of the function block is not completed.
BOOL	Error	Indicate whether an error occurs.
WORD	ErrorlD	Output the error number that occurred while the function block is running.
BOOL	GearChangeEnable	Indicate whether to change gears

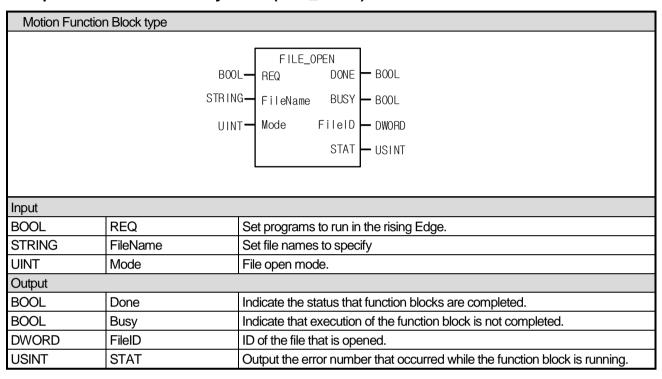
- (1) This motion function block is the function block that gives the spindle gear change command to the relevant NC channel.
- (2) The spindle gear change command is given in the rising Edge of the Execute input.
- (3) If the command is executed, change the current spindle speed into the value set in Change Velocity that can change gears.
- (4) If the speed of the spindle axis is changed to less than the value set in ChangeVelocity and the GearChangeEnable output turns On, users run sequence programs to change gears and enter On in GearChangeCmpl when gear change is completed.
- (5) If the GearChangeCmpl turns On, users set values of the following items set in the function block in parameters and run the spindle with the changed settings.
 - Speed limit values (MaxVelocity)

Chapter5 Motin Functin Block

Gear ratio of a motor (GearOfMotor)

Gear ratio of machine (GearOfMachine)

Backlash compensation amount (Backlash)


P gain in a position mode (P_Gain)

Feed Forward gain in a position mode (FF_Gain)

- (6) If setting the ChageVelocity value to values bigger than speed limit values of the relevant axis and executing the function block, the error "0x36C0" occurs.
- (7) If setting the MaxVelocity value to values less than 0 and executing the function block, the error "0x36C1" occurs.
- (8) If setting the GearOfMotor value to values less than 0 or bigger than 65535 and executing the function block, the error "0x36C2" occurs.
- (9) If setting the GearOfMachine value to values less than 0 or bigger than 65535 and executing the function block, the error "0x36C3" occurs.
- (10) If setting the Backlash value to values less than 0 and executing the function block, the error "0x36C4" occurs.
- (11) If setting the P_Gain value to values less than 0 or bigger than 500 and executing the function block, the error "0x36C5" occurs.
- (12) If setting the FF_Gain value to values less than 0 or bigger than 100 and executing the function block, the error "0x36C6" occurs.

6.9 File command

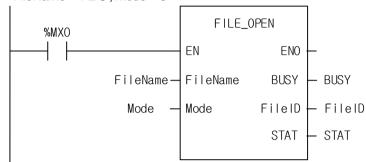
6.9.1 Open Files in SD Memory Card (FILE_OPEN)

- (1) This motion function block is the function block that gives the spindle gear change command to the relevant NC channel.
- (2) When executing 'open', an operation changes according to the setting value of the mode.

Mode	Operation
0	Open a file to read and write. If there is no file, create a new file. If files with the same name exist, delete
	the contents of the files and create new ones.
1	Open a file to read and continuously write. If there is no file, create a new file. If files with the same name
	exist, perform continuous writing from the end of the files when writing.
2	Open a file as read-only.

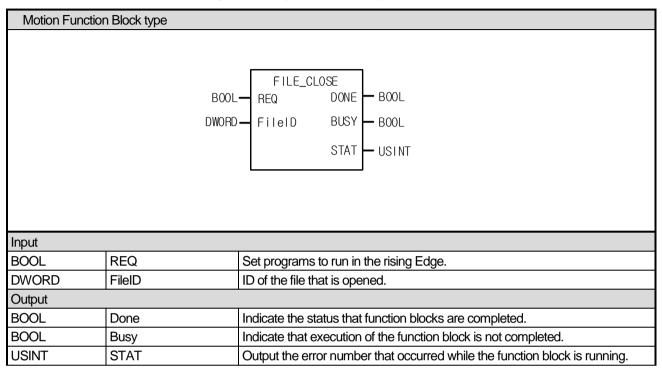
- (3) Read a file from the beginning upon FILE_READ after FILE_OPEN. However, as reading a file from the last part when performing FILE_READ after FILE_WRITE, perform Read after moving a position to FILE_SEEK.
- (4) The ID of a file opened when a file is normally opened is output as 'FileID'.
- (5) 'FileID' is used when FILE_WRITE, FILE_READ, FILE_SEEK and FILE_CLOSE commands are executed.
- (6) When FILE_OPEN is normally performed, STAT = 0. And when an error occurs, STAT information is as follows:
- (7) The maximum number of FILE OPEN is 50. (Including data log files)

STAT	Error status
0	Normal
1	Failed to access SD memory cards
2	The status that a file is already opened
3	If the mode number is 2 and a file does not exist in the Inst folder,
	If SD cards are not installed
4	If more than 50 files are opened
5	If the Mode is a value other than 0~2


- (8) The file with FILE_OPEN must be closed by executing the FILE_CLOSE command after using it.
- (9) If the PLC mode is changed, the status that a file is opened continues. Therefore, execute the FILE_OPEN command again

after closing the file.

■ Examples of programs

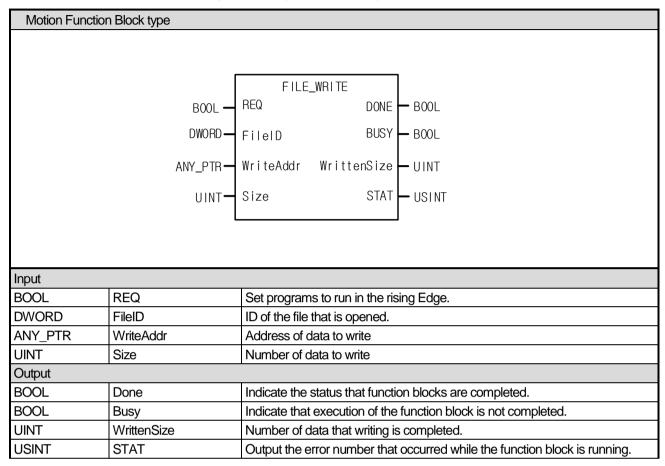

(1) LD

- FileName = 'ABC', Mode = 0

- (a) If the execution condition (%MX0) is On, the FILE_OPEN function is executed.
- (b) If SD cards are normally installed, open a file that is able to read and write with FileName = 'ABC'. If files with the same name as ABC exists, delete the contents of the files and a new file is opened.
- (c) According to the status of SD cards or files, STAT displays an error. If normal operation, 0 is output.
- (2) ST INST_FILE_OPEN(REQ:=%MX0, FileName:='ABC', Mode:=0, DONE=>DONE, BUSY=>BUSY, FileID=>FileID, stat=>stat);


6.9.2 Close Files in SD Memory Cards (FILE_CLOSE)

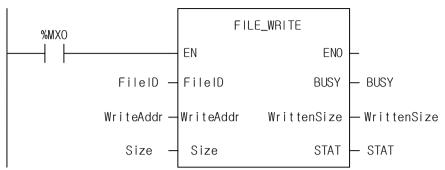
- (1) Close the file specified with 'FileID' in SD memory cards
- (2) When FILE CLOSE is normally performed, STAT = 0. And when an error occurs, STAT information is as follows:


STAT	Error status
0	Normal
1	Failed to access SD memory cards
2	If there are no opened files

■ Examples of programs

- (a) The output value, FileID must be entered after FILE_OPEN is normally executed.
- (b) If the execution condition (%MX0) is On, the FILE CLOSE function is executed.
- (c) According to the status of SD cards or files, STAT displays an error. If normal operation, 0 is output.
- (2) ST INST_FILE_CLOSE(REQ:=%MX0, FileID:=FileID, DONE=>DONE, BUSY=>BUSY, stat=>stat);

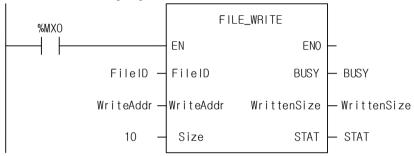
6.9.3 Write Files in SD Memory Cards (FILE WRITE)



- (1) Write the file opened with 'FileID' in SD memory cards.
- (2) The data to write is the contents of WriteAddr and executes writing as many as Sizes.
- (3) If WriteAddr is announced as an Array type, write data in the array as many as Sizes to write.
- (4) If an Array type, the size of data to write is WriteAddr data type x Size. (If Byte, the data type is 1)
- (5) If WriteAddr is announced as a data type, write only the relevant data value irrespective of Size values.
- (6) If writing, BUSY = 1. Upon completion, BUSY = 0 and DONE = 1.
- (7) When executing normally FILE_WRITE, the size of data that completed writing is output to WrittenSize.
- (8) Upon normal completion, STAT = 0. And when an error occurs, STAT information is as follows:
- (9) When forcing to remove SD cards before FILE_CLOSE, data is not normally saved.

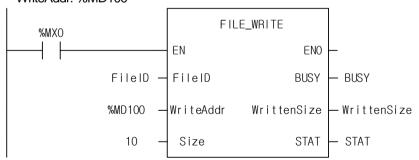
STAT	Error status
0	Normal
1	Failed to access SD memory cards
2	The status that files with FileID are not opened
3	If a file is opened as read-only
4	If the Size is 0 (an Array type), If the Size is over 65535

■ Examples of programs


(1) LD

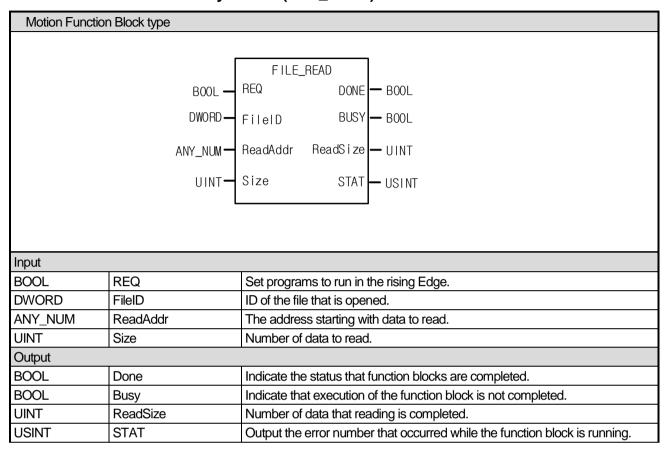
- (a) The output value, FileID must be entered after FILE_OPEN is normally executed.
- (b) If the execution condition (%MX0) is On, the FILE WRITE function is executed.
- (c) WriteAddr is able to be set as an array type or a data type.
- (d) When setting it as an array type, data in an array range can be written into SD cards. For example, if setting it as 10 DWORD arrays, 10 array values can be written with [0] ~ [9] using the Size.
- (e) If setting it as a data type, only the relevant value is written into SD cards. The Size value is not valid.
- (f) Upon normal execution, WrittenSize displays the data size that is actually written.
- (g) According to the status of SD cards or files, STAT displays an error. If normal operation, 0 is output.

WriteAddr Array Type Examples


- WriteAddr: ARRAY[0..9] OF DWORD

- (a) If the execution condition (%MX0) is On, the FILE WRITE function is executed.
- (b) As WriteAddr is an array type and the Size is 10, write [0] ~ [9] data of WriteAddr.
- (c) As writing 10 DWORD data, WrittenSize displays 40 and STAT outputs 0 after writing is completed.

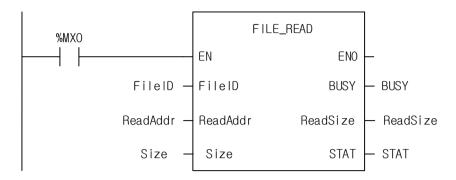
WriteAddr Data Type Examples


- WriteAddr: %MD100

- (a) If the execution condition (%MX0) is On, the FILE WRITE function is executed.
- (b) As the Size is 10 but WriteAddr is a data type, write the set value of %MD100.
- (c) As they are DWORD data, WrittenSize displays 4 and STAT outputs 0.
- (2) ST

INST_FILE_WRITE(REQ:=%MX0, FileID:=FileID, WriteAddr:=WriteAddr, Size:=Size, DONE=>DONE, BUSY=>BUSY, WrittenSize=>WrittenSize, stat=>stat)

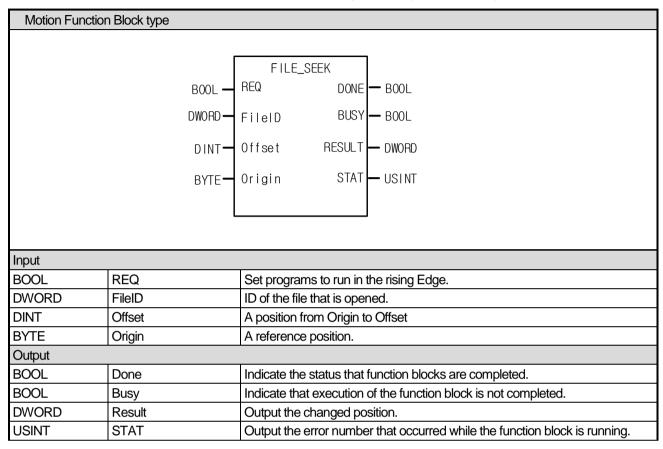
6.9.4 Read Files in SD Memory Cards (FILE_READ)


- (1) Read the file opened with 'FileID' in SD memory cards.
- (2) After executing FILE_OPEN, read a file from the beginning. After executing FILE_WRITE, make a file pointer read it from the last position.
- (3) If a position shift is needed, it is performed after shifting position with the FILE_SEEK command.
- (4) The read data is saved in ReadAddr and read data as much as the number of Sizes.
- (5) If ReadAddr is announced as an Array type, read data in the array as many as Sizes to read.
- (6) If an Array type, the size of data to write is ReadAddr data type x Size. (If Byte, the data type is 1)
- (7) If ReadAddr is announced as a data type, read only the value of a data type irrespective of Size values.
- (8) If reading, BUSY = 1. Upon completion, BUSY = 0 and DONE = 1.
- (9) When executing normally FILE_READ, the size of data that completed reading is output to ReadSize.
- (10) Upon normal completion, STAT = 0. And when an error occurs, STAT information is as follows:

STAT	Error status		
0	Normal		
1	Failed to access SD memory cards		
2	The status that files with FileID are not opened		
3	If the Size is 0 (an Array type) or there is actually no data to read		

(11) If a file pointer points to the end of a file, 'STAT = 3' is output as there is no data to read.

■ Examples of programs


(1) LD

- (a) The output value, FileID must be entered after FILE_OPEN is normally executed.
- (b) If the execution condition (%MX0) is On, the FILE_READ function is executed.
- (c) ReadAddr is able to be set as an array type or a data type.
- (d) When setting it as an Array type, data of the file saved in SD cards can be read as many as Sizes in the set array. For example, if ReadAddr is set as 10 DWORD arrays, read data saved in SD cards in array as many as Sizes. If setting it as a data type, read it only with the relevant data value. The Size value is not valid.
- (e) Upon normal execution, ReadSize displays the data size that is actually read.
- (f) According to the status of SD cards or files, STAT displays an error. If normal operation, 0 is output.
- (2) ST

INST_FILE_READ(REQ:=%MX0, FileID:=FileID, ReadAddr:=ReadAddr, Size:=Size, DONE=>DONE, BUSY=>BUSY, ReadSize=>ReadSize, stat=>stat);

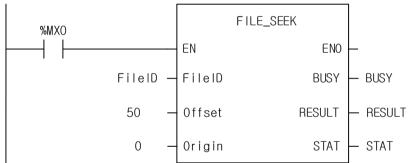
6.9.5 Seek the Position to Access in SD Memory Card (FILE_SEEK)

- (1) Specify position to access in the file opened with 'FileID' in SD memory cards.
- (2) A reference position is set as 3 modes as follows:

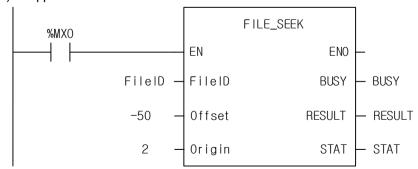
Origin value	Origin position		
0	The front of a file		
1	The current position of a file pointer		
2	The end of a file		

- (3) Move the position of a file pointer by adding the setting value of a reference position to the Offset value.
- (4) If operation, BUSY = 1. Upon completion, BUSY = 0 and DONE = 1.
- (5) Upon normal completion, RESULT displays the moved position and STAT = 0. And when an error occurs, STAT information is as follows:

STAT	Error status	
0	Normal	
1	Failed to access SD memory cards	
2	The status that files with FileID are not opened	
3	If the value of a position to move is less than the value of origin	


■ Examples of programs

(1) LD


```
FILE_SEEK
%MXO
                      ΕN
                                             EN0
            FileID -
                      FileID
                                                   - BUSY
                                            BUSY
           Offset
                       Offset
                                         RESULT
                                                    RESULT
                      Origin
                                                    STAT
            Origin -
                                            STAT
```

- (a) The output value, FileID must be entered after FILE_OPEN is normally executed.
- (b) If the execution condition (%MX0) is On, the FILE_SEEK function is executed.
- (c) Move a file pointer by adding the Offset value to the setting of origin. For example, if you want to move to the beginning of a file, set it as Offset = 0 and Origin = 0. If you move to the position of 20 bytes, you can set it as Offset = 20 and Origin = 0.
- (d) Upon normal execution, RESULT displays the current file pointer.
- (e) According to the status of SD cards or files, STAT displays an error. If normal operation, 0 is output.

* Example: When a file size is 100 bytes, move to the position of 50 bytes

- (a) If the execution condition (%MX0) is On, the FILE_SEEK function is executed.
- (b) After moving to the beginning point of a file as Origin = 0, move to the position where Offset = 50 is added.
- (c) RESULT displays the moved 50 bytes.
- (d) It applies to the case that moves from the end of a file.

(2) ST INST_FILE_SEEK(REQ:=%MX0, FileID:=FileID, Offset:=Offset, Origin:=Origin, DONE=>DONE, BUSY=>BUSY, RESULT=>RESULT, stat=>stat);

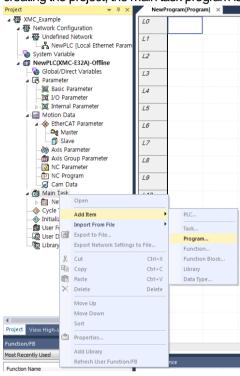
Chapter 7 Program

7.1 Program Configuration

The program of the motion controller is divided into main task program, periodic task program and initialization task program. The features of each program in execution are as follows.

7.1.1 Program Configuration

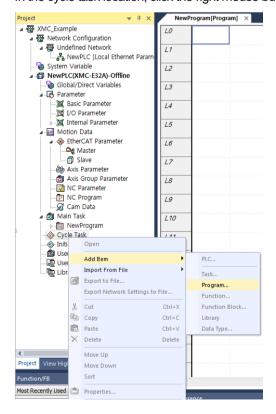
The motion controller's initialization, main and periodic task programs are executed based on the cycle. Each task has a fixed cycle and is set by the user in the default parameters. There are two configurable cycles: main task cycle and periodic task cycle. The initialization task adopts the cycle of the main task.

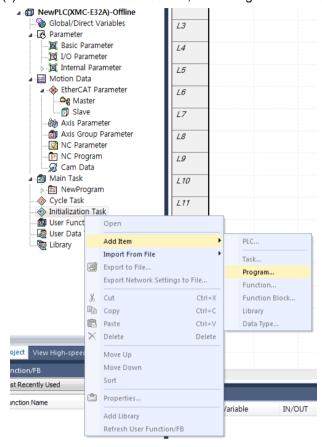

Item Description	
Initialization task program	 The initialization task program is the first task program executed after the motion controller completes its own initialization required for operation when power is applied. It runs until the INIT_DONE command is executed. When the initialization program is executed, only the initialization program is executed and the main task program and the periodic task program do not run until the INIT_DONE command is executed. Even while the initialization task program runs, I/O Refresh and other functions are executed normally. The initialization task program is used to program various operations required for initial setting of the motion controller.
Main task program	 This program is executed at intervals of the main task's cycle set in the motion controller. The main task's cycle can be set in the "Main Task Cycle" of the basic parameters, and you can select one among 500 µs, 1 ms, 2 ms, or 4 ms. When the run time of the main task program exceeds the set main task cycle, the cycle warning occurs. If the main task program is not completed during detecting the cycle error, the cycle error occurs.
Periodic task program	 The program is executed every periodic task cycle set in the motion controller. The periodic task cycle can be set in the "Periodic Task Cycle" of the basic parameters and must be set to a multiple of the configured main task cycle. The periodic task program runs in the spare time after the motion controller executes the main task program every main task cycle and then, it runs repeatedly every periodic task cycle.

For more details on the execution of the main task program and periodic task program, refer to "4.3 Motion control task".

7.1.2 How to Set the Program

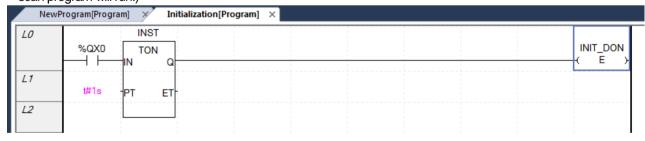
1) How to set the main task program


In the main task location, click the right mouse button and click <code>"Add item_" - "Program_"</code> . (However, when creating the project, the main task program is already created.)


2) How to set the cycle task program

In the cycle task location, click the right mouse button and click

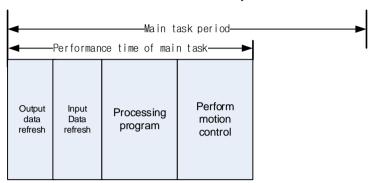
Add item - Program .



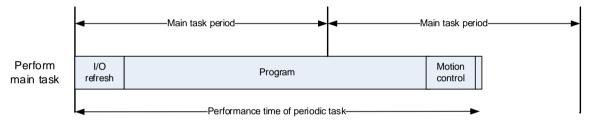
- 3) How to set the initialization task program
 - (1) In the initialization task location, click the right mouse button and click <code>"Add item"</code> <code>"Program"</code> .

(2) Create the necessary initialization program. Make sure to write the INIT_DONE command in the initialization task program.

(When the operating condition of the INIT_DONE is executed, the initialization task is terminated and the scan program will run.)

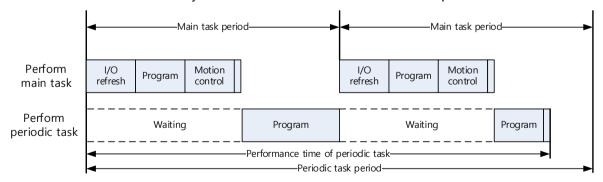


7.1.3 Run Time of the Program

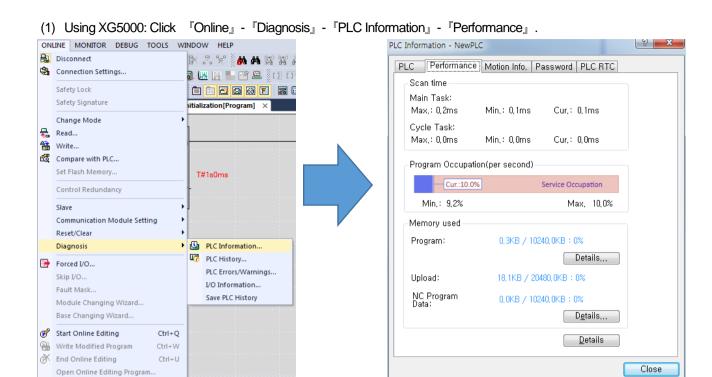

The execution time (scan time) of each task program is calculated as follows. It means the time required from the start of each control cycle to the time when the motion control execution is done, that is, the time required to complete the task.

1) Run time of the main task

It means the time from the start of the main task cycle to the time when the motion control execution is done.



If the main task is not completed for one cycle, just measure the time from the start of the main task cycle to the time when the main task is completed as shown below.


2) Run time of the periodic task

It means the time from the start of the periodic task cycle to the time when the periodic task program is done. The periodic task can be executed in several main task cycles because it runs after the main task is completed.

3) How to check the task run time

The task run time of the motion controller can be checked by using XG5000 or the flag as follows.

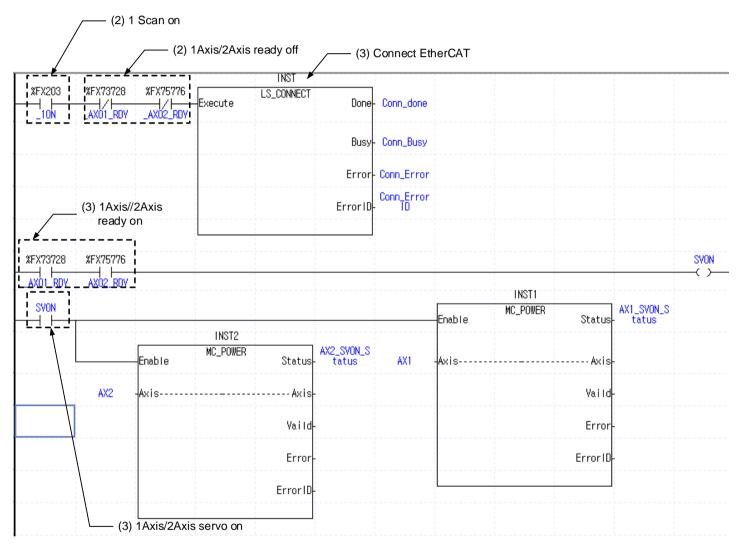
(2) Using the flag: The scan time is stored in the system flag(F) area below.

WORD	Flag	Description
%FW512	_PTASK_SCAN_MAX	Maximum scan time of main task program (Unit:100us)
%FW513	_PTASK_SCAN_MIN	Minimum scan time of main task program (Unit:100us)
%FW514	_PTASK_SCAN_CUR	Current scan time of main task program (Unit:100us)
%FW515	_CTASK_SCAN_MAX	Maximum scan time of periodic task program (Unit:100us)
%FW516	_CTASK_SCAN_MIN	Minimum scan time of periodic task program (Unit:100us)
%FW517	_CTASK_SCAN_CUR	Current scan time of periodic task program (Unit:100us)

7.2 Status Information Reading

In the program of motion control modules, each axis, status of axis group and operating status of the motion control module can be checked with the flag.

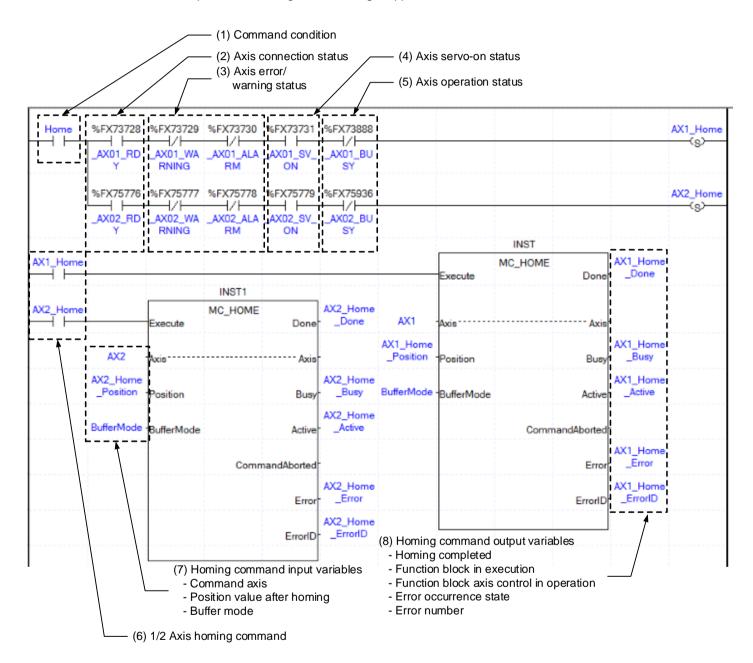
Most of the program examples of chapter 7 is created using flags that indicate axis and status of axis group.


Flags that indicate the status information can be used directly in the program, and can be delivered to PLC CPU by being assigned to a shared device of the motion control module.

For more information on the types and functions of flags, refer to "Appendix 1. Flag list".

7.3 Discrete Motion Program

7.3.1 Preparation for Operation


These are example programs that make access to servo drive connected with Ethernet cable and get the connected servo drive to be On to operate EtherCAT servo drive.

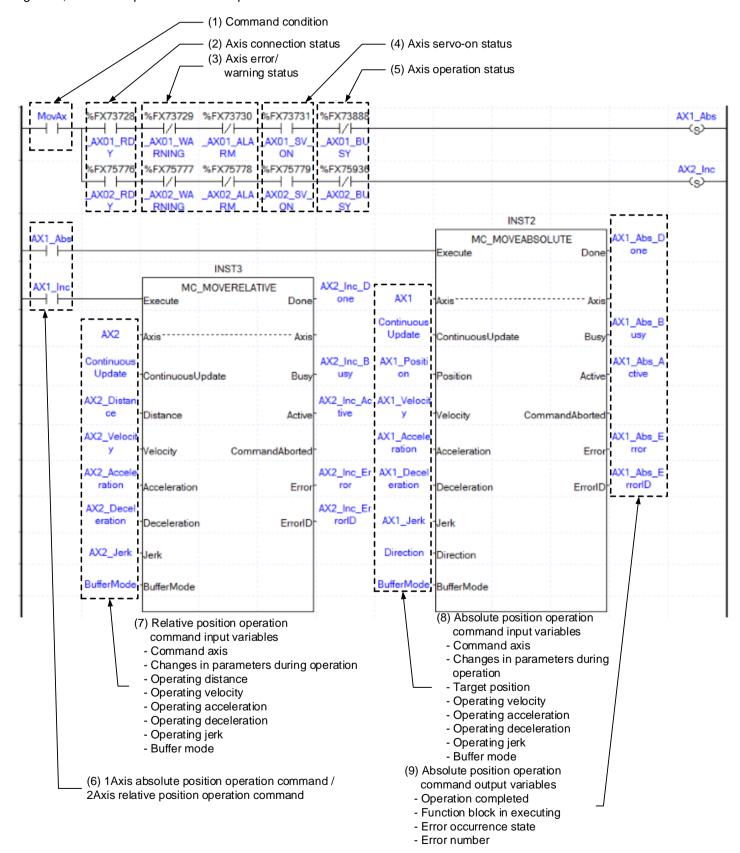
- (1) The above examples assume situation in which two axes of 1-axis and 2-axis are connected to the motion control module.
- (2) In case 1-axis and 2-axis are not connected when the motion control module enters the RUN, start the connection of EtherCAT communication between motion control module and servo drive using motion function block for communication connection (LS_CONNECT).
- (3) If the connection of EtherCAT communication between motion control modules and servo drives is normally performed, servo On/Off (MC_Power) command is issued to each axis by getting "SVON" contact to be On.
- (4) In case there is no error in servo drive of the connected 1-axis and 2-axis, the servo is normally On, and it is ready to operate 1-axis and 2-axis.

7.3.2 Homing Operation

Homing is carried out to set the origin of the machine after the power is applied. Since homing is performed in the servo drive, homing methods may vary depending on servo drive manufacturers. In motion control module, the completion of homing command and error situation is monitored, and the position of the origin after homing is applied to control.

- (1) Command condition
 - : It is a condition to make the axis perform homing operation.
- (2) Axis connection state flag
 - : In case the axis to be operated is connected to motion control module, and EtherCAT communication with motion control module is normally performed, it is On.

Chapter7 Program


- (3) Axis error/Warning status flag
 - : If there are errors and warnings in the axis, it is On.
- (4) Axis servo-on status flag
 - : If the axis is in servo-on state, it is On, and servo-off state, it becomes Off.
- (5) Axis operation status flag
 - : If the axis is in operation, it is On.
- (6) 1/2 axis homing command
 - : In example programs, homing (MC_Home) motion function block is performed under the following conditions.
 - Homing condition is On
 - The axis is normally connected
 - There should be no errors and warnings
 - Servo-on state
 - Not in operation

Conditions to perform motion function block may vary depending on systems.

- (7) Homing command input variables
 - : These are input variables to perform homing (MC Home) motion function block.
 - Command-axis: It sets the axis in which motion function block is performed.
 - Position value after homing: It sets the position value when homing is completed.
 - Buffer mode: It sets the point of time when motion function block is executed. That is, it sets whether to execute immediately or execute after the completion of commands which are currently being performed. For more details on Function Block execution mode, refer to "6.1.4 Buffer Mode input".
- (8) Homing command output variable
 - : It is a variable to store output value generated when homing (MC_Home) motion function block is executed.
 - Homing completed: If homing operation is completed, it is On.
 - Function Block in execution: If motion function block is being performed, it is On, and homing completion is On, it is Off.
 - Function Block axis control in operation: In case motion function block controls the axis, it is On.
 - Error occurrence state: In case error occurs while motion function block is being executed, it is On.
 - Error number: In case error occurs, the number that corresponds to error is generated.
 - For more details on the output of motion function block, refer to "Edge operation motion function block" of "6.1.3 basic I/O variable".

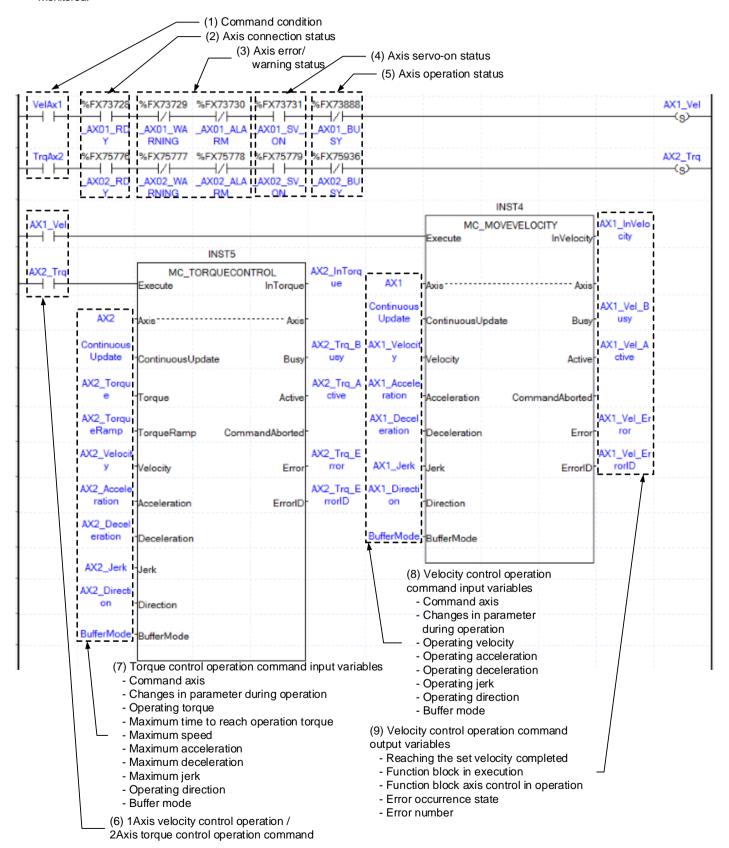
7.3.3 Absolute Position/Relative Position Operation

It is a program for absolute position and relative position operation using motion control module. The absolute position is based on the origin and, and relative position the current position.

- (1) Command condition
 - : It is a condition to make the axis perform position control operation.
- (2) Axis connection state flag
 - : If the axis to be operated is connected to motion control module, and EtherCAT communication with motion control module is normally performed, it is On.
- (3) Axis error/Warning status flag
 - : If there are errors and warnings in the axis, it is On.
- (4) Axis servo-on status flag
 - : If the axis is in servo-on state, it is On, and servo-off state, it becomes Off.
- (5) Axis operation status flag
 - : If the axis is in operation, it is On.
- (6) 1-axis absolute position operation / 2-axis relative position operation commands
 - : In example programs, absolute position operation (MC_MoveAbsolute) is performed in 1-axis, and relative position operation (MC_MoveRelative) in 2-aixs under the following conditions.
 - The axis operation condition is On.
 - The axis is normally connected.
 - There should be no errors and warnings.
 - Servo-on state
 - Not in operation.

Conditions to perform motion function block may vary depending on systems.

- (7) Relative position operation command input variables
 - : These are input variables to perform relative position operation (MC MoveRelative) motion function block.
 - Command-axis: It sets the axis in which motion function block is performed.
 - Changes in parameters during operation: It sets whether to apply to the operation by changing the input variables of motion function block.
 - For more information, refer to "6.1.5 Changes in parameters during execution of motion function block".
 - Operating distance: It sets distance to perform relative coordinate operation. Based on the current position, + value means forward direction, and value means reverse direction value.
 - Operating velocity: It sets velocity to perform relative coordinate operation.
 - Operating acceleration, operating deceleration, operating jerk: It sets values to be applied in relative coordinate operation respectively.
 - Buffer mode: It sets the point of time when motion function block is executed. That is, it sets whether to execute immediately or execute after the completion of commands which are currently being performed. For more details, refer to "6.1.4 Buffer Mode input".
- (8) Absolute position operation command input variables
 - : These are input variables to perform absolute position operation (MC_MoveAbsolute) motion function block.
 - Command-axis: It sets the axis in which motion function block is performed.
 - Changes in parameters during operation: It sets whether to apply to the operation by changing the input variables of motion function block.


For more information, "6.1.5 Changes in parameters during execution of motion function block".

- Target position: It sets the position that moves to absolute coordinate operation.
- Operating velocity: It sets the velocity when absolute position operation is performed to the target position.
- Operating acceleration, operating deceleration, operating jerk: It sets values to be applied in absolute coordinate operation respectively.
- Operating direction: It sets direction when moving to the target position. In case of 1, movement to the target position is made through forward direction operation, in case of 2, operation is made in the direction that can reach the target area in the shortest distance based on the current position, in case of 3, reverse direction, and in case of 4, movement to the target position is made through operation in the direction of the current operation.

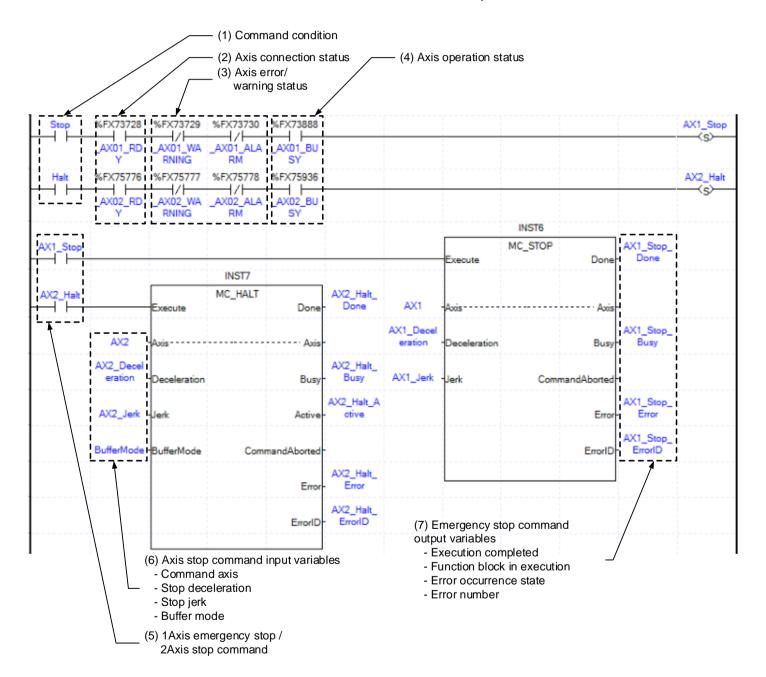
- Buffer mode: It sets the point of time when motion function block is executed. That is, it sets whether to execute immediately or execute after the completion of commands which are currently being performed. For more details, refer to "6.1.4 Buffer Mode input".
- (9) Absolute position operation command output variable
 - : It is a variable to store output values generated when absolute position operation (MC_MoveAbsolute) motion function block is executed.
 - Operation completed: When absolute coordinate operation is completed, it is On.
 - Function Block in execution: When motion function block is executed, it is On, and if operation completed is On, it is Off.
 - Function Block axis control in operation: In case motion function block is controlling the axis, it is On.
 - Error occurrence state: In case error occurs when motion function block is executed, it is On.
 - Error number: In case error occurs, the number that corresponds to error is generated.
 - For more details on the output of motion function, refer to "Edge operation motion function block" of "6.1.3 basic input and output variables".

7.3.4 Speed/Torque Control Operation

These are example programs for speed control and torque control operation using motion control modules. In case of the torque control, torque control of servo drive is used, and in motion control module, command for executing torque control is issued, and execution completion and status is monitored.

- (1) Command condition
 - : It is a condition to make the axis perform speed control/torque control operations.
- (2) Axis connection state flag
 - : In case the axis to be operated is connected to motion control module, and EtherCAT communication with motion control module is normally performed, it is On.
- (3) Axis error/Warning status flag
 - : If there are errors and warnings in the axis, it is On.
- (4) Axis servo-on status flag
 - : If the axis is in servo-on state, it is On, and servo-off state, it becomes Off.
- (5) Axis operation status flag
 - : If the axis is in operation, it is On.
- (6) 1-axis speed control operation/2-axis torque control operation commands
 - : In example programs, specified velocity operation (MC_MoveVelocity) motion function block is executed in 1-axis, and toque control operation (MC_TorqueControl) motion function block is executed in 2-axis under the following conditions.
 - The axis operation condition is On.
 - The axis is normally connected.
 - There should be no errors and warnings.
 - Servo-on state
 - Not in operation

Conditions to perform motion function block may vary depending on systems.


- (7) Torque control operation command input variables
 - : These are input variables to execute torque control operation (MC TorqueControl) motion function block.
 - Command axis: It sets the axis in which motion function block is executed.
 - Changes in parameters during operation: It sets whether to apply to the operation by changing input variable values of the motion function block. For details, refer to "6.1.5 Changes in parameters during the execution of motion function block".
 - Operation torque: It sets torque values in torque control operation.
 - The maximum time to reach operation torque: It sets the maximum slope from the current torque until changed to the set torque. Its unit is [Unit/s].
 - -Maximum speed, maximum acceleration, maximum deceleration, maximum jerk: Not used.
 - Operating direction: It sets direction to be operated with torque control. In case of 1, it operates in forward direction and in case of 2, in reverse direction.
 - Buffer mode: It sets the point of time when motion function block is executed. That is, it sets whether to execute immediately or execute after the completion of commands which are currently being performed. For details, refer to "6.1.4 Buffer Mode input".
- (8) Speed control operation command input variables
 - : These are input variables to execute specified velocity operation (MC_MoveVelocity) motion function block.
 - Command axis: It sets the axis in which motion function block is executed.
 - Changes in parameters during operation: It sets whether to apply to the operation by changing input variable values of the motion function block. For details, refer to "6.1.5 Changes in parameters during execution of motion function block".
 - Operating velocity: It sets velocity in speed control operation.
 - Operating acceleration, operating deceleration, operating jerk: It sets values to be applied in speed control operation respectively.
 - Operating direction: It sets directions in speed control operation. In case of 1, it operates in forward direction, in case of 2, in reverse direction, and in case of 3, it operates in direction of the current operation.
 - Buffer mode: It sets the point of time when motion function block is executed. That is, it sets whether to execute immediately
 or execute after the completion of commands which are currently being performed. For details, refer to "6.1.4 Buffer Mode
 input".

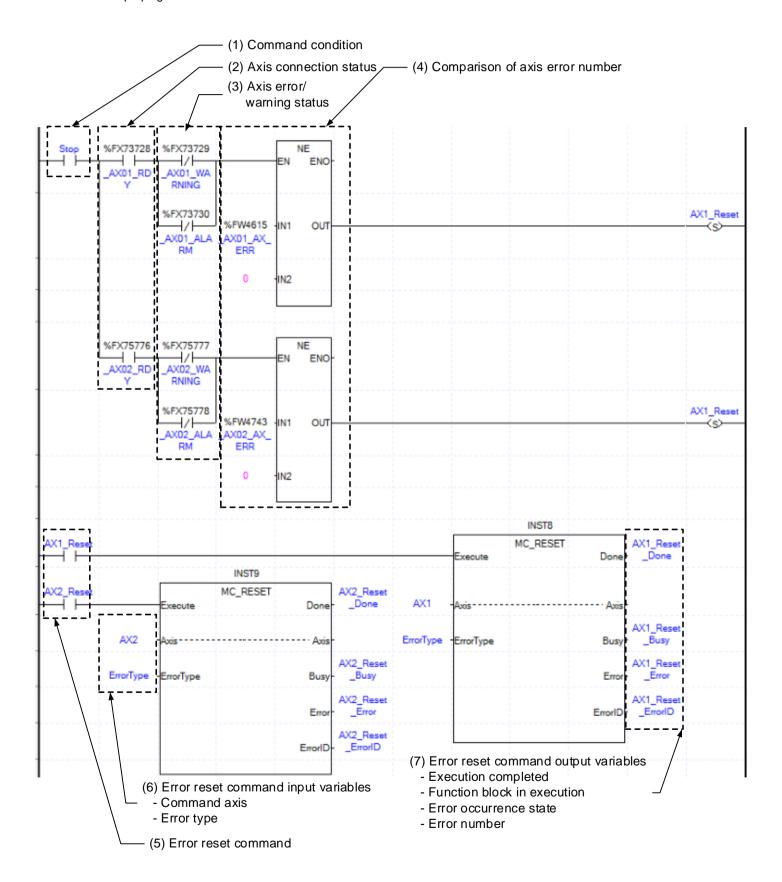
Chapter7 Program

- (9) Speed control operation command output variable
 - : It is a variable to store output values generated when specified velocity operation (MC_MoveVelocity) motion function block is executed.
 - Reaching the set speed completed: When the set speed is reached through speed control operation, it is On.
 - Function Block in execution: If motion function block is being performed, it is On, and operation is completed, it becomes Off.
 - Function Block axis control in operation: In case motion function block controls the axis, it is On.
 - Error occurrence state: In case error occurs while the motion function block is being executed, it is On.
 - Error number: In case error occurs, the number that corresponds to error is generated.
 - For more details on the output of function block, refer to "Edge operation motion function block" of "6.1.3 Basic input and output variables".

7.3.5 Axis Stop

It is an example program to stop the axis in operation. The motion function block to stop the axis in operation includes "Immediate Stop (MC_Stop)" and "Halt (MC_Halt)". As a command to implement emergency stop of the axis, "Immediate Stop (MC_Stop)" performs "Immediate Stop (MC_Stop)", and other motion function blocks cannot be executed during the stop. As a command to stop the axis, "Halt (MC_Halt)" performs "Halt (MC_Halt)", the stop status is aborted by other motion function blocks during the stop, and other motion function blocks can be executed. For more details, refer to "Chapter 6 Command".

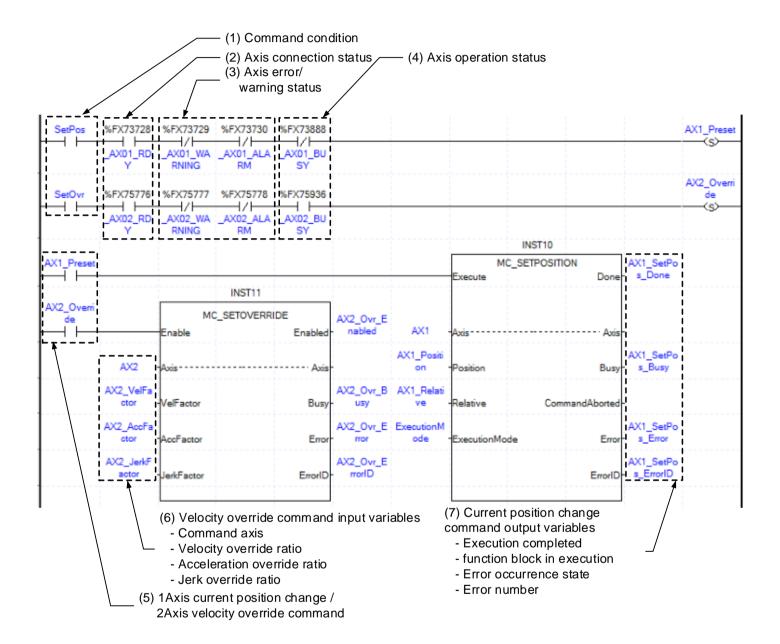
Chapter7 Program


- (1) Command condition
 - : It is a condition to give emergency stop/axis stop commands to the axis.
- (2) Axis connection state flag
 - : In case the axis to be operated is connected to motion control module, and EtherCAT communication with motion control module is normally performed, it is On.
- (3) Axis error/warning status flag
 - : If there are errors and warning in the axis, it is On.
- (4) Axis operation status flag
 - : If the axis is in operation, it is On.
- (5) 1-axis emergency stop / 2-axis axis stop commands
 - : In example programs, immediate stop (MC Stop) motion function block is executed in 1-axis, and halt (MC Halt) motion function block is executed in 2-axis under the following conditions.
 - The axis stop condition is On.
 - The axis is normally connected.
 - There should be no errors and warnings.
 - In operation

Conditions to perform motion function block may vary depending on systems.

- (6) Axis stop command input variables
 - : These are input variables to execute Halt (MC Halt) motion function block.
 - Command axis: It sets the axis in which motion function block is executed.
 - Stop deceleration: Its sets deceleration from operating speed at the time of axis stop to a stop.
 - Stop jerk: it sets the jerk at the stop time.
 - Buffer mode: It sets the point of time when motion function block is executed. That is, it sets whether to execute immediately or execute after the completion of commands which are currently being performed. For details, refer to "6.1.4 Buffer Mode input".
- (7) Emergency stop command output variables
 - : It is a variable to store output values generated when Immediate Stop (MC_Stop) motion function block is executed.
 - Execution completed: In case the axis stop, it is On.
 - Function Block in execution: If motion function block is being performed, it is On, and execution is completed, it becomes Off.
 - Error occurrence state: In case error occurs while the motion function block is being executed, it is On.
 - Error number: In case error occurs, the number that corresponds to error is generated.
 - For more details on the output of motion function block, refer to "Edge operation motion function block" of "6.1.3 Basic I/O Variable.

7.3.6 Error Processing


It is an example program to check the errors that occurred on the axis and conduct error reset.

- (1) Command condition
 - : It is a condition to give error reset commands to the axis.
- (2) Axis connection status flag
 - : In case the axis to be operated is connected to motion control module, and EtherCAT communication with motion control module is normally performed, it is On.
- (3) Axis error/Warning status flag
 - : If there are errors and warnings in the axis, it is On.
- (4) Comparison of axis error number
 - : In example programs, a case where the value of error number flag on the axis is not 0 is determined to be error reset condition through a comparison.
- (5) Error reset command
 - : In example programs, axis error reset (MC Reset) motion function block is executed under the following conditions.
 - The axis operation condition is On.
 - The axis is normally connected.
 - There should be error and warnings.
 - Error number is not 0.
 - Conditions to perform motion function block may vary depending on systems.
- (6) Error reset command input variables
 - : These are input variables to execute axis error reset (MC_Reset) motion function block.
 - Command axis: It sets the axis in which motion function block is executed.
 - Error type: The type of error for error rest is set. 0 represents axis error, and 1 common error.
- (7) Error reset command output variables
 - : It is a variable to store output values generated when axis error reset (MC_Reset) motion function block is executed.
 - Execution completed: The execution of motion function block is completed, it is On.
 - Function Block in execution: If motion function block is being performed, it is On, and execution is completed, it becomes Off.
 - Error occurrence state: In case error occurs while the motion function block is being executed, it is On.
 - Error number: In case error occurs, the number that corresponds to error is generated.
 - For details on the output of motion function block, refer to "Edge operation motion function block" of "6.1.3 Basic I/O Variable".

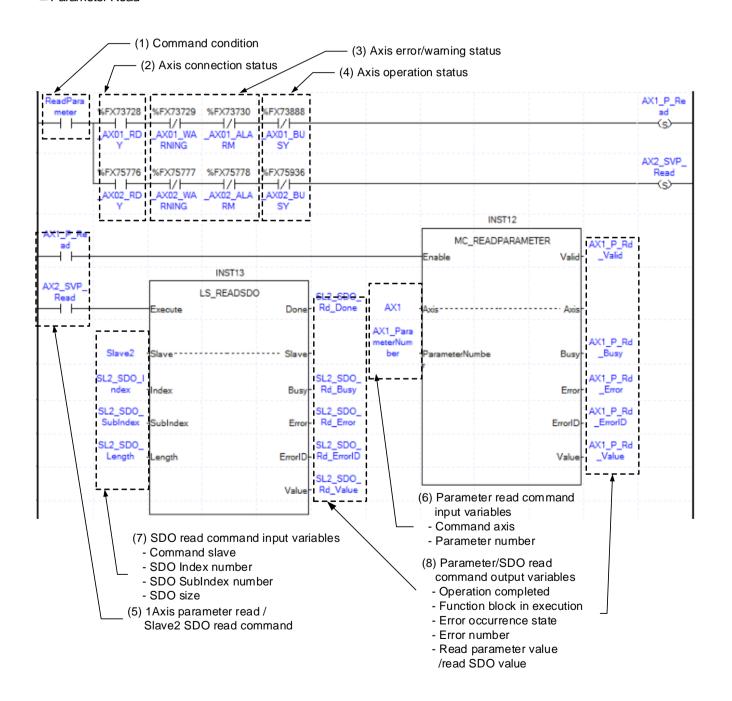
7.3.7 Change in Operation

It is an example program to change the current location of the axis and speed in operation.

Chapter7 Program

- (1) Command condition
 - : It is a condition to give current location change/operating speed change commands to the axis.
- (2) Axis connection state flag
 - : In case the axis is to be operated is connected to motion control module, and EtherCAT communication with motion control module is normally performed, it is On.
- (3) Axis error/Warning status flag
 - : If there are errors and warnings in the axis, it is On.
- (4) Axis operation status flag
 - : If the axis is in operation, it is On.
- (5) 1-axis current location change/2-axis speed override command
 - : In the example program, the current location setting (MC_SetPosition) motion function block is executed under the following conditions.
 - The current location change condition is On.
 - The axis is normally connected.
 - There should be no errors and warnings.
 - The axis is not in operation.
 - In addition, speed/acceleration override (MC_SetOverride) motion function block is executed under the following conditions.
 - The operating speed change condition is On.
 - The axis is normally connected.
 - There should be no errors and warnings.
 - The axis is in operation.

Conditions to execute motion function block may vary depending on systems.


- (6) Speed override command input variables
 - : These are input variables to execute speed/acceleration override (MC_SetOverride) motion function block.
 - Command axis: It set the axis in which motion function block is executed.
 - Speed override ratio: It sets the ratio of the speed to change in comparison with operating speed that is currently set.
 - Acceleration override ratio: It sets the ratio of the acceleration to change in comparison with acceleration value which is currently set.
 - Jerk override ratio: It sets the ratio of the jerk to change in comparison with jerk value that is currently set. That is, if 2 is set to the value of the ratio, double the currently set value is set. .
- (7) Current location change command output variables
 - : These are variables to store output values generated when the current location setting (MC_SetPosition) motion function block is executed.
 - Execution completed: If the execution of motion function block is completed, it is On.
 - Function Block in execution: When motion function block is executed, it is On, and the execution is completed, It becomes Off.
 - Error occurrence state: In case error occurs while the motion function block is being executed, it is O.
 - Error number: In case error occurs, the number that corresponds to error is generated.
 - For details on the output of motion function block, refer to "Edge operation motion function block" of "6.1.3 Basic input and output variables.

7.3.8 Parameter Write/Read

Parameter read/write commands include "Parameter Write (MC_WriteParameter)" and Parameter Read (MC_ReadParameter)" as well as "SDO Write (LS_WriteSDO)" and "SDO Read (LS_ReadSDO)". "Parameter Write (MC_WriteParameter)" and "Parameter Read (MC_ReadParameter)" are commands to write and read operation parameters of the axis or encoder parameter, and "SDO Write (LS_WriteSDO)" and "SDO Read (LS_ReadSDO)" are commands to read or write SDO data of the connected EtherCAT slaves.

If the slave of the connected EtherCAT is a servo drive, the SDO data becomes servo parameters. The following is an example of the program to read or change the operating parameters and servo parameters using Read / Write commands servo drive and the parameter when slave 2 is a servo drive and it is connected to 2 axes.

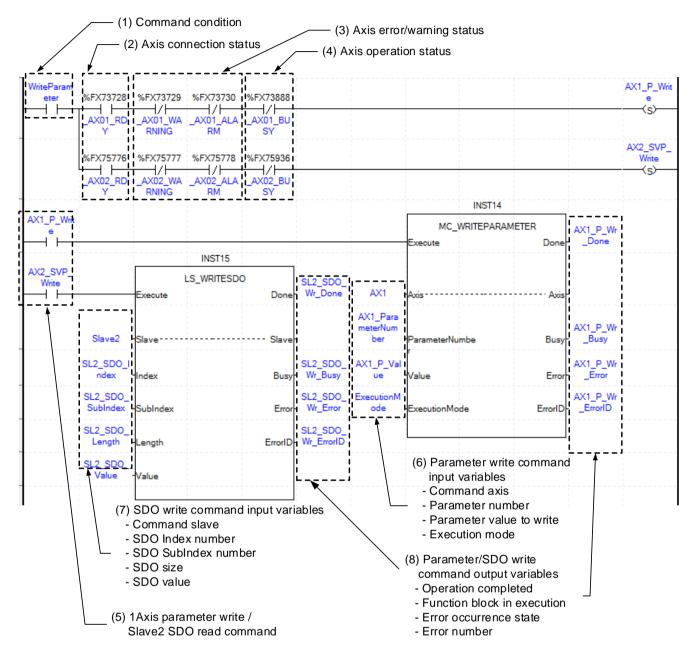
■ Parameter Read

- (1) Command condition
 - : It is a condition to read parameters and serve parameters of the axes.
- (2) Axis connection state flag
 - : In case the axis to be operated is connected to motion control module, and EtherCAT communication with motion control module is normally performed, it is On.
- (3) Axis error/Warning status flag
 - : If there are errors and warnings in the axis, it is On.
- (4) Axis operation status flag
 - : If the axis is in operation, it is On.
- (5) 1-axis parameter write/ 2-axis servo parameter read commands
 - : In example programs, Parameter Read (MC_ReadParameter) motion function block is executed in 1-axis, and Servo Parameter Read (LS_ReadSDO) motion function block is executed in 2-axis under the following conditions.
 - Parameter read condition is On.
 - The axis is normally connected.
 - There should be no errors and warnings.
 - Not in operation

Conditions to execute motion function block may vary depending on systems.

- (6) Parameter read command input variables
 - : These input variables to execute Parameter Read (MC ReadParameter) motion function block.
 - Command axis: It sets the axis in which motion function block is executed.
 - Parameter number: It sets the parameter numbers to read with motion function block. Numbers by parameter are as follows.

Number	Parameter	ltem	Settings
0		Unit	0:pulse, 1:mm, 2:inch, 3:degree
1		Pulses per rotation	1~4,294,967,295 [pulse]
2		Travel per rotation	0.000000001 ~ 4,294,967,295 [Unit]
3		Speed command unit	0:Unit/Time, 1:rpm
4		Speed limit	LREAL (positive) [Unit/s, rpm] *1)
5	Basic Parameter	Emergency stop deceleration	0, LREAL (positive) [Unit/s ²] *1)
6	i arameter	Encoder select	0:Incremental Encoder,1:Absolute Encoder
7		Gear ratio(Motor)	1 ~ 65,535
8		Gear ratio(Machine)	1 ~ 65,535
9		Operation mode of the reverse rotation	0:Disable, 1:Enable
46		Position Control Range Expansion	0: Disable, 1: Enable
10		S/W upper limit	LREAL [Unit] *1)
11		S/W lower limit	LREAL [Unit] *1)
12		Infinite running repeat position	LREAL (positive) [Unit] *1)
13		Infinite running repeat	0:Disable, 1:Enable
14	Extended Parameter	Command inposition range	0, LREAL (positive) [Unit] *1)
15		Tracking error over-range value	0, LREAL (positive) [Unit] *1)
16		Current position compensation amount	0, LREAL (positive) *1)
17		Current speed filter time constant	0 ~ 100
18		Error reset monitoring time	0 ~ 1,000 [ms]
19		S/W limit during speed control	0:Don't detect, 1:Detect
20		Tracking error level	0:Warning, 1:Alarm


Number	Parameter	Item	Settings
21		JOG high speed	LREAL (positive) [Unit/s] *1)
		300 Hight speed	(JOG low speed ~ Speed limit)
22		JOG low speed	LREAL (positive) [Unit/s] *1)
22	_	·	(< JOG high speed) LREAL (positive) [Unit/s²] *1)
23	Extended	JOG Acceleration	" , ,
24	Parameter	JOG Deceleration	LREAL (positive) [Unit/s²] *1)
25	4	JOG Jerk	LREAL (positive) [Unit/s³] *1)
26	_	Override Mode	0: Percent ,1: Set value
29		Backlash compensation value	0 or Long real (LREAL) positive number*1) [Unit]
27	NC	Identifying range to reach the spindle rotation command speed	0~100%
28	Parameter	Identifying RPM to reach the spindle rotation zero speed	0~100rpm
30		Select the Spindle Encoder	0: Disable, 1: Motor ENC, 2: Built-in ENC1, 3: Built-in ENC2, 4: EtherCAT ENC
31		Number of pulses per rotation of the spindle EtherCAT encoder	1 ~ 4294967295
32		Spindle EtherCAT encoder position variable	0: I device, 1: M device
33	NC Spindle Axis Setting	Spindle EtherCAT encoder position address	0~4095 (Spindle EtherCAT encoder position variable = 0: I) 0~524287 (Spindle EtherCAT encoder position variable = 1: M)
34		The P Gain of the Spindle Positioning Mode	1~ 500 Hz
35		The Feed Forward Gain of the Spindle Positioning Mode	0~ 100 %
36		How to conduct the homing operation	O: Servo drive supported, 33: Reverse direction, Z phase, 34: Forward direction, Z phase, 35: Set the homing of the current position
37		Switch navigation speed of the homing operation	Long real (LREAL) positive number*1) Zero navigation speed of the origin operation ≤ Switch navigation speed of the origin ≤ Limit value of speed
38	NC Spindle Origin	Zero navigation speed of the homing operation	
39	Setting	Acceleration/deceleration of the homing operation	0 or Long real (LREAL) positive number*1) [Unit/ S ²]
40		Z phase variable	0: I device, 1: M device
41		Z phase address	0~131071 (Z phase variable = 0: I) 0~16777215 (Z phase variable = 0: M)
42		Orientation velocity	Long real (LREAL) positive number*1) (≤ Limit value of speed)
43		Orientation direction	0: Forward direction, 1: Reverse direction

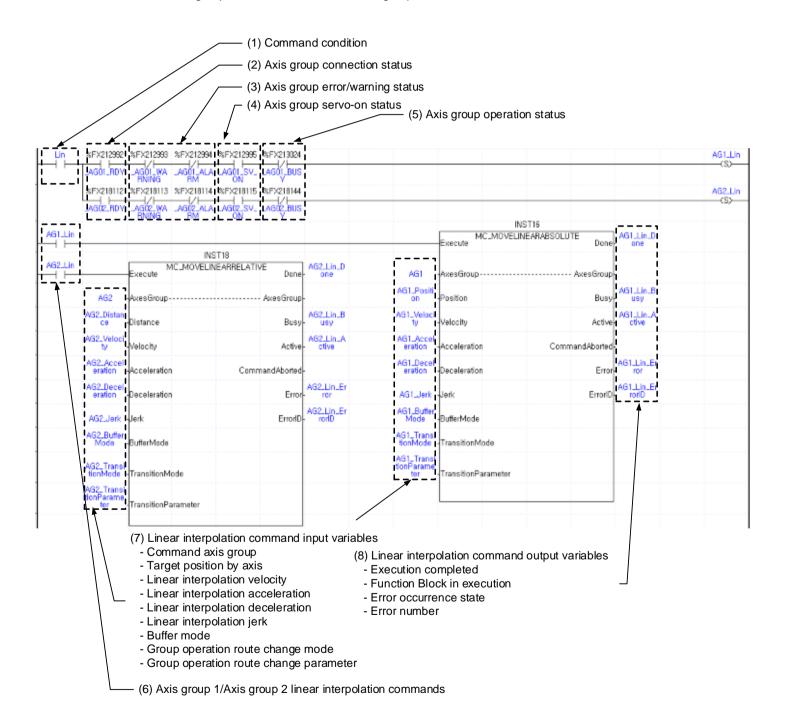
44		Orientation offset	0~360
100		Encoder1 Unit	0: pulse, 1: mm, 2: inch, 3:degree
101		Encoder1 Pulses per rotation	1~4,294,967,295 [pulse]
102		Encoder1 Travel per rotation	0.000000001 ~ 1~4,294,967,295[Unit]
			0: CW/CCW (x1), 1: Pulse/Dir (x1)
103		Encoder1 Pulse input	2: Phase/DIR (x2), 3: Phase A/B (x1)
			4: Phase A/B (x2), 5: Phase A/B (x4)
104		Encoder1 Max. value	(Encoder1 Min. value+1) ~ 2,147,483,647
105		Encoder1 Min. value	-2,147,483,648 ~ (Encoder1 Max. value-1)
106		Encoder1 speed unit	0: Unit/sec, 1: Unit/min, 2: rpm
			0: No use, 1: 500kPPS
107			2: 200kPPS, 3. 100kPPS
107		Encoder1 input filter value	4: 10kPPS, 5: 1kPPS
			6: 0.2kPPS
108	Encoder	Encoder1 position filter time constant	0 ~ 1,000 ms
200	Parameter	Encoder2 Unit	0: pulse, 1: mm, 2: inch, 3:degree
201		Encoder2 Pulses per rotation	1 ~ 4,294,967,295 [pulse]
202		Encoder2 Travel per rotation	0.000000001 ~ 4,294,967,295 [Unit]
		Encoder2 Pulse input	0: CW/CCW (x1), 1: Pulse/Dir (x1)
203			2: Phase/DIR (x2), 3: Phase A/B (x1)
			4: Phase A/B (x2), 5: Phase A/B (x4)
204		Encoder2 Max. value	(Encoder2 Min. value+1) ~ 2,147,483,647
205		Encoder2 Min. value	-2,147,483,648 ~ (Encoder2 Max. value-1)
206		Encoder2 speed unit	0: Unit/sec, 1: Unit/min, 2: rpm
207			0: No use, 1: 500kPPS
		Encoder2 input filter value	2: 200kPPS, 3. 100kPPS
			4: 10kPPS, 5: 1kPPS
			6: 0.2kPPS
208		Encoder2 position filter time constant	0 ~ 1,000 ms

^{*1)} LREAL scope: 2.2250738585072e-308 - 1.79769313486232e+308 Long real (LREAL) positive number scope: $0 < x \le 1.79769313486232e+308$

- (7) Servo parameter read command read input variables
 - : These are input variables to execute Servo Parameter Read (LS_ReadSDO) motion function block.
 - Command axis: It sets the axis in which motion function block is executed.
 - Servo parameter index number, SubIndex number, size: Each value is set in servo parameters to read. Refer to the instruction manual of the servo drive for index number, subindex number and size of servo parameters.
- (8) Parameter read/Servo parameter read command output variables
 - : These are variables to store output values generated when Parameter Read (MC_ReadParameter) and Servo Parameter Read (LS_ReadSDO) motion function block is executed.
 - Operation completed: If values of parameters and servo parameters is read, it is On.
 - Function Block in execution: When motion function block is executed, it is On, and the operation completion is On, it becomes Off.
 - Error occurrence state: In case error occurs while the motion function block is being executed, it is On.
 - Error number: In case error occurs, the number that corresponds to error is generated.
 - Read parameter values/Read servo parameter values: Values of parameters and servo parameters read by the execution of motion function block is stored.

■ Parameter Write

- (1) Command condition
 - : It is a condition to write parameters and servo parameters of the axes.
- (2) Axis connection state flag
 - : In case the axis to be operated is connected to motion control module, and EtherCAT communication with motion control module is normally performed, it is On.
- (3) Axis error/Warning status flag
 - : If there are errors and warnings in the axis, it is On.
- (4) Axis operation status flag
 - : If the axis is in operation, it is On.
- (5) 1-axis parameter write/ 2-slave SDO write commands
 - : In example programs, Parameter write (MC_WriteParameter) motion function block is executed in 1-axis, and SDO write (LS_WriteSDO) motion function block is executed in 2-slave under the following conditions.
 - Parameter write condition is On
 - The axis is normally connected.
 - There should be no errors and warnings.
 - Not in operation

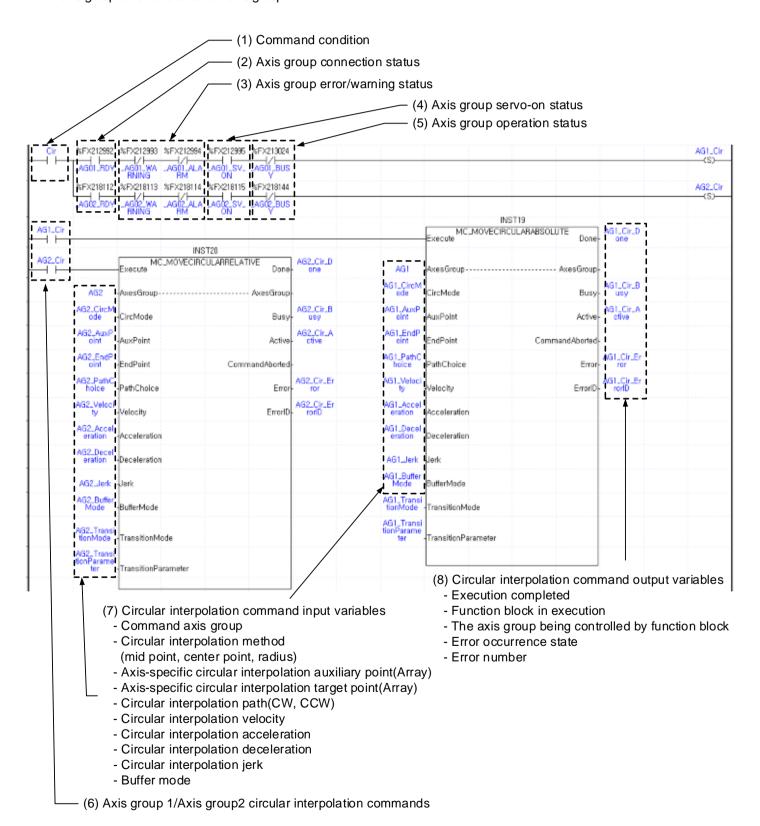

Conditions to execute function block may vary depending on systems.

- (6) Parameter write command input variables
 - : These are input variables to execute Parameter Write (MC_WriteParameter) motion function block.
 - Command axis: It sets the axis in which motion function block is executed.
 - Parameter number: It set parameter numbers to write with the motion function block.
 - Parameter values to write: Values to write in the parameters are set.
 - Execution mode: It specifies the point of time when parameters are written. If it sets 0, it changes parameter values upon executing motion function block. If it sets 1, it is changed to the same point of time with "Buffered" of BufferMode. (Refer to 6.1.4 BufferMode)
- (7) SDO write command input variables
 - : These are input variables to execute SDO write (LS_WriteSDO) motion function block.
 - Command axis: It sets the axis in which motion function block is executed.
 - Servo parameter index number, subIndex number, size
 - : Each value is set according to servo parameters to write. Refer to instruction manual of the servo drive for index number, subindex number and size of servo parameters.
 - Values of servo parameters to write: Values to be written in the servo parameters is set.
- (8) Parameter write/Servo parameter write command output variable
 - : It is a variable to store output values generated when Parameter write (MC_WriteParameter) and SDO write (LS_WriteSDO) motion function block is executed.
 - Operation completed: If values of the parameters and servo parameters are written, it is On.
 - Function Block in execution: When motion function block is executed, it is On, and operation completion is On, it becomes Off.
 - Error occurrence state: In case error occurs while motion function block is being executed, it is On. As for error number, the number that corresponds to error is generated in case error occurs.

7.4 Multi-Axis Operation Program

7.4.1 Linear Interpolation Operation

It is an example program to operate linear interpolation with axes set to the same group. In the example program, 1-axis and 2-axis are assumed to be included in the same axis group. Refer to the example program of "7.4.5 Axis group processing" to include an axis in axis group or remove the axis from axis group.

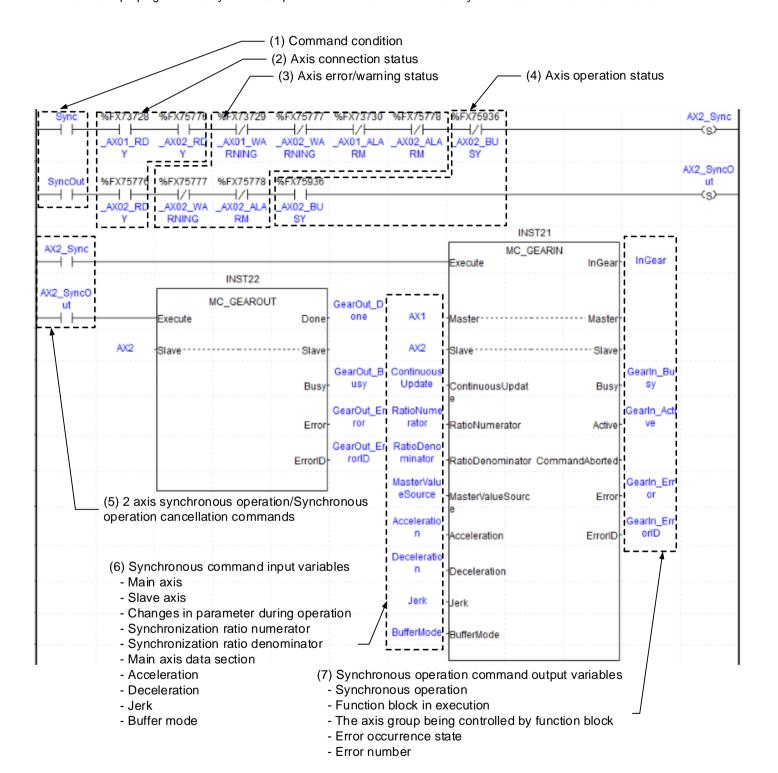

- (1) Command condition
 - : It is a condition to give linear interpolation command to the axis group.
- (2) Axis group connection state flag
 - : In case axes of the axis group to be operated are connected to motion control module, and EtherCAT communication with motion control module is normally performed, it is On.
- (3) Axis group error/Warning status flag
 - : If there are errors and warnings in axes included in the axis group, it is On.
- (4) Axis group servo-on status
 - : If axes included in the axis group are in servo-on state, it is On.
- (5) Axis group operation status flag
 - : If axes of the axis group are in operation, it is On.
- (6) Axis group 1 absolute position linear interpolation/Axis group 2 relative position linear interpolation commands
 - : In example programs, absolute position linear interpolation operation (MC_MoveLinearAbsolute) is executed in axis group 1, and relative position linear interpolation operation (MC_MoveLinearRelative) motion function block in axis 2 under the following conditions.
 - Linear interpolation operation condition is On.
 - Axes included in the axis group are normally connected.
 - There should be no errors and warnings.
 - Axes of the axis group are not in operation.

Conditions to execute motion function block may vary depending on systems.

- (7) Linear interpolation command input variables
 - : These are input variables to execute absolute position linear interpolation operation (MC_MoveLinearAbsolute) and relative position linear interpolation operation (MC_MoveLinearRelative) motion function block.
 - Command axis group: It sets axis group in which motion function block is executed.
 - Target position by axis: Array variables are set, and linear interpolation operation target position of axes included in axis group is set in order.
 - Linear interpolation speed: It sets target speed to execute linear interpolation, when the speed refers to the interpolation speed.
 - Linear interpolation acceleration, deceleration, jerk: they set values to be applied when performing linear interpolation.
 - Buffer mode: It sets the point of time when motion function block is executed. That is, it sets whether to execute immediately or execute after the completion of commands which are currently being performed. For details, refer to "6.1.4 Buffer Mode Input".
 - Group operation route change mode and group operation route change parameter: It specifies in which way the axis group in operation is connected to the trace the existing commands describe when linear interpolation command is given. Refer to "6.1.6 Group operation route change settings".
- (8) Linear interpolation command output variable
 - : It is a variable to store output values generated when absolute position linear interpolation operation (MC_MoveLinearAbsolute) and relative position linear interpolation operation (MC_MoveLinearRelative) motion function block is executed.
 - Execution completed: When the execution of function block is completed, it is On.
 - Function Block in execution: When motion function block is executed, it is On, and the execution is completed, it becomes Off.
 - Error occurrence state: In case error occurs as the motion function block is executed, it is On.
 - Error number: In case error occurs, the number that corresponds to error is generated.
 - For details on the output of motion function block, refer to "Edge operation motion function block" of "6.1.3 Basic I/O Variable".

7.4.2 Circular Interpolation Operation

It is an example program to operate circular interpolation operation with axes set to the same group. In the example program, 1-axis and 2-axis are assumed to be included in the same axis group. Refer to "7.4.5 Axis group processing" to include an axis in axis group or remove axis from axis group.


- (1) Command condition
 - : It is a condition to give circular interpolation command to the axis group.
- (2) Axis group connection state flag
 - : In case axes of the axis group to be operated is connected to motion control module, and EtherCAT communication with motion control module is normally performed, it is On.
- (3) Axis group error/Warning status flag
 - : If there are errors and warnings in axes included in the axis group, it is On.
- (4) Axis group servo-on status
 - : If axes included in the axis group are in servo-on state, it is On.
- (5) Axis group operation status flag
 - : If axes of the axis group are in operation, it is On.
- (6) Axis group 1 absolute position circular interpolation/Axis group 2 relative position circular interpolation commands
 - : In example programs, absolute position circular interpolation operation (MC_MoveCircularAbsolute) is executed in axis group 1, and relative position circular interpolation operation (MC_MoveCircularRelative) motion function block in axis 2 under the following conditions.
 - Circular interpolation operation condition is On.
 - Axes included in the axis group are normally connected.
 - There should be no errors and warnings.
 - Axes of the axis group are not in operation.

Conditions to execute motion function block may vary depending on systems.

- (7) Circular interpolation command input variables
 - : These are input variables to execute absolute position circular interpolation operation (MC_MoveCircularAbsolute) and relative position circular interpolation operation (MC_MoveCircularRelative) motion function block.
 - Command axis group: It sets axis group in which motion function block is to be executed.
 - Target position by axis: Array variables are set, and linear interpolation operation target position of axes included in axis group is set in order.
 - Circular interpolation method: It sets a method to execute circular interpolation through selection among mid-point method, center point method and radius method.
 - Axis-specific circular interpolation auxiliary point: It takes a form of array and sets auxiliary point required for circular interpolation in the order of axes included in axis group.
 - Axis-specific circular interpolation target point: It takes a form of array and sets target position in the order of axes included in axis group.
 - Circular interpolation velocity: It sets target speed to execute circular interpolation, when the speed refers to interpolation speed.
 - Circular interpolation acceleration, deceleration, jerk: Values to be applied when circular interpolation is performed are set.
 - Buffer mode: It sets the point of time when motion function block is executed. That is, it set whether to execute immediately or execute after the completion of commands which are currently being performed. For details, refer to "6.1.4 Buffer Mode Input".
- (8) Circular interpolation command output variable
 - : It is a variable to store output values generated when absolute position circular interpolation operation (MC_MoveCircularAbsolute) and relative position circular interpolation operation (MC_MoveCircularRelative) motion function block is executed.
 - Execution completed: When the execution of motion function block is completed, it is On.
 - Function Block in execution: When motion function block is executed, it is On, and the execution is completed, it becomes Off.
 - The axis group being controlled by function block: When motion function block controls the axis group, it is On.
 - Error occurrence state: In case error occurs as the motion function block is executed, it is On.
 - Error number: In case error occurs, the number that corresponds to error is generated.
 - For details on the output of motion function block, refer to "Edge motion commands" of "6.1.3 Basic I/O Variable".

7.4.3 Synchronous Operation

It is an example program on the synchronous operation in which serve axis moves in synchronization ratio set in the main axis.

- (1) Command condition
 - : It is a condition to give synchronous operation/synchronous operation cancellation commands to the axis.
- (2) Axis connection state flag
 - : When axis to be operated is connected to motion control module, and EtherCAT communication with motion control module is normally performed, it is On.
- (3) Axis error/Warning state flag
 - : If there are errors and warning in the axis, it is On.
- (4) Axis operation status flag
 - : If the axis is in operation, it is On.
- (5) 2Axis synchronous operation/Synchronous operation cancellation commands
 - : In the example program, electronic gear operation (MC_Gearln) motion function block is executed under the following conditions.
 - Synchronous operation condition is On.
 - The axis and main axis is normally connected.
 - There should be no errors and warnings.
 - The axis is not in operation.

In addition, electronic gear cancellation (MC_GearOut) motion function block is executed under the following conditions.

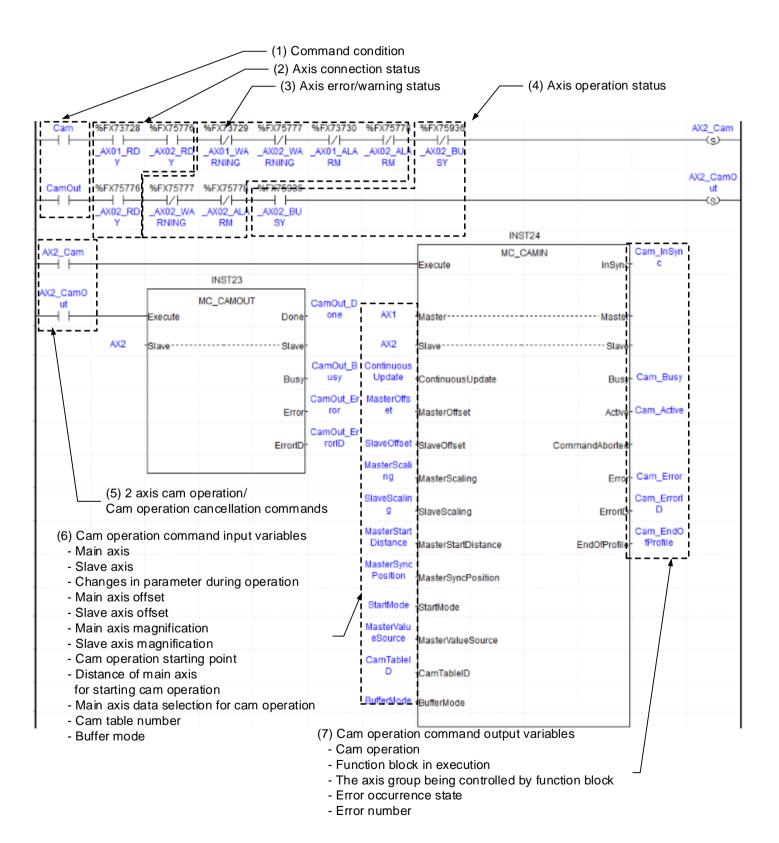
- Synchronous operation cancellation condition is On.
- The axis is normally connected.
- There should be no errors and warnings.
- The axis is in operation.

Conditions to execute motion function block may vary depending on systems.

- (6) Synchronous command input variables
 - : These are input variables to execute electronic gear operation (MC_Gearln) motion function block.
 - Main axis: It sets serve axis of synchronous operation.
 - Serve axis: It sets the axis in which synchronous operation is to be performed.
 - Changes in parameters during operation: It sets whether to apply to the operation by changing input variable values of the function block. For details, refer to "6.1.5 Changes in parameters during execution of motion function block".
 - Synchronization ratio numerator: It sets numerator value among synchronization ratio to be operated by synchronization of the operation of main axis.
 - Synchronization ratio denominator: It sets denominator among synchronization ratio to be operated by synchronization of the operation of main axis.
 - The speed of serve axis in a state of gear operation (InGear) is set as follows.

Serve axis speed = Main axis speed x (Synchronization ratio numerator/Synchronization denominator)

- Main axis data selection: It selects whether the data of main axis is set to command speed or current speed.
 In case command speed is set, synchronization is achieved based on the speed of main axis calculated in motion control module.
- In case current speed is set, synchronization is achieved by using speed data of main axis servo drive transmitted through the communication.
- Acceleration, deceleration, jerk: Each value is set in synchronous operation.
- Buffer mode: It sets the point of time when motion function block is executed. That is, it sets whether to execute immediately or execute after the completion of commands which are currently being performed. For details, refer to "6.1.4 Buffer Mode Input".


Chapter7 Program

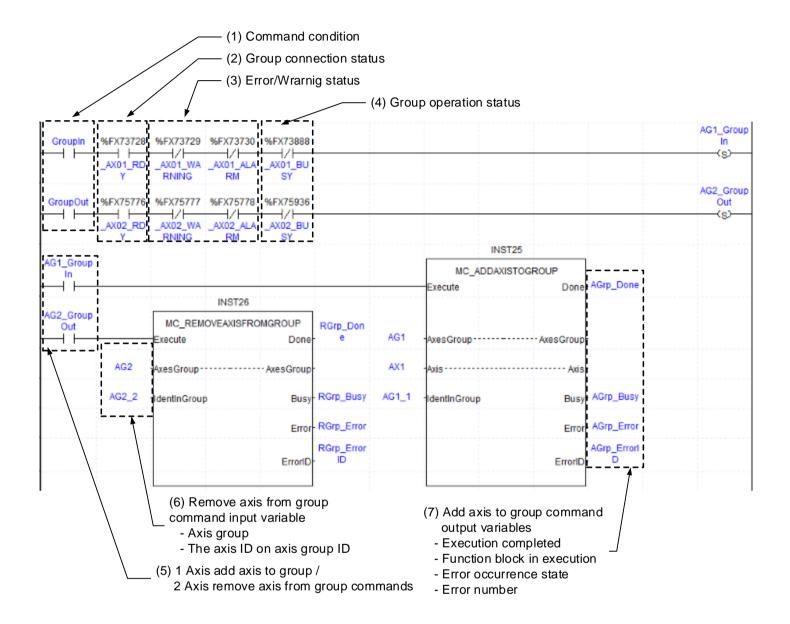
(7) Synchronous operation command output variable

- : It is a variable to store output values generated when electronic gear operation (MC_Gearln) motion function block is executed.
- Synchronous operation: When serve axis is normally synchronized in main axis after the execution of motion function block, it is On.
- Function Block in execution: When motion function block is executed, it is On, and the execution is completed, it becomes Off.
- The axis group being controlled by function block: When motion function block controls the axis group, it is On.
- Error occurrence state: In case error occurs as the motion function block is executed, it is On.
- Error number: In case error occurs, the number that corresponds to error is generated.
- For details on the output of motion function block, refer to "Edge motion commands" of "6.1.3 Basic I/O Variable".

7.4.4 CAM Operation

It is an example program on the cam operation that moves in synchronization based on cam (CAM) profile in which serve axis is set.

- (1) Command condition
 - : It is a condition to give cam operation/cam operation cancellation commands to the axis.
- (2) Axis connection state flag
 - : When the axis to be operated is connected to motion control module, and EtherCAT communication with motion control module is normally performed, it is On.
- (3) Axis error/Warning status flag
 - : If there are errors and warnings in the axis, it is On.
- (4) Axis operation status flag: If the axis is in operation, it is On.
- (5) 2-axis cam operation/Cam operation cancellation commands
 - : In the example program, cam operation (MC_CamIn) motion function block is executed under the following conditions.
 - Cam operation condition is On.
 - The axis and main axis are normally connected.
 - There should be no errors and warnings.
 - The axis is not in operation.


In addition, cam operation cancellation (MC_CamOut) motion function block is executed under the following conditions.

- Cam operation cancellation condition is On.
- The axis is normally connected.
- There should be no errors and warnings.
- The axis is in operation.

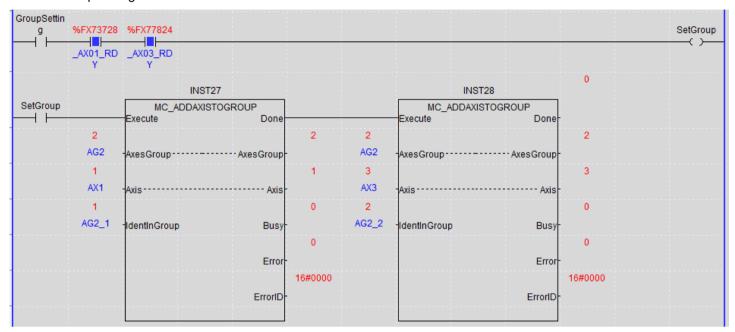
Conditions to execute motion function block may vary depending on systems.

- (6) Cam operation command input variables
 - : These are input variables to execute cam operation (MC_CamIn) motion function block.
 - Main axis: It sets main axis of cam operation.
 - Serve axis: It sets the axis in which cam operation is executed.
 - Changes in parameters during operation: It sets whether to apply to the operation by changing input variable values of the function block. For details, refer to "6.1.5 Changes in parameters during execution of motion function block".
 - Main axis offset: It sets offset values of main axis data to be used when cam table data is applied.
 - Serve axis offset: It sets offset values of serve axis data to be used when cam table data is applied.
 - Main axis magnification: It sets magnification of main axis data to be used when cam table data is applied.
 - Serve axis magnification: It sets magnification of serve axis data to be used when cam table data is applied.
 - Cam operation starting point: It sets the position of main axis which will be the starting point of cam table.
 - Distance of main axis for starting cam operation: It sets the distance of main axis in which actual cam operation starts.
 - Main axis data selection for cam operation: It selects main axis data which will be a basis of cam operation among main axis command position and main axis current position.
 - Cam table number: It sets cam data number to conduct cam operation.
 - For details on cam operation command input variables, refer to "6.4.1 Cam operation (MC_CamIn)".
 - Changes in parameters during operation: It sets whether to apply to the operation by changing input variable values of the function block. For details, refer to "6.1.5 Changes in parameters during execution of motion function block".
 - Buffer mode: It sets the point of time when motion function block is executed. That is, it sets whether to execute immediately
 or execute after the completion of commands which are currently being performed. For details, refer to "6.1.4 Buffer Mode
 Input".
- (7) Cam operation command output variable
 - : It is a variable to store output values generated when cam operation (MC_CamIn) motion function block is executed.
 - Cam operation: It is on when serve axis is synchronized in main axis according to cam data after the execution of motion function block.
 - Function Block in execution: When motion function block is executed, it is On, and the execution is completed, it becomes Off.
 - Function Block axis control in operation: In case motion function block controls the axis, it is On.
 - Error occurrence state: In case error occurs as the motion function block is executed, it is On.
 - Error number: In case error occurs, the number that corresponds to error is generated.
 - For details on the output of motion function block, refer to "Edge motion commands" of "6.1.3 Basic I/O Variable".

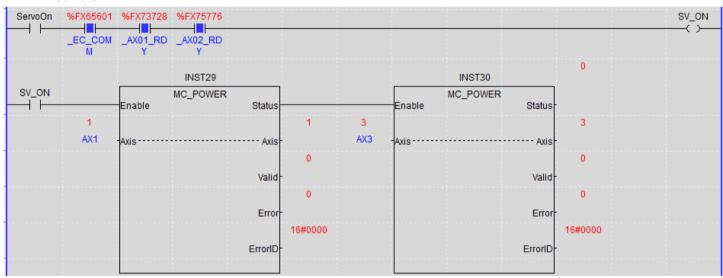
7.4.5 Axis Group Processing

- (1) Command condition
 - : It is a condition to give add axis to group/remove axis from group commands to the axis.
- (2) Axis connection status flag
 - : In case the axis to be operated is connected to motion control module, and EtherCAT communication with motion control module is normally performed, it is On.
- (3) Axis error/Warning status flag
 - : If there are errors and warning in the axis, it is On.
- (4) Axis operation status flag
 - : If the axis is in operation, it is On.
- (5) 1-axis add axis to group/2-axis remove axis from group commands
 - : In the example program, add axis to group (MC_AddAxisToGroup) motion function block is executed under the following conditions.
 - Add axis to group condition is On.
 - The axis is normally connected.
 - There should be no errors and warnings.
 - The axis is not in operation.

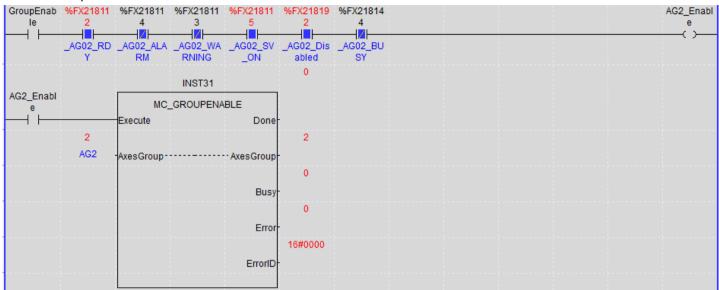
In addition, group axis exclusion (MC_RemoveAxisFromGroup) motion function block is executed under the following conditions.

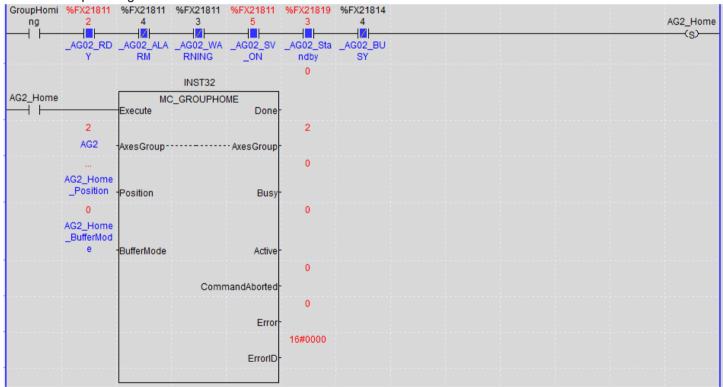

- Remove axis from group condition is On.
- The axis is normally connected.
- There should be no errors and warnings.
- The axis is not in operation.

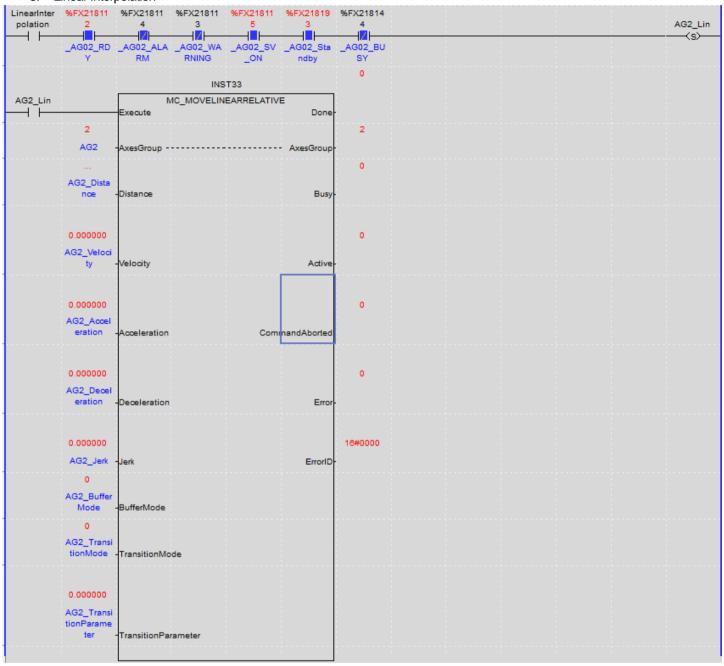
Conditions to execute motion function block may vary depending on systems.

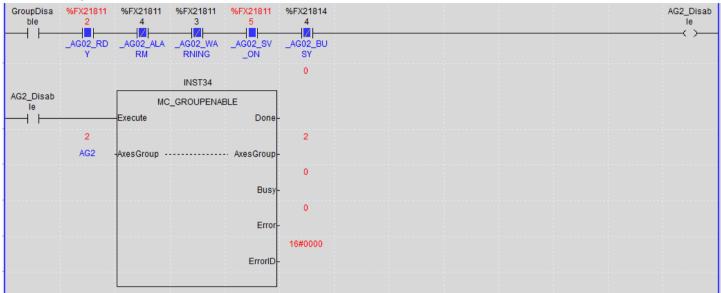

- (6) Remove axis from group command input variables
 - : These are variables to execute group axis exclusion (MC_RemoveAxisFromGroup) motion function block.
 - Axis group: It sets the group to exclude the axis.
 - The axis ID on axis group ID: It sets ID values granted when the axis is included in axis group.
- (7) Add axis to group command output variable
 - : It is a variable to store output values generated when add axis to group (MC_AddAxisToGroup) motion function block is executed.
 - Execution completed: When motion function block is normally executed, it is On.
 - Function Block in execution: When motion function block is executed, it is On, and the execution is completed, it becomes Off.
 - Error occurrence state: In case error occurs as the motion function block is executed, it is On.
 - Error number: In case error occurs, the number that corresponds to error is generated.
 - For details on the output of motion function block, refer to "Edge motion commands" of "6.1.3 Basic I/O Variable".

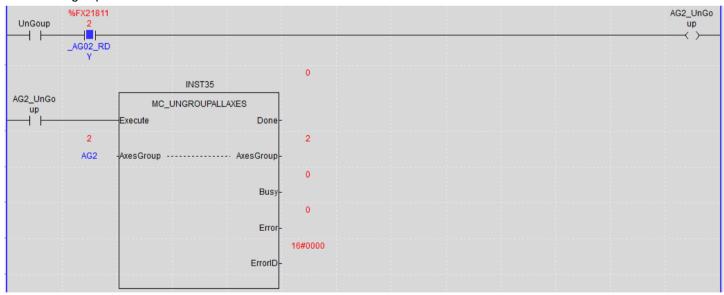
7.4.6 Operation Example of Axis Group

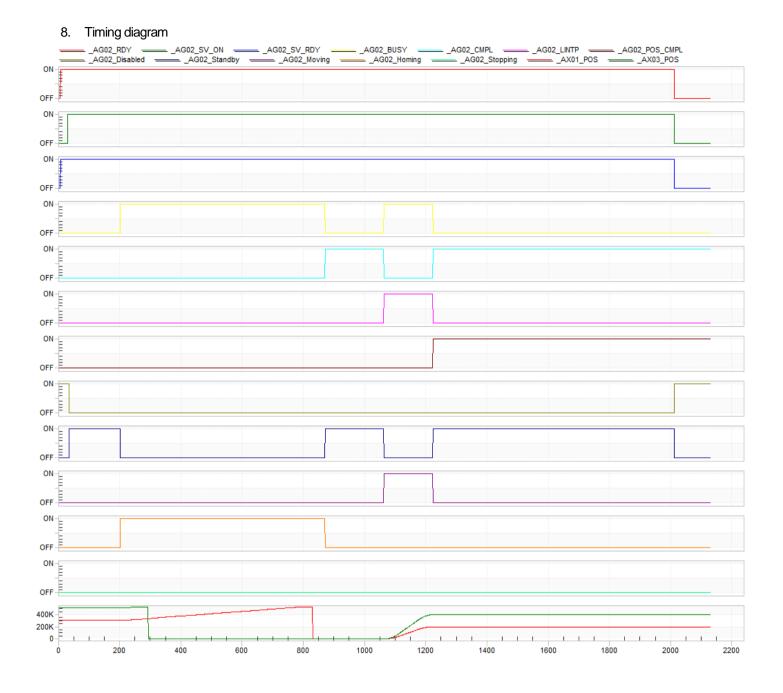

1. Group Setting

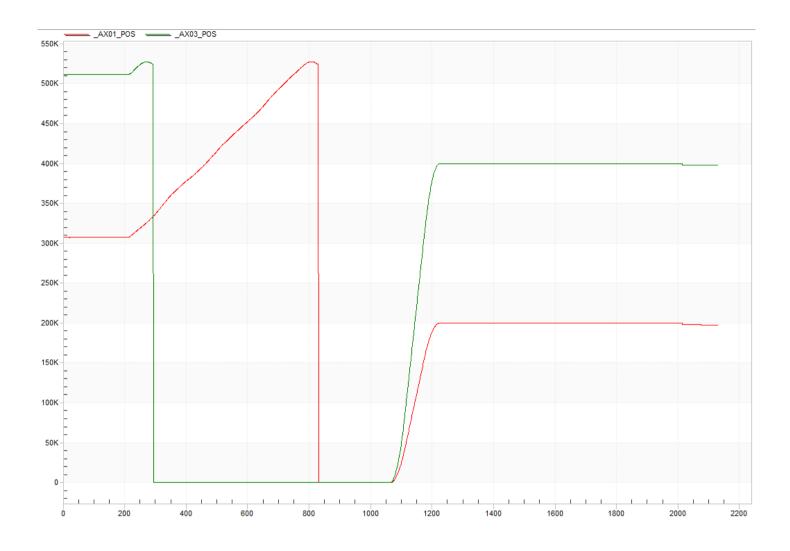

2. Servo On


3. Group Enable


4. Group Homing


5. Linear Interpolation




6. Group Disable

7. Ungroup

7.5 I/O Processing Program

Motion controller has the input of 8 points and output of 16 points internal, and it can expand input and output points using external EtherCAT input/output modules. EtherCAT input and EtherCAT output modules possible to be mounted on the outside can be expanded up to 64 stations and up to 1,024 points.

7.5.1 Input Signal Processing

Internal input signals and signals inputted in external input module can be used in the program using an internal flag of the motion control module. For details on the kinds and functions of flags, refer to "Appendix1. Flag".

7.5.2 Output Signal Processing

Internal output signals and signals inputted in external output module can be used in the program using an internal flag of the motion control module. For details on the kinds and functions of flags, refer to "Appendix1. Flag".

Chapter 8 Motion Control Function

8.1 Origin Determination

In case the position control function of motion controller is used, the origin must be determined first to execute commands based on the absolute coordinate position. The position value of absolute coordinates is the distance based on the predetermined origin(0 position). The origin determination means setting the origin of the machine for position control using absolute coordinates.

8.1.1 Origin Determination

1. Methods to determine the origin

There are two methods to determine the origin of the machine as below.

(1) Homing

It is a method to determine the origin of the machine by moving the machine using a sensor connected to servo drive with homing (MC_Home) motion function block.

When homing command is executed, the origin determination becomes the origin indetermination status, and homing is successfully completed, it becomes the origin determination status.

(2) Current position setting

After moving the machine to a certain position by using JOG operation (LS_Jog) or relative coordinate position control (MC_MoveRelative) motion function block, the position can be set to the specific position with the current position location setting (MC_Setposition) motion function block. In this case, the position is recognized as an absolute coordinate and becomes origin determination status.

The origin determination status of axis can be identified with motion axis flag AXxx_HOME_CMPL. (xx: axis number)

2. Origin determination when using absolute encoders

In case of using absolute encoder in servo drive, absolute data value is maintained by battery backup even if the power is off. Motion control module can continue to maintain the origin determination status by reading the current position from the value of absolute encoder and calculating absolute coordinate position when it is connected to servo drive.

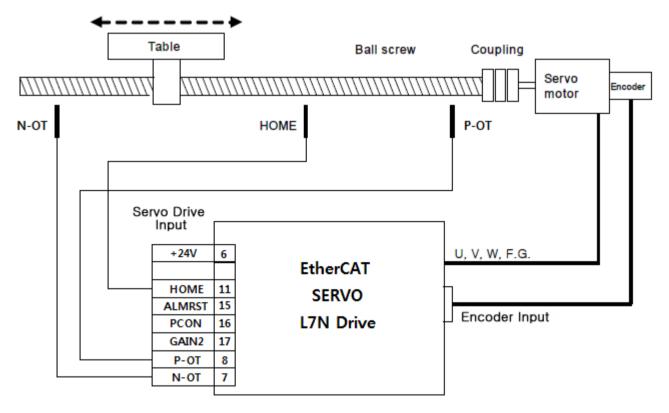
To this end, the encoder selection of basic parameters among operating parameters should be set to '1: Absolute encoder' in case of using absolute encoder. Even though the power of motion control module and servo drive is off after the establishment of origin determination status, the previous origin determination status is maintained by calculating absolute coordinate position when servo drive is connected in case encoder selection parameter is '1: Absolute encoder' when the power is re-applied.

In absolute coordinate system using absolute encoder as above, the absolute coordinate position can be controlled without the origin determination even after power off/on.

3. Change to the origin indetermination status

The absolute position control operation cannot be performed since motion control module becomes the origin indetermination status in the following cases.

- (1) In case of re-connection after servo drive power off when using an incremental encoder
- (2) In case of re-connection after PLC power off/on when using an incremental encoder
- (3) In case homing is not normally completed after the execution of homing command

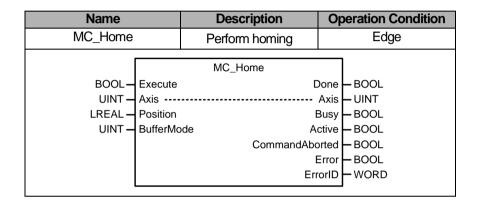

In case of the origin indetermination status as above, the origin determination should be executed for absolute coordinate position control operation.

8.1.2 Homing

1. Operation

Homing is performed to establish the origin of the machine after the power is applied. Before performing the homing, parameters related to the homing of servo drive must be set in each axis. When the origin position is determined by homing, the origin detection signal is not recognized during the motion control operation.

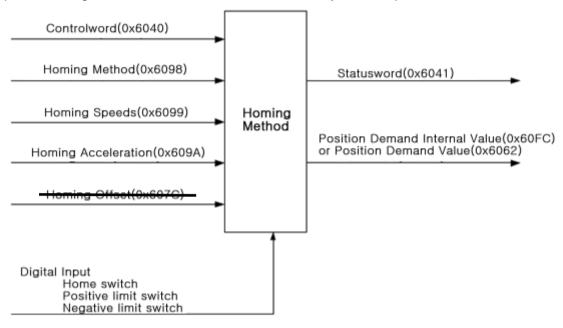
The contact performed at the time of homing is entered through connector of servo drive (EtherCAT CoE support servo drive). Typical wiring is as follows.


For the performance of homing, a method suitable for the system of users for homing operation mode (EtherCAT CoE support drives: Refer to instruction manual for the relevant drive) should be selected.

In motion control module, actual operation after starting homing is performed in servo drive, and homing method to support complies with servo drive. Before setting the homing, homing-related parameters are to be set in servo parameters of the axis.

■ Example of setting homing parameters

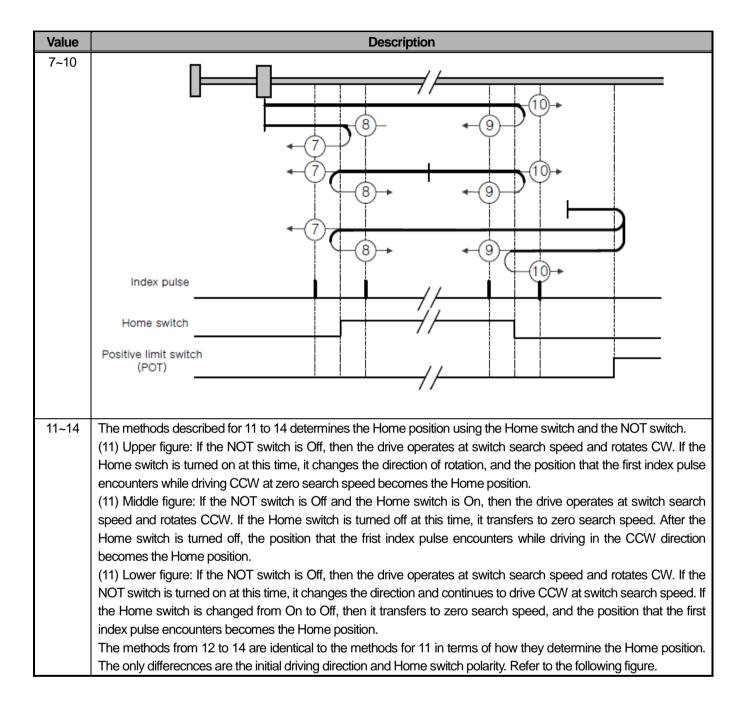
✓ Index	Name	Unit	Current Value	Initial Value	Access
✓ 6098	Homing Method	-	0x22	0x22	rw
<u>-</u> ✓ 6099:00	Homing Speeds	-	0×02	0×02	rw
✓ 6099:01	Speed during search for switch	Vel, Unit	0x000000A0	0x000000A0	rw
<u>√</u> 6099:02	Speed during search for zero	Vel, Unit	0×00000020	0×00000020	rw
🗹 609A	Homing Acceleration	Acc, Unit	0x0000C350	0x0000C350	rw

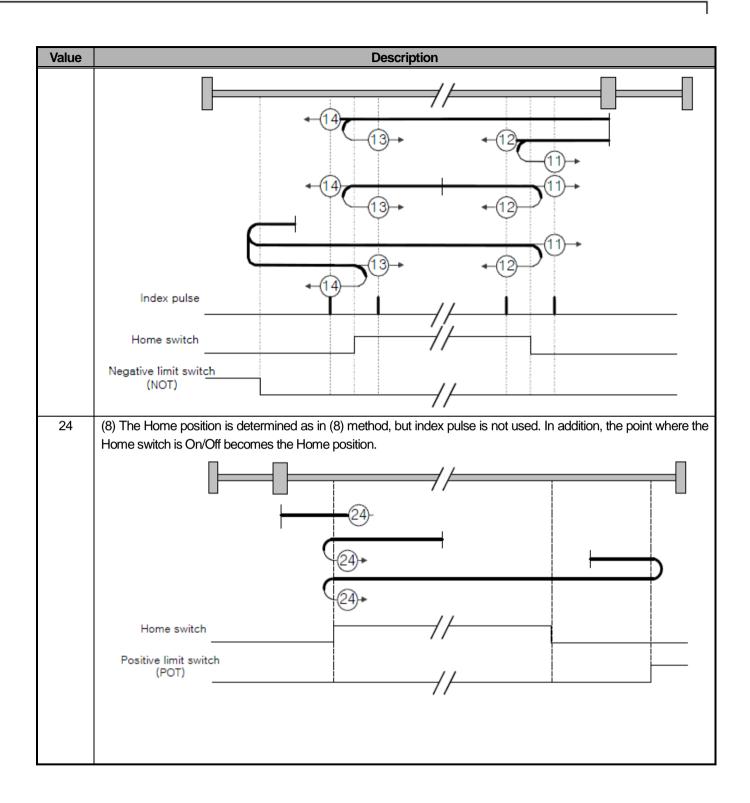

Relevant motion function block

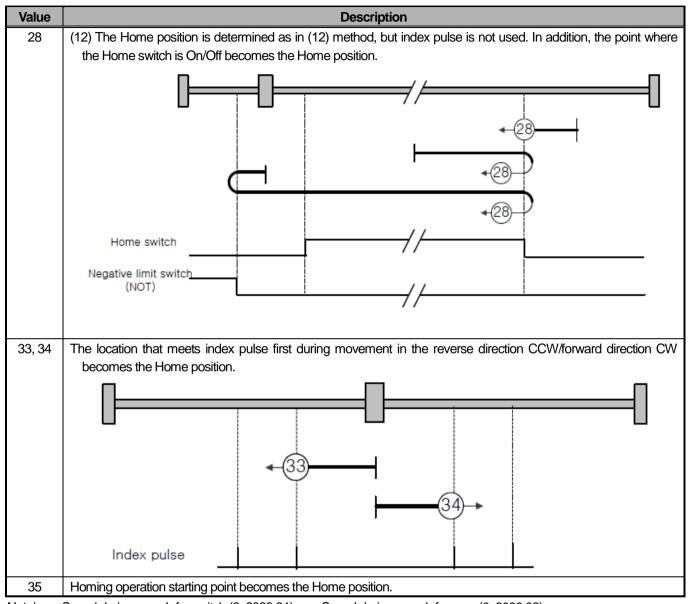
Name		Description	Op	eration Condition
MC_GroupHon	ne Perform group homing			Edge
BOOL — UINT — LREAL[] — UINT —	Execute AxesGro Position BufferMo	MC_GroupHome [Dup AxesGode A CommandAbo	Busy ctive	- UINT - BOOL - BOOL - BOOL - BOOL
		Eri	rorID	- WORD

2. XDL- N Series servo drive homing parameters and operation

The following figure shows input and output definitions of homing-related XDL N series servo drive parameters. The velocity, acceleration and homing methods can be specified. Here, the origin (Home) offset gets the origin of user coordinate system applied as the origin. However, Home offset can't be used. Set by Position input variable of MC_Home, MC_GroupHome.




(1) Parameter related to homing


Index	Sub	Name	Data Type	Unit
0x6040	-	Control word	UINT	-
0x6041	-	Status word	UINT	1
0x607C	-	Homing Offset	DINT	[pls]
0x6098	-	Homing Method	SINT	-
0x6099	-	Homing Speeds	-	-
	0	Item Number	USINT	-
	1	Speed during search for switch	UDINT	[pls/s]
	2	Speed during search for zero	UDINT	[pls/s]
0x607D	-	Software Position Limit	-	-
	0	Item Number	USINT	-
	1	Min position limit	DINT	[pls]
	2	Max position limit	DINT	[pls]
0x609A	-	Homing acceleration	UDINT	[pls/s²]

(2) Homing Method(0x6098)

Value	Description
0	No Homing
1, 2	 (1) If NOT switch is Off, the initial movement direction becomes forward direction CW. If NOT switch is On, change of direction is made. The location that meets the first index pulse during operation in reverse direction CCW after NOT switch is On becomes the Home position. (2) If POT switch is Off, the initial movement direction becomes reverse direction CCW. If POT switch is On, change of direction is made. The location that meets the first index pulse during operation in forward direction CW after POT switch is On becomes the Home position.
	Index pulse Negative limit switch (NOT) Positive limit switch (POT)
7~10	Through (7) to (10) methods, the origin position is determined by the Home switch and POT switch. (7) Upper figure: If POT switch is Off, operation is made at switch search velocity, and the initial movement direction becomes reverse direction CCW. If the Home switch is On, change of direction is made. Afterwards, the location that meets the first index pulse during operation in forward direction CW becomes the Home position, and operation is made at Zero search velocity. (7) Middle figure: If POT switch is Off, and the Home switch is On, operation is made at switch search velocity, and the initial movement direction becomes forward direction CW. If the Home switch is Off, the speed is changed to Zero search velocity. Afterwards, the location that meets the index pulse first during operation in forward direction CW becomes the Home position. (7) Lower figure: If POT switch is Off, and the Home switch is On, operation is made at switch search speed, and the initial movement direction becomes reverse direction CCW. If POT switch is On, change of direction is made. When the Home switch is changed from On to Off, operation is made at Zero search velocity, and the location where that meets index pulse first during continuous operation in forward direction CW becomes the Home position.
	(8) to (10) methods have the same positioning concept in homing with the above (7) method except for the initial operational direction and motions according to the Home switch polarity. Refer to the figure below.

Note) — : Speed during search for switch (0x6099:01), \rightarrow : Speed during search for zero (0x6099:02)

8.2 Type of Control Operation

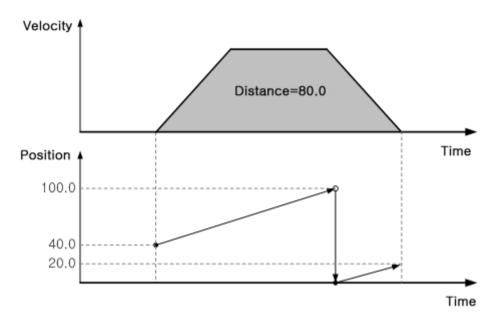
Motion control modules execute control through programs set in motion control program. Kinds of motion control operations include speed position control, speed velocity control, speed torque control, interpolation control, switching control between position/torque, and switching control between velocity/torque.

8.2.1 Single-axis Position Control

It conducts position control of the axis specified after the execution by motion function block (\(\text{Relative position operation } \) (MC_MoveRelative)_\(\) and \(\text{Absolute position operation } \) (MC_MoveAbsolute)_\(\)) from starting position (current stop position) to target position (position of the point to move)

1. Control by absolute coordinate method (「Absolute position operation (MC_MoveAbsolute)」)

- (1) It conducts position control from starting position to target position (location specified in 'Position' of absolute position on operation command).
- (2) The position control is carried out based on the position (the origin position) specified in the homing.
- (3) In direction (Direction) input, the direction to be operated is specified. It is valid only if operation parameter [Infinite running repetition] setting is '1: Enable'.
 - Setting value: 0-Not specified, 1—Forward direction, 2—Shortest distance direction, 3—Reverse direction, 4—Current direction
 - When the shortest direction distance is specified, the operation is made by selecting the direction that can go to the shortest direction automatically depending on the form of the axis.
 - Motions according to the direction (Direction) input are as follows.

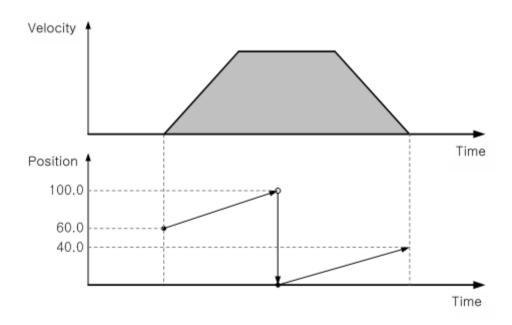

(a) 0- Not specified

The position value that exceeds repetitive length repetition position can be specified. In case of setting the position value that exceeds the infinite running repetition position, the difference from target position to current position becomes positioning distance. The command position after the absolute position operation is calculated by the following equation.

Command position = Target position – (Infinite running repetition position x n)
(n: Integer value in which infinite running repetition position x n does not exceed the target position)

[Example] The absolute position operation is executed with the following settings.

- Infinite running repetition position: 100.0
- Starting position: 40.0
- Target position: 120.0
- Command position after the absolute position operation = $120.0 (100.0 \times 1) = 20.0$

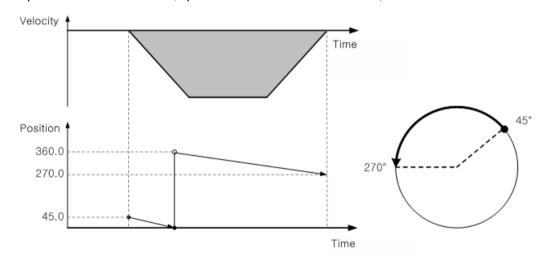


(b) 1-Forward direction

Positioning is executed toward the absolute position of forward direction. In case the target position is set with the range that exceeds infinite running repetition position, error (error code: 0x1081) occurs.

[Example] The absolute position operation is executed with the following settings.

- Infinite running repetition position: 100.0
- Starting position: 60.0
- Target position: 40.0

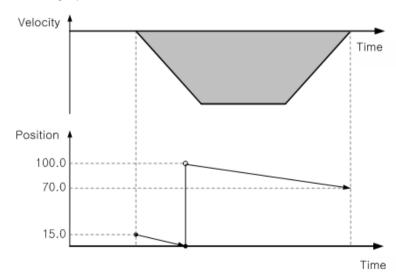

(c) 2-Shortest distance direction

Positioning is executed by automatically determining the direction of rotation possible to move through shorter distance from the starting position to target position. That is, positioning toward closer direction to target position based on the starting position is carried out.

In case the target position is set with the range that exceeds infinite running repetition position, error (error code: 0x1081) occurs.

[Example] The absolute position operation is executed with the following settings.

- Infinite running repetition position: 360.0
- Starting position: 45.0
- Target position: 270.0
- Since the movement distance is 225.0°in case of the operation in forward direction, and 135.0°in case of the operation in reverse direction, operation is made in reverse direction, the shortest distance direction.



(d) 3-Reverse direction

Positioning is executed toward the absolute position of reverse direction. In case the target position is set with the range that exceeds infinite running repetition position, error (error code: 0x1081) occurs.

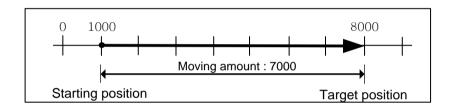
[Example] The absolute position operation is executed with the following settings.

- Infinite running repetition position: 100.0
- Starting position: 15.0
- Target position: 70.0

(e) 4- Current direction

Positioning is executed depending on the current operating direction.

In case the current operating direction is forward, operation is made in the same way as in Direction='1-forward direction' setting.

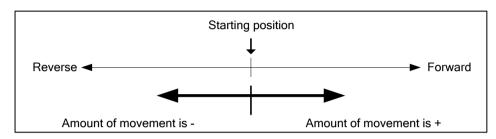

In case the current operating direction is reverse, operation is made in the same way as in Direction='3 reverse direction' setting.

- (4) In case operation parameter 「Infinite running repetition」 setting is '0: disable', operating direction is determined as follows.
 - Starting position < target position: Positioning operation in forward direction
 - Starting position > target position: Positioning operation in reverse direction

[Example] Executes Absolute coordinate, single-axis position control with the following setting

Start position: 1000,▶ Target position: 8000

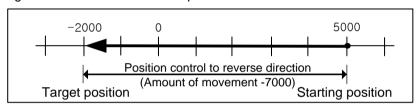
The moving amount to forward direction is 7000 (7000=8000-1000).



■ Relevant motion function block

U	Description	Op	peration Condition	
Abso	Absolute positioning operation		- Lana	
!			Edge	
MC_	_MoveAbsolute			
xecute		Done	– BOOL	
xis		- Axis	– UINT	
ontinuousUpda	ate	Busy	– BOOL	
osition		Active	– BOOL	
elocity	CommandAl	orted	– BOOL	
cceleration		Error	– BOOL	
eceleration	E	rrorID	– WORD	
erk				
irection				
ufferMode				
	MC_xecute xis ontinuousUpdosition elocity cceleration ecceleration erk irection	operation MC_MoveAbsolute xecute xis ontinuousUpdate osition elocity CommandAb coceleration eccleration ecrk irection	operation MC_MoveAbsolute xecute Done xis	

2. Control by Incremental method (「Relative positioning operation(MC_MoveRelative)」)


- (1) It moves the object as much as the target moving amount from start position. Unlike the target position of the absolute coordinate, the value specified on target position is not position value. That is a transfer amount from the starting position.
- (2) Transfer direction is determined by the sign of moving amount.
 - > Transfer direction (+) or no sign: forward direction positioning (starting position increases)

[Example] Executes Absolute coordinate, single-axis position control with the following setting

Start position: 5000,

It goes to reverse direction and stops at the -2000.

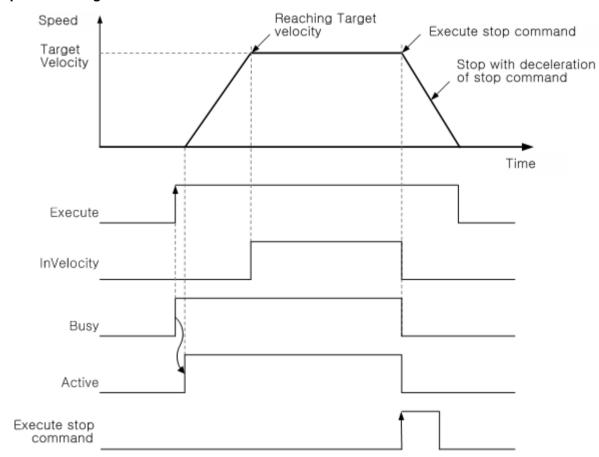
■ Relevant motion function block

Name		Descri	ption	Op	peration Condition
MC_MoveRelative)	Relative po opera	•		Edge
Γ		MC_Move	Relative		
BOOL — E	Execute	Э		Done	– BOOL
UINT —	Axis			- Axis	– UINT
BOOL - (Continu	iousUpdate		Busy	– BOOL
LREAL —	Distanc	e		Active	– BOOL
LREAL - \	Velocity	/	CommandA	borted	– BOOL
LREAL —	Acceler	ation		Error	-BOOL
LREAL —	Deceler	ration	E	rrorID	– WORD
LREAL -	Jerk				
UINT — E	BufferM	1ode			
L					I

8.2.2 Single-axis Speed Control

Execution is made by motion function block(Specified velocity operation (MC_MoveVelocity)), and operation is performed at the set velocity until stop condition is inputted.

1. Features of Control


- (1) Speed control operation of the specified axis is executed using specified velocity and acceleration/deceleration.

 The velocity control is executed through a method to transmit the target position value that corresponds to the target velocity using position control of servo drive.
- (2) In direction input, the direction to operate is specified. (However, the forward direction is based on the operating direction specified with the target velocity (Velocity) input. For example, if a negative value is specified in target velocity (Velocity) value, and reverse direction in direction (Direction) input, the axis is finally operated in forward direction.)
 - Setting value: 1-Forward, 2-Reverse, 3-Curent direction
- (3) Negative number can be set for target velocity (Velocity) input value. In case the target velocity setting value is negative number, operating direction becomes the opposite direction of the previously specified direction.
 - Forward operation
 - Velocity > 0, Direction=1: Forward
 - Velocity < 0, Direction=2: Reverse
 - Reverse operation
- (4) After reaching the target velocity, InVelocity output of the function block is On (On). If there is a pending command, the pending command is executed after InVelocity output is On.
- (5) The speed control which is currently being executed is stopped with halt (MC_Halt) or immediate stop (MC_Stop) motion function block.

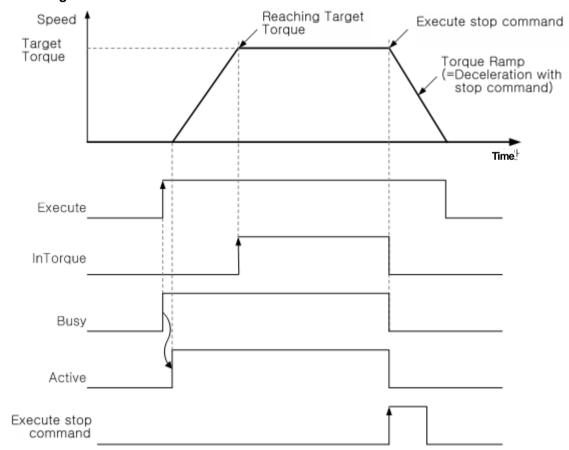
2. Relevant motion function block

Name	Desc	ription	Op	peration Condition	
MC MoveVelocity	Specifie	Specified velocity		Edge	
IVIC_IVIOVE VEIOCITY	ope	ration		Lage	
	_	veVelocity			
	ecute		elocity	– BOOL	
UINT – Ax	is	•••••	- Axis	— UINT	
BOOL - Co	ntinuousUpdate		Busy	– BOOL	
LREAL - Ve	locity		Active	– BOOL	
LREAL - Ac	celeration	CommandAl	borted	-BOOL	
LREAL - De	eceleration		Error	-BOOL	
LREAL - Jei	rk	E	rrorID	- WORD	
UINT — Dir	rection				
UINT — Bu	fferMode				
				1	

3. Operation Timing

8.2.3 Single-axis Torque Control

If motion function block(Torque control(MC_TorqueControl)) is executed, torque control of the axis is made with the set torque value.


1. Features of Control

- (1) Torque control of the specified axis is made using target torque value and torque rising slope.
- (2) Torque rising slope (TorqueRamp) is the rate of change in torque per second to the target torque, and time to reach the target torque can be calculated as follows.
 - Time to reach the target torque(s) = target torque (Torque) / torque rising slope (TorqueRamp)
- (3) Torque control mode is executed using torque control mode of servo drive.
- (4) Target torque values are rounded to two decimals and reflected in [0.1%] unit.
- (5) In Direction input, the direction to be operated is specified.
 - (However, the forward direction is based on the operating direction specified with the Torque input. For example, if a negative value is specified in Torque value, and reverse direction in direction (Direction) input, the axis is finally operated in forward direction.)
 - Setting value: 1-Forward, 2-Reverse, 3-Current direction
- (6) Negative number can be set for Torque (target torque) input value. In case the target torque setting value is negative number, operating direction becomes the opposite direction of the previously specified direction.
 - Forward operation
 - Torque > 0, Direction=1: Forward
 - Torque < 0, Direction=2: Reverse
 - Reverse operation
 - Torque > 0, Direction=2: Reverse
 - Torque < 0, Direction=1: Forward
- (7) The setting range of the torque values are as follows.
 - -1000.0 % ~ 1000 %
- (8) After reaching the target torque, Intorque output of function block is On. In case there is a pending command, the pending command is executed after InTorque output is On.
- (9) Torque control which is currently being executed is stopped with halt(MC_Halt) or immediate stop (MC_Stop) motion function block.

2. Relevant motion function block

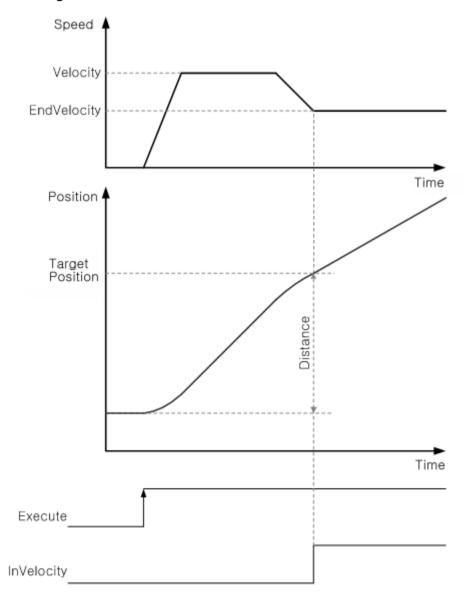
Name		Description	Op	peration Condition
MC_TorqueCont	trol	Torque Control		Edge
		MC_TorqueControl		
BOOL -	Execute	InTo	rque	– BOOL
UINT -	Axis		Axis	– UINT
BOOL -	ContinousU	Ipdate	Busy	– BOOL
LREAL —	Torque	Α	ctive	– BOOL
LREAL —	TorqueRam	np CommandAb	orted	– BOOL
LREAL —	Velocity		Error	– BOOL
LREAL —	Acceleration	n Er	rorID	– WORD
LREAL —	Deceleratio	n		
LREAL —	Jerk			
UINT —	Direction			
UINT —	BufferMode)		

3. Operation Timing

8.2.4 Specified Velocity Operation after Position Operation

Speed control of the axis specified after being executed by motion function block (Specified speed operation after relative position operation (MC_MoveContinuousRelative) and Specified speed operation after absolute position operation (MC_MoveContinuousAbsolute)) is carried out after the execution of position control that ends with end rate specified from starting position (current stop position) to target position (position of point to move) at the rate specified in end velocity (EndVelocity) if there are no pending commands.

1. Features of Control


- (1) Position control that ends with end rate specified from staring position to target position is carried out. .
- (2) Position control is executed based on position (the origin position) specified in the homing.
- (3) In case of 「Specified speed operation after the absolute position operation (MC_MoveContinuousAbsolute)」, the direction to operate is specified in Direction input, which is valid only if operation parameter 「Infinite running repetition」 is set to '1: Enable'.
 - Setting value: 0-Not specified, 1—Forward, 2—Shortest distance direction, 3—Reverse, 4—Current direction
- (4) The end rate is reached after the completion of position control operation to target position, InEndVelocity output of function block is On. If there is a pending command, the pending command is executed after InEndVelocity output is On.

2. Relevant motion function block

Relevant motion function block				
Name		Description		Operation Condition
MC_MoveContinuousAbsolute	· ·	relocity operation after position operation	er	Edge
BOOL — Cor LREAL — Pos LREAL — End LREAL — Vel LREAL — Acc LREAL — Dec	MC_MoveCorecute s ntinousUpdate sition dVelocity ocity celeration celeration	InEndVelocity InEndVelocity Axis Busy Active CommandAborted Error ErrorID	— UII — BC — BC — BC	NT OOL OOL OOL
LREAL — Jerl UINT — Dire UINT — Buf	ection			

Name		Description		Operation Condition	
MC MoveContinuousRelative	Specified v	elocity operation afte	er	Edge	
IVIC_IVIOVECOI IIII IUOUSINEIAIIVE		position operation		Eage	
	MC_MoveCo	ntinousRelative]		
BOOL — E	Execute	InEndVelocity	_вос	DL	
UINT —	Axis	Axis	- UIN	Т	
BOOL—	ContinousUpdate	Busy	– вос	DL	
LREAL —	Distance	Active	-вос	DL	
LREAL —	EndVelocity	CommandAborted	- BOC	DL	
LREAL —	Velocity	Error	- BOC	DL	
LREAL —	Acceleration	ErrorID	- wo	RD	
LREAL —	Deceleration				
LREAL —	Jerk				
UINT —	BufferMode				

3. Operation Timing

8.2.5 Switching Control

In motion control module, switching control means real-time control switch between position control / velocity control / torque control. In case the control mode that is currently being executed (position control, velocity control, torque control) are intended to change to a different control mode immediately, BufferMode of commands is to be set to Aborting, and relevant motion function block is to be executed.

1. Position-velocity switching control

When specified speed operation (MC_MoveVelocity) is executed in the axis in absolute/relative position operation, the position control is switched to velocity control. The velocity at the time of being changed to velocity control is operated continuously from the velocity operated with the previous position control to the target velocity of the currentvelocity control. The next operation can be continued by conducting halt (MC_Halt) during operation with velocity control, performing operation stop with immediate stop (MC_Stop) motion function block or executing other motion function block.

2. Velocity-position switching control

When absolute/relative/additive position control (MC_MoveAbsolute, MC_MoveRelative, MC_MoveAdditive) motion function block is executed in the axis in specified speed operation during velocity control, the velocity control is switched to position control. The velocity at the time of being changed to position control is operated continuously from the velocity operated with the previous velocity control to the target velocity of the current position control. The next operation can be continued by conducting halt (MC_Halt) during operation with position control, performing operation stop with immediate stop (MC_Stop) motion function block or executing other motion function block.

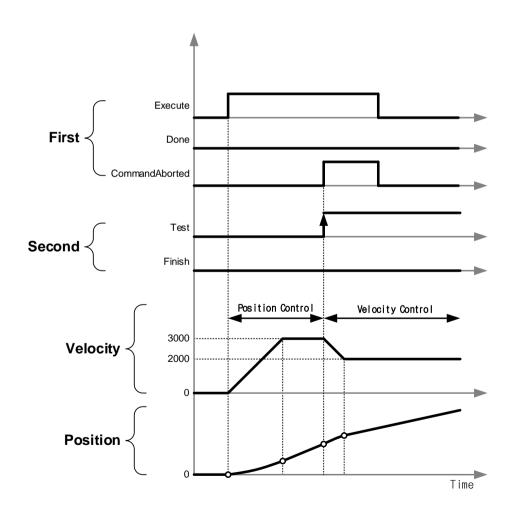
3. Position-torque switching control

When torque control (MC_TorqueControl) motion function block is executed in the axis in absolute/relative position operation during position control, the position control is switched to torque control. The torque at the time of being changed to torque control is operated continuously from the current torque value operated with the previous position control to the target torque of the torque control. The next operation can be continued by conducting halt (MC_Halt) during operation with torque control, performing operation stop with immediate stop (MC_Stop) motion function block or executing other motion function block.

4. Torque-position switching control

When absolute/relative/additive position control(MC_MoveAbsolute, MC_MoveRelative, MC_MoveAdditive) motion function block is executed in the axis in torque control operation, the torque control is switched to position control, when torque value is reduced to 0, and position control continues to operate after a stop. The next operation can be continued by conducting halt (MC_Halt) during operation with position control, performing operation stop with immediate stop (MC_Stop) motion function block or executing other motion function block.

5. Velocity -torque switching control


When torque control (MC_TorqueControl) motion function block is executed in the axis in specified speed operation during velocity control, the velocity control is switched to torque control. The torque at the time of being changed to torque control is operated continuously from the current torque value operated with the previous velocity control to the target torque of the torque control. The next operation can be continued by conducting halt (MC_Halt) during operation with torque control, performing operation stop with immediate stop (MC_Stop) motion function block or executing other motion function block.

6. Torque- velocity switching control

When specified speed operation (MC_MoveVelocity) motion function block is executed in the axis in torque control operation during speed control, the torque control is switched to velocity control, when torque value is reduced to 0, and velocity control continues to operate after a stop. The next operation can be continued by conducting halt (MC_Halt) during operation with velocity control, performing operation stop with immediate stop (MC_Stop) motion function block or executing other motion function block.

7. Example of using switching control

 	First		EN ENO-		Secon	d	
	Execute MC_MOVEABS	DLUTE Done-	First.Done	IN1 OUT		—Execute MC_MOVEVE	.OCITY InVelocity-
MyAxis	-Axis	Axis-	Test	-IN2	MyAxis	-Axis	Axis-
0	-ContinousUpdate	Busy-			0	-ContinousUpdate	Busy-
6000	-Position	Active-			2000	-Velocity	Active-
3000	-Velocity	CommandAborted-			10	-Acceleration	CommandAborted
10	-Acceleration	Error-			10	-Deceleration	Error-
10	-Deceleration	ErrorID-			0	-Jerk	ErrorID-
0	-Jerk				1	-Direction	
1	-Direction				0	-BufferMode	
0	-BufferMode						

8.2.6 Axis Group Control

Axis group control is a function to control the trajectory of moving objects by setting involved multiple axes into one axis group. For axis group control, axis group is to be set.

Axis group operation includes linear interpolation, circular interpolation and helical interpolation.

As for coordinate system in which axis group control is operated, only Cartesian coordinate system is supported

1. Axis group settings

For axis group control, axis group should be set and enabled prior to the execution of operation.

Configuration axis can be specified, and axis group is set using XG5000. In addition, the use of motion function block makes it possible to add axes to axis group or remove them from it.

When axis group is configured, axis group operation can be executed after enabling the axis group.

(1) Add axis to group

It means adding an axis to the axis group. The configuration axis specified into IdentInGroup is added to the axis group specified in AxesGroup input.

It can be executed only in case where the axis group is in group disablement (GroupDisabled) and group standby (GroupStandBy) state.

Name	Description	Operation Condition	
MC_AddAxisToGroup	Add axis to group	Edge	
	MC_AddAxisToGroup		
BOOL — E	Execute Done	– BOOL	
UINT —	AxesGroup AxesGroup	– UINT	
UINT —	Axis Axis	– UINT	
UINT — I	dentInGroup Busy	– BOOL	
	Error	– BOOL	
	ErrorID	- WORD	
L]	

(2) Remove axis from group

It means removing an axis from the axis group. The configuration axis specified into IdentInGroup is removed from the axis group specified in AxesGroup input.

It can be executed only in case where the axis group is in group disablement (GroupDisabled) and group standby (GroupStandBy) state.

In case there are no remaining axes in the axis group, the axis group is changed to disabled state.

Name	Description	Operation Condition	
MC_RemoveAxisToGroup	Remove axis from group	Edge	
Г	MC_RemoveAxisFromGroup		
BOOL - EX	xecute Done	-BOOL	
UINT — Ax	cesGroup AxesGroup	— UINT	
UINT — Ide	entInGroup Busy	– BOOL	
	Error	– BOOL	
	ErrorID — WORD		

(3) Remove all axes from group

It means removing all axes from the axis group.

Name	Description	Operation Condition
MC_UngroupAllAxes	Remove all axes from group	Edge
BOOL — E UINT —	AxesGroup AxesGroup Busy Error	– BOOL – UINT – BOOL – BOOL – WORD

(4) Enable Group

It changes the status to enabled state in which axis group command can be executed.

The axis group cannot be enabled in the following cases.

- In case there is no axis group configuration axis, or axes included in the axis group is not connected to network
- In case the configuration axis of the axis group to be enabled belongs to other enabled axis group
- In case there is an axis in operation among configuration axes in the axis group
- In case the 'unit' of configuration axes in the axis group is not the same

Description	Operation Condition
Enable group	Edge
MC_GroupEnable	
ecute Done	- BOOL
esGroup AxesGroup	— UINT
Busy	– BOOL
Error	– BOOL
ErrorID	— WORD
	Enable group MC_GroupEnable ecute Done esGroup

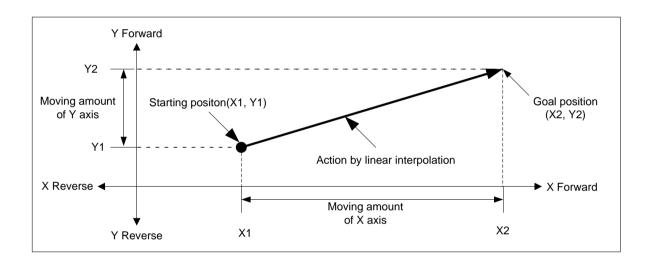
(5) Disable Group

It changes the axis group to be group disabled state.

In case the axis group is in operation, the axis group is changed to be disabled state after the immediate stop.

Name	Description	Operation Condition		
MC_GroupDisable	Disable group	Edge		
BOOL _ I	AxesGroup AxesGroup Busy Error	- BOOL - UINT - BOOL - BOOL - WORD		

8.2.7 Linear Interpolation Control


Interpolation of multiple axes from staring point (current stop position) to target position is performed with linear trajectory by using relevant axes set in the axis group.

Linear interpolation can be performed up to 10 axes.

1. Linear interpolation control with absolute coordinates

(\(\text{Absolute positioning linear interpolation operation(MC_MoveLinearAbsolute)} \))

- (1) Executes linear interpolation from starting position to the target position designated on positioning data. Positioning control is carried out based on the position specified from homing.
- (2) The direction of movement depends on the starting position and the target position for each axis.
 - Starting position < target position: Positioning operation in forward
 - Starting position > target position: Positioning operation in reverse

- (3) Interpolation that is currently being executed is stopped with group halt (MC_GroupHalt) or group immediate stop (MC_GroupStop) motion function block.
- (4) The speed value set in absolute position liner interpolation operation (MC_MoveLinearAbsolute) motion function block means synthesis rate of axes that make up the axis group.

Chapter8 Motin Control Function

Speed of each-axis and operating speed are as follows.

Interpolatinspeed(F) = Operationspeedsetinposition data

Interpolating moving amount (S) =
$$\sqrt{S_1^2 + S_2^2 + ... + S_{10}^2}$$

$$Axis1speed(V_1) = Interpolatingspeed(F) \times \frac{Main axismovingamount(S_1)}{Interpolatingmovingamount(S)}$$

$$Axis2 \text{ speed } (V_2) = Interpolating speed (F) \times \frac{Sub - axis1moving amount (S_2)}{Interpolating moving amount (S)}$$

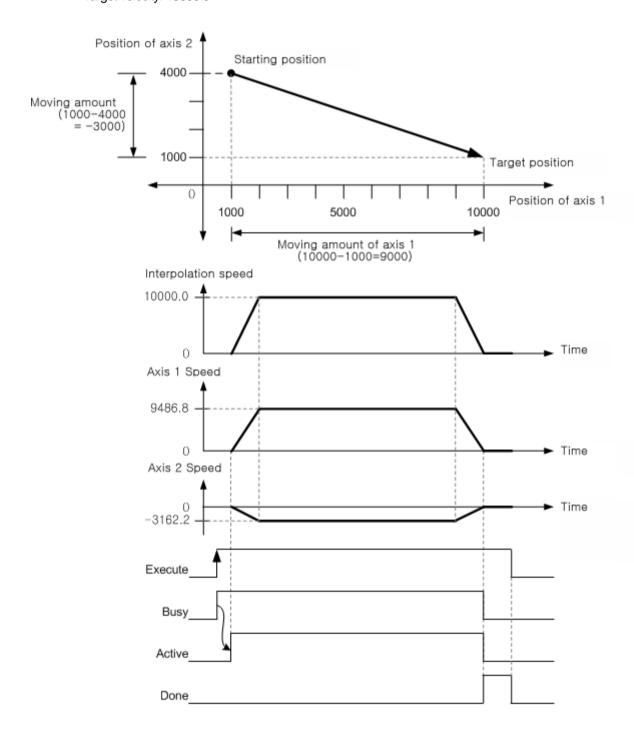
Axis10 speed
$$(V_{10}) = Interpolating speed(F) \times \frac{Sub - axis2 moving amount(S_{10})}{Interpolating moving amount(S)}$$

(5) Relevant motion function block

Name	Desc	ription	Operation Condition
MC_MoveLinearAbsolute	Absolute pos	sitioning linear	Edge
	interpolation	on operation	
Γ	MC_MoveLin	earAbsolute	
BOOL — E	Execute	Done	– BOOL
UINT —	AxesGroup	AxesGroup	— UINT
LREAL[] — F	Position	Busy	– BOOL
LREAL -\	/elocity	Active	– BOOL
LREAL —	Acceleration	CommandAborted	– BOOL
LREAL —	Deceleration	Error	– BOOL
LREAL -	Jerk	ErrorID	— WORD
UINT — E	BufferMode		
UINT — 1	FransitionMode		
LREAL —	TransitionParameter		

(6) Restrictions

Linear interpolation by absolute coordinate system cannot be executed in the following cases.

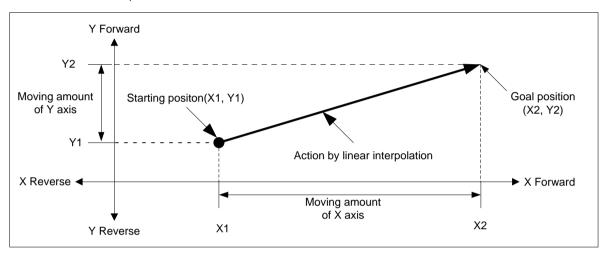

- In case there is an axis which is in the origin indetermination state among configuration axes (error code: 0x2090)
- In case the operation speed of configuration axis exceeds the speed limit of each axis (error code: 0x2091)
- In case there is an axis in infinite running repetition operation among configuration axes (error code: 0x2094)

(7) Operation Timing

- Starting position: (1000.0, 4000.0)

- Target position: (10000.0, 1000.0)

- Target velocity: 10000.0



Velocity of each configuration axis is approximate estimate.

2. Linear interpolation control with relative coordinates

(Relative positioning interpolation operation (MC_MoveLinearRelative))

- (1) Linear interpolation is executed from starting position to movement direction targeted by each axis and position that includes movement direction. Positioning control is based on the current stop position.
- (2) Movement direction is determined by the sign set in the target position (movement distance) of each axis.
 - When the sign of movement distance is positive (+ or no sign): Positioning operation in forward direction (starting position increase direction)
 - When the sign of movement distance is negative ():Positioning operation in reverse direction (starting position decrease direction)

- (3) Interpolation that is currently being executed is stopped with group halt (MC_GroupHalt) or group immediate stop (MC GroupStop) motion function block.
- (4) The speed value set in relative position liner interpolation operation (MC_MoveLinearRelative) motion function block means interpolation speed.

The operation speed of each configuration axis is calculated as follows.

Interpolatinspeed (F) = Operationspeedsetinpositiondata

$$Interpolating moving amount(S) = \sqrt{S_1^2 + S_2^2 + ... + S_{10}^2}$$

$$Axis1speed(V_1) = Interpolatingspeed(F) \times \frac{Main\,axismovingamount(S_1)}{Interpolatingmovingamount(S)}$$

$$Axis2 \text{ speed } (V_2) = Interpolating speed (F) \times \frac{Sub - axis1moving amount (S_2)}{Interpolating moving amount (S)}$$

$$Axis$$
10 speed $(V_{10}) = Interpolating speed (F) \times \frac{Sub - axis 2 moving amount (S_{10})}{Interpolating moving amount (S)}$

(5) Relevant motion function block

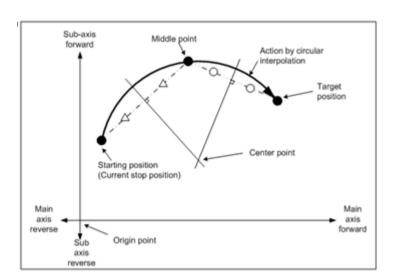
Name	Description	Operation Condition	
MC MoveLinearRelative	Relative positioning linear	□ desa	
IVIC_IVIOVELINEAR RELATIVE	interpolation operation	Edge	
Γ	MC_MoveLinearRelative]	
BOOL — E	Execute Done	- BOOL	
UINT —	AxesGroup AxesGroup	— UINT	
LREAL[]—	Distance Busy	-BOOL	
LREAL -\	Velocity Active	-BOOL	
LREAL — A	Acceleration CommandAborted	- BOOL	
LREAL —	Deceleration Error	-BOOL	
LREAL — J	Jerk ErrorID	— WORD	
UINT — E	BufferMode		
UINT — T	FransitionMode		
LREAL — 1	FransitionParameter		
LREAL —	FransitionParameter]	

(6) Restrictions

Linear interpolation by relative coordinate system cannot be executed in the flowing cases.

- In case there is an axis in infinite running repetition operation among configuration axes (error code: 0x2094)
- In case the operation speed of configuration axis exceeds the speed limit of each axis (error code: 0x2091)

8.2.8 Circular Interpolation Control

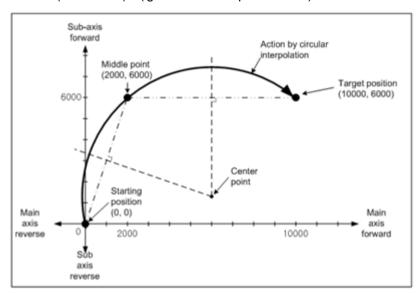

Interpolation operation is performed along the trajectory of the circle in the direction of axis progress set by using two axes set in the axis group.

There are three kinds of methods for circular interpolation such as midpoint method that passes through the position specified in auxiliary point, center point method that considers the position specified in auxiliary point as center point and radius method that takes the value specified in auxiliary point as the radius of an arc depending on 'CircMode' settings and auxiliary points.

The interpolation that is currently being executed is stopped with group halt (MC_GroupHalt) or group immediate stop (MC GroupStop) motion function block.

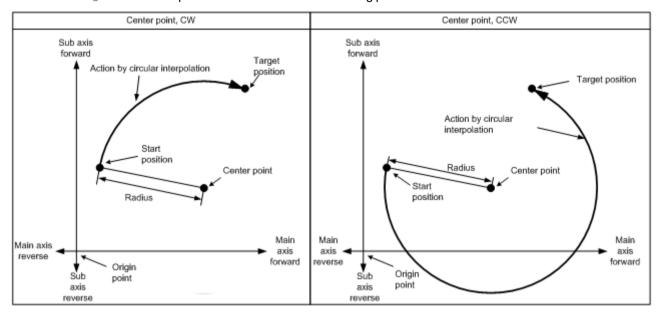
1. Circular interpolation using midpoint specification method

- (1) Circular interpolation is executed from starting position to target position through midpoint position set in auxiliary point.
- (2) The trajectory of the arc that takes an intersecting point caused by the vertical bisection of starting position and midpoint position, and midpoint position and target position is created.
- (3) Movement direction is automatically determined in accordance with the set target position and auxiliary point of circular interpolation.

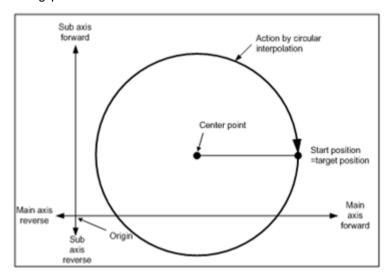

(4) Restrictions

Circular interpolation by midpoint specification method cannot be executed in the following cases.

- In case there is an axis which is in the origin undetermined state among configuration axes at the time of absolute coordinate circular interpolation operation (error code: 0x20A0)
- In case the midpoint specified as auxiliary point is the same as the starting position or target position (error code: 0x20A4)
- In case starting position is the same as the target position (error code: 0x20A5)
- In case the calculated radius of the arc exceeds 2147483647pls (error code: 0x20A6)
- In case starting position, auxiliary point position and target position are in a straight line (error code: 0x20A7)
- In case there is an axis in infinite running repetition operation among configuration axes (error code: 0x20A8)
- In case the number of configuration axes in the axis group is four (error code: 0x20A9)
- In case axis group configuration settings are not set in order (error code: 0x20AA)


(5) Operation pattern

- Starting positon: (0.0, 0.0)
- Target position: (10000.0, 6000.0)
- Middle point: (2000.0, 6000.0)
- Method(CircMode): Middle point(0)
- Direction(PathChoice): (Ignored in middle point method)



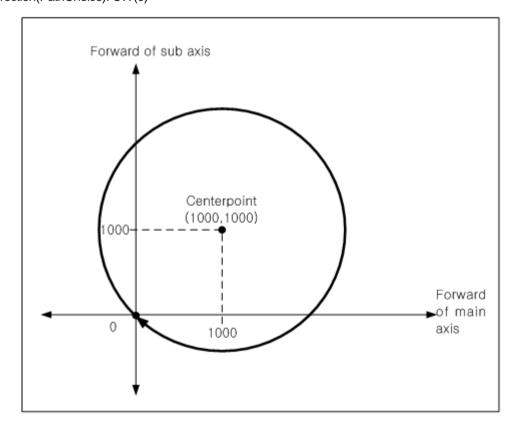
2. Circular interpolation using center point specification method

- (1) Circular interpolation is performed from starting position to target position along the trajectory of the arc that takes the distance to the specified center point position as radius.
- (2) Movement direction is determined by the direction set in "PathChoice" of absolute position circular interpolation operation (MC_MoveCircularAbsolute) or relative position circular interpolation operation (MC_MoveCircularRelative) motion function block.
 - 0: 「CW」 Circular interpolation is executed from the starting position in a clockwise direction.
 - 1: 「CCW」 Circular interpolation is executed from the starting position in a counterclockwise direction.

(3) If target position is same as start position, you can execute circular interpolation whose circle radius is distance from center point to starting position.

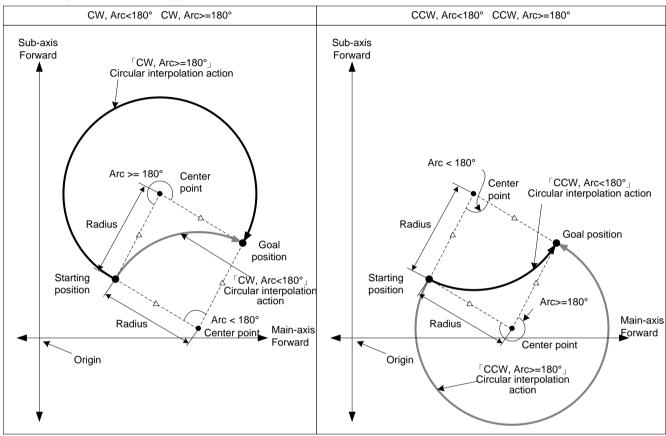
(4) Restrictions

Circular interpolation by center point specification method cannot be executed in the following cases.


- In case there is an axis which is in the origin undetermined state among configuration axes at the time of absolute coordinate circular interpolation operation (error code: 0x20A0)
- In case the midpoint specified as auxiliary point is the same as the starting position or target position (error code: 0x20A4)
- In case starting position is the same as the target position (error code: 0x20A5)
- In case the calculated radius of the arc exceeds 2147483647pls (error code: 0x20A6)
- In case starting position, auxiliary point position and target position are in a straight line (error code: 0x20A7)
- In case there is an axis in infinite running repetition operation among configuration axes (error code: 0x20A8)
- In case the number of configuration axes in the axis group is four (error code: 0x20A9)
- In case axis group configuration settings are not set in order (error code: 0x20AA)

(5) Operation pattern

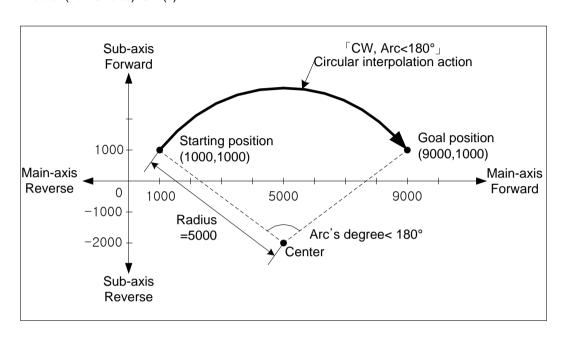
Starting position: (0.0, 0.0)Target position: (0.0, 0.0)


Serve position: (1000.0, 1000.0)Method(CircMode): Center point(1)

- Direction(PathChoice): CW(0)

3. Circular interpolation using radius specification method

(1) Circular interpolation is performed from starting position to target position along the trajectory of the arc that takes the value set in circular interpolation auxiliary point. The arc that has center point depending on the sign of radius ((+): arc angle <180°, (-): arc angle>=180°) is drawn.


- (2) In circular interpolation of radius specification method, the target position cannot be set the same as starting position.
- (3) Movement direction and the size of the arc is determined by the sign of auxiliary point and directions (CW, CC W) set in "PathChoice" of absolute position circular interpolation operation (MC_MoveCircularAbsolute) or relative position interpolation operation (MC_MoveCircularRelative) motion function block
- (4) Restrictions

Circular interpolation by radius specification method cannot be executed in the following cases.

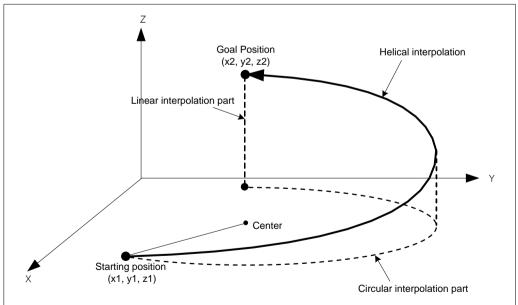
- In case there is an axis which is in the origin undetermined state among configuration axes at the time of absolute coordinate circular interpolation operation (error code: 0x20A0)
- In case starting position is the same as the target position (error code: 0x20A5)
- In case the calculated radius of the arc exceeds 2147483647pls (error code: 0x20A6)
- In case starting position, auxiliary point position and target position are in a straight line (error code: 0x20A7)
- In case there is an axis in infinite running repetition operation among configuration axes (error code: 0x20A8)
- In case the number of configuration axes in the axis group is four (error code: 0x20A9)
- In case axis group configuration settings are not set in order (error code: 0x20AA)

(5) Operation patterns

Starting position: (1000.0, 1000.0)
Target position: (9000.0, 1000.0)
Serve position: (5000.0, 0.0)
Method(CircMode): Radius(2)
Direction(PathChoice): CW(0)

4. Relevant motion function block

(1) Absolute positioning circular interpolation operation

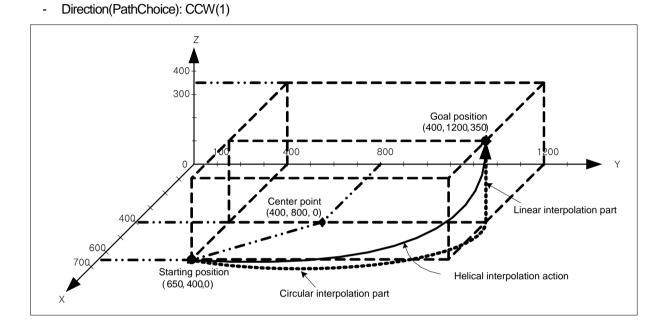

Name	D	escription	Operation Condition
MC MoveCircularAbackuta	Absolute	positioning circular	Edgo
MC_MoveCircularAbsolute	interpo	lation operation	Edge
Г	MC MayoC	ircularAbsolute	
	IVIC_IVIOVEC	rcularAbsolute	
BOOL —	Execute	Done	– BOOL
UINT —	AxesGroup	AxesGroup	– UINT
	CircMode .		– BOOL
LREAL[] →	AuxPoint Active		– BOOL
LREAL[]	EndPoint CommandAborted		– BOOL
UINT —	PathChoice	Error	– BOOL
LREAL —	Velocity	ErrorID	– WORD
LREAL —	Acceleration		
LREAL —	Deceleration		
LREAL —	Jerk		
UINT —	BufferMode		
UINT —	TransitionMode		
LREAL —	TransitionParamete	r	

(2) Relative positioning circular interpolation operation

Name	Description	Operation Condition
MC MayoCircularPolativa	Relative positioning circular	Edgo
MC_MoveCircularRelative	interpolation operation	Edge
Г	MC MoveCircularRelative	7
	_	
BOOL -		e BOOL
	AxesGroup AxesGrou	I
UINT -	CircMode Bus	y — BOOL
LREAL[]	AuxPoint Activ	e – BOOL
LREAL[]	EndPoint CommandAborte	d – BOOL
USINT -	PathChoice Erro	or - BOOL
LREAL -	Velocity Errorll	D - WORD
LREAL -	Acceleration	
	Deceleration	
LREAL —	Jerk	
UINT — I	BufferMode	
UINT —	TransitionMode	
LREAL —	TransitionParameter	
		_

5. Helical interpolation

- (1) Three axes are used in the execution of circular interpolation commands(\(\text{Absolute positioning circular interpolation operation } \) operation (MC_MoveCircularAbsolute) \(\text{,} \) \(\text{,} \) Relative positioning circular interpolation operation } \) (MC_MoveCircularRelative) \(\text{.} \)). That is, two axes move the trajectory of the arc depending on circular interpolation settings, and one axis performs linear interpolation in synchronization with circular interpolation motion.
- (2) Linear axis is the third axis of the circular interpolation axis group.
- (3) For the execution of helical interpolation, the axis group of circular interpolation command needs to be set to 3-axis, and linear interpolation target position is to be set in the third axis of 'EndPoint'.



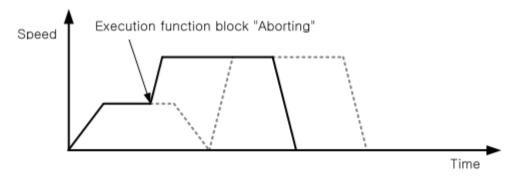
(4) Restrictions

The restrictions of helical interpolation are the same as those of circular interpolation according to the set circular interpolation modes.

(5) Operation pattern

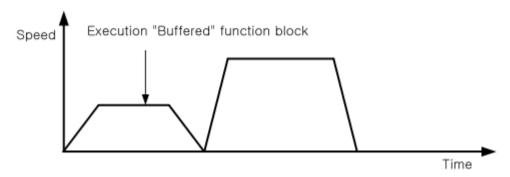
Starting position: (650.0, 400.0, 0)
 Target position: (400.0, 1200.350)
 Center position: (400.0, 800.0, 0)
 Method(CircMode): Center point(1)

8.2.9 Axis Control Buffer mode

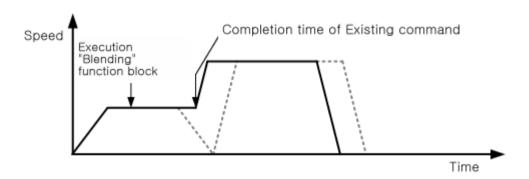

Cancellation of the existing axis motions and continued or continuous operation of them can be carried out by executing other motion function block while the axis is in operation. The motions are specified by entering buffer mode (BufferMode) in motion function block. In axis control the maximum number of runs that can be queued in the buffer is 10. In case of executing commands with buffer mode which has more than that, error (error code: 0x1022) occurs.

Values that can be set in Buffer Mode are as follows.

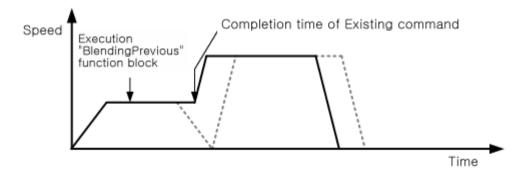
Buffer Mode	Description
Aborting	It executes commands immediately. The existing commands in operation
Aborting	are aborted.
Buffered	It executes commands after the completion of the existing command in
Dullered	operation.
	It conducts a combination operation that helps blend into side with lower
BlendingLow	velocity by comparing the velocity of the existing command and the
	command to make.
BlendingPrevious	It conducts a combination operation that makes the combination with velocity
DiendingFrevious	of the existing commands.
BlendingNext	It conducts a combination operation that makes the combination with velocity
Diei idii igi vext	of commands to make.
	It conducts a combination operation that helps blend into side with higher
BlendingHigh	velocity by comparing the velocity of the existing command and the
	command to make.


1. Buffer Mode "Aborting"

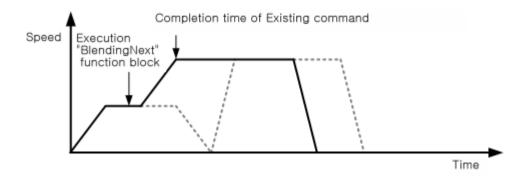
It aborts the existing commands in execution immediately and executes the next command. CommandAborted output of the existing motion function blocks is On.


2. Buffer Mode "Buffered"

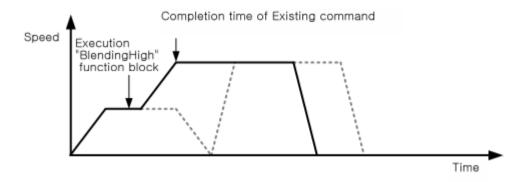
It execute the next command after the completion of the existing commands in execution (Done output is On).


3. Buffer Mode "BlendingLow"

It combines operation so that operation can be made at lower velocity in a comparison between the target velocity of the existing commands in execution at the time of command completion and that of buffered command.


4. Buffer Mode "BlendingPrevious"

It executes the next command after acceleration/deceleration of the velocity to the target velocity of the next command buffered after maintaining the velocity of commands in execution at the point of time when the exiting commands are competed.

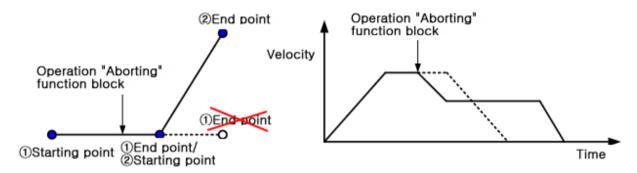

5. Buffer Mode "BlendingNext"

It executes the next command after acceleration/deceleration so that operation can be performed at the target velocity of the next command at the point of time when the existing commands in execution are completed.

6. Buffer Mode "BlendingHigh"

It combines operation so that operation can be made at higher velocity in a comparison between the target velocity of the existing commands in execution at the time of command completion and that of buffered command.

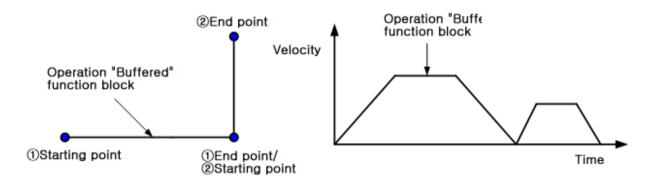
8.2.10 Axis Group Control Buffer Mode and Transition Mode


In axis group control as in speed control, motion commands can be executed continuously by using buffer mode, and the maximum number of runs that can be queued in the buffer is 10. In case of executing commands with buffer mode which is more than that, error (error code: 0x2022) occurs.

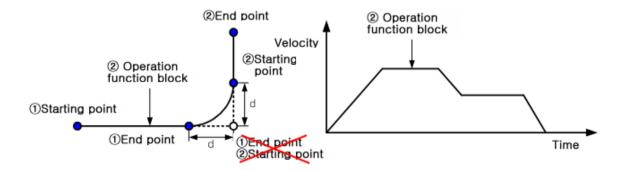
In addition, operation is possible by inserting curve between the two linear trajectories using transition mode.

1. 'BufferMode'

(1) Aborting


It aborts the motion that is currently running, and executes a new motion immediately.

(2) Buffered


It executes the next command after completing motion operation that is being currently executed.

'TransitionMode' is not reflected.

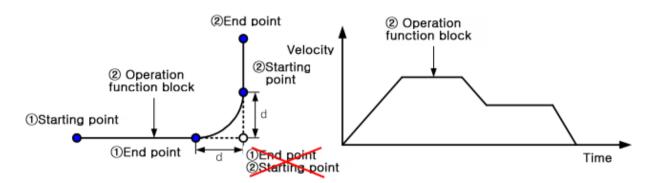
(3) Blending

There is no stop between the two operations since the current motion is mixed with the next motion. The velocity may vary depending on blending modes (BlendingLow, BendingPrevious, BlendingNext, BlendingHigh).

Motions in case of the BlendingNext

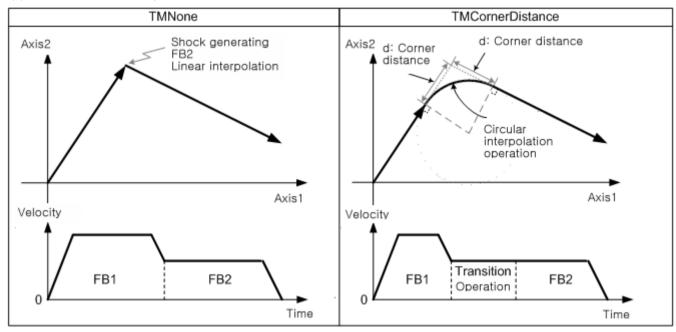
2. 'TransitionMode'

(1) TMNone


Motion trajectory is not changed, and curve is not inserted between the two operations.

In case buffer mode is Blending in this setting, Buffered mode is operated.

Motions according to the buffer mode are the same as the above Aborting and Buffered.


(2) TMCornerDistance

Ther curve can be inserted by specifying the distance of two motion block corners. The conversion velocity is specified by the BufferMode.

- Motions in case of the BlendingNext
- d: Curve insertion distance at the corner

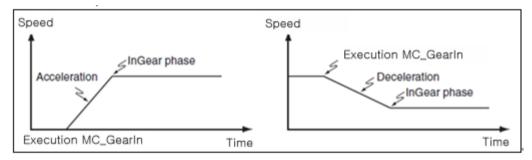
(3) TransitionMode Comparison

8.2.11 Synchronous Control

1. Gear operation

- (1) Gear operation makes speed synchronization of the master axis (or encoder) and the slave axis depending on the set ratio.
- (2) Gear operation can be aborted with gear operation cancellation command.
- (3) Gear ratio (=velocity synchronization ratio) is calculated as follows.

Gear ratio = Master axis ratio/Slave axis ratio


- The master axis ratio < the slave ratio can also be set.</p>
- (4) Rotation direction of the slave axis is based on the forward direction of the master axis. In case gear ratio is positive (>0), rotation is made in forward direction, and that is negative (< 0), in reverse direction.
- (5) The final operating velocity of the slave axis is calculated as follows.

Operation speed of the slave axis

= Operation speed of the master axis X Gear ratio

= Operation speed of the master axis X Master axis ratio/Slave axis ratio

(6) Acceleration/deceleration from the start of gear operation to target velocity can be set by using Acceleration and Deceleration input.

(7) Relevant motion function block

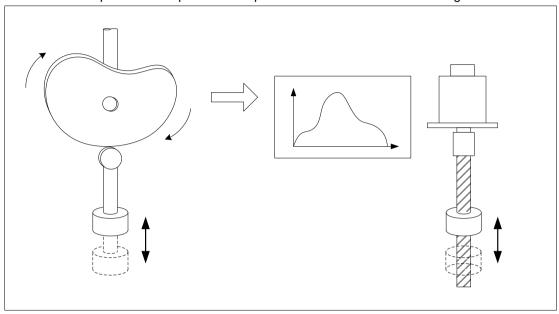
Name	Description		Op	Operation Condition	
MC_GearIn	Gearing run			Edge	
Γ	MC_G	iearIn			
BOOL - E	ecute	li	nGear	– BOOL	
UINT — N	Master	· N	/laster	— UINT	
UINT — S	Slave		Slave	– UINT	
BOOL - C	ContinousUpdate Busy			– BOOL	
INT — F	RatioNumerator Active			– BOOL	
UINT — F	RatioDenominator CommandAborted			– BOOL	
UINT — N	MasterValueSource		Error	– BOOL	
LREAL — A	Acceleration ErrorID			– WORD	
LREAL -	Deceleration				
LREAL - J	lerk				
UINT - E	BufferMode				

Name	Description		ription	Op	eration Condition
LS_VarGearl	n	Variable (Gearing run		Edge
BOOL — UDINT — UINT — BOOL — INT — UINT —	Execute VarOffse Slave Continou RatioNur RatioDer MasterVa Accelera Decelera Jerk	LS_Vard tsupport usUpdate merator mominator alueSource tion tion	Gearln In VarC A CommandAbo	Slave Busy ctive	- BOOL - UINT - UINT - BOOL - BOOL - BOOL - BOOL - WORD

Name		Description	Op	eration Condition
MC_GearOut		Gearing disengage		Edge
BOOL — UINT —	Execute Slave	S E E	Slave Busy Error	– BOOL – UINT – BOOL – BOOL – WORD

2. Positioning gear operation

- (1) Positioning gear operation makes speed synchronization of the master axis (or encoder) and the slave axis depending on the ratio set the same as in gear operation basically.
- (2) The starting position in which the master axis and the slave axis are synchronized can be specified.
- (3) Methods for operation are as follows.

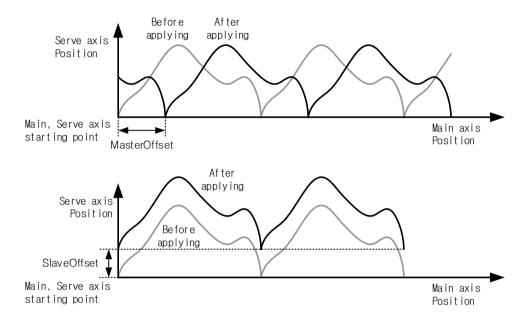

(4) Relevant motion function block

N	ame	Descrip	otion	Op	eration Condition
MC_G	earInPos	Gearing by specifying the			Edge
		positi	on		
	BOOL - Ex		InS		- UINT
	UINT - SI	asteraster	S	lave -	-BOOL
	UINT - Ra	atioNumerator atioDenominator asterValueSource	•		– BOOL – BOOL – BOOL
	LREAL - Ma	asterSyncPosition aveSyncPosition	CommandAbo	orted	
	UINT - Sy	-			- WORD
	LREAL - Ve	elocity			
	LREAL - De	eceleration			
	UINT — Bu				

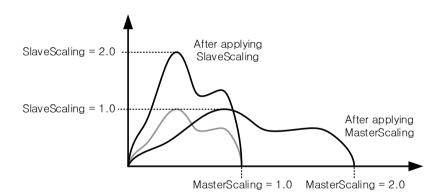
Name	Descri	ption	O	peration Condition
LS_VarGearInPos	Variable Gearing by			Edge
	specifying th	ne position		
UINT — SIA INT — RA UINT — RA UINT — MA LREAL — MA LREAL — SIA UINT — Sy	LS_VarGe ecute Offset tioNumerator tioDenominator sterValueSource sterSyncPosition veSyncPosition ncMode sterStartDistance celeration k	earInPos IncVarCS A CommandAbo	Blave Busy ctive orted Error	– UINT – BOOL – BOOL

3. Cam operation

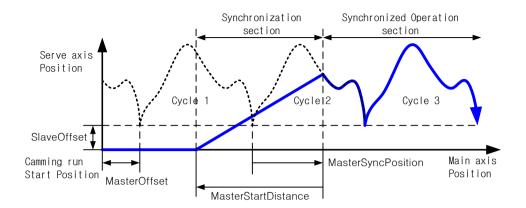
- (1) CAM operation controls cams by converting mechanical cam motion to the cam data set at the cam profile and synchronizing the data to the position of the motor designated as the main-axis.
- (2) Mechanical cam operation in the past can be replaced with software cam motion using the cam data at the cam profiles.

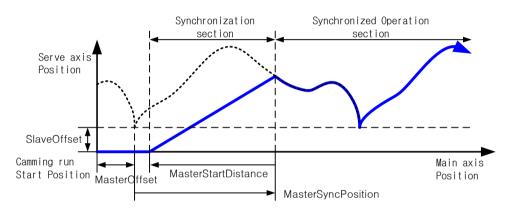


- (3) A total of 32 cam profiles can be generated, each of which can be applied to each axis regardless of their order.
- (4) Each cam profile consists of 100 cam data.
- (5) To halt cam operation, MC_CamOut command should be issued on the sub-axis, or another motion function block should be operated (in case of Aborting).
- (6) Cam operation command's secondary data


Variable	Description
Master	Set the master Axis (1~32: Real Axis, 37~40: Virtual Axis, 41~42: Encoder),
MasterOffset	Set the master Axis offset value.
SlaveOffset	Set the offset value of the slave cam table.
MasterScaling	Specify the magnification of the master axis.
SlaveScaling	Specify the magnification of the slave axis cam table.
MasterStartDistance	Specify the position of the main-axis where the cam operation of the master axis starts.
MasterSyncPosition	When cam operation starts, specify the start position at the cam table.
StartMode	Set the cam operation mode. 0 : Cam table is applied as an absolute value. (mcAbsolute) 1 : Cam table is applied as a relative value based on the command start position. (mcRelative)
MasterValueSource	Select the source of the master axis for cam operation. 0 : Synchronized in the target value of the master axis. 1 : Synchronized in the current value of the slave axis.
CamTableID	Specify the cam table to operate.

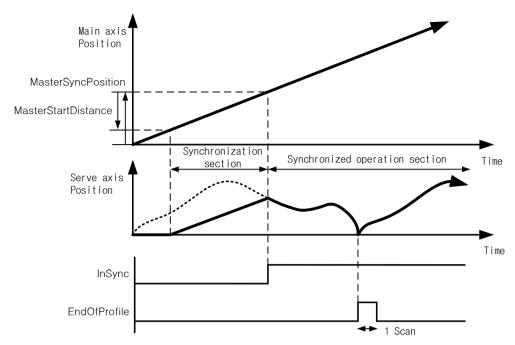
(a) At MasterOffset and SlaveOffset, set the cam table offset to apply. MasterOffset determines the offset from the master axis start point, and SlaveOffset determines the offset from the slave axis start point. Please refer to the figure


below. Using offset may change the start position for cam operation, causing an abrupt operation. In such a case, MasterSyncPosition, MasterStartDistance should be used.


(b) At MasterScaling and SlaveScaling, set the scale rate of the cam data to apply. MasterScaling determines the scale rate of the main-axis data, and SlaveScaling determines the scale rate of the sub-axis data. Please refer to the figure below.

(c) MasterSyncPosition input specifies the position of the master axis within the table where the synchronization of actual cam operation is completed, and MasterStartDistance input specifies the relative position of the master axis where the synchronization starts. If unable to start synchronized operation at Cycle 1 as shown below (if the distance from the start position to the synchronized operation start position is shorter than MasterStartDistance), synchronized operation starts at Cycle 2.

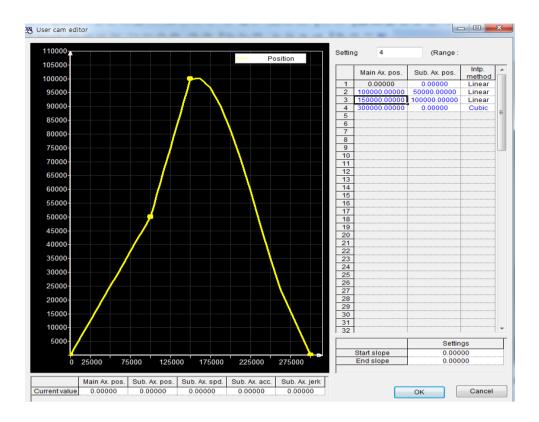
In case MasterScaling is 1.0


In case MasterScaling is 2.0

MasterSyncPosition position is based on the position within the cam table, and actual synchronization position is decided by considering MasterOffset and MasterScale parameters.

The slave axis starts moving to the synchronization position from the distance of the input value away based on the position where MasterSyncPosition is actually applied. If it is before starting moving, the slave axis waits at the relevant position in stop state, and if the slave axis is already in the section to move to the synchronization position at the beginning of the command, takes back the position of the synchronization starting point by the length of a table until it escapes the MasterStartDistance range.

Actual synchronization position can vary depending on MasterScaling and SlaveScaling because MasterSyncPosition is a value based on the inside of cam table, but MasterOffset and MasterStartDistance value remain unaffected.

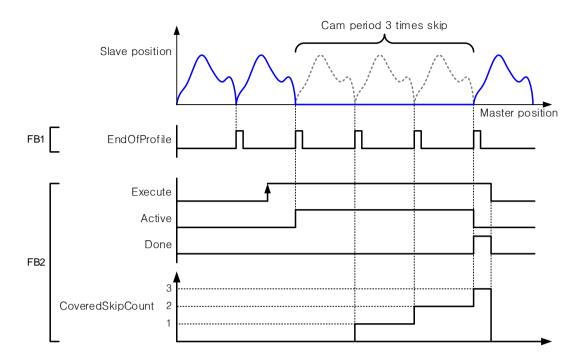

(d) InSyncoutput is on when cam operation starts the synchronization. 1 scan of EndOfProfileoutput is on whenever a single cam table operation is completed.

- (e) At StartMode, the cam operation mode is set. The setting range is either 0 or 1. If the input value exceeds the setting range, an error occurs. If it is set to 0, the cam table start position is set to the main-axis position of 0. If it is set to 1, the cam table start position is set to the current position of the main-axis.
- (f) MasterValueSource selects the source for the main-axis to synchronize. If set to 0, sub-axis performs the cam operation based on the main-axis command position calculated by the motion control module, and it set to 1, it performs the cam operation based on the current position received through the communication from from the mainaxis servo drive.
- (g) CamTableID sets the number of the cam table to be applied to the cam operation. The setting range is from 1 to 32. If the input value exceeds the setting range, an error "0x1115" occurs at the motion function block.

(7) Cam profile

Parts		Description		
The master axis position		Set the sub-axis cam position corresponding to the main-axis		
CAM data	Slave axis position			
	Interpolation type	Set the characteristic curve between the cam data. (Linear, Cubic)		
Start slope End slope		If the interpolation type for the first or the last section is set to 'Cubic', set the		
		start inclination and the end inclination for the Cubic operation.		

(8) Motion function block


Name	Description	Operation condition
MC_CamIn	Cam operation	n Edge
	A CommandAb CommandAb Er stance EndOfP osition	Slave — UINT Busy — BOOL active — BOOL orted — BOOL Error — BOOL rorID — WORD

Name			Description		Operation condition
LS_VarCam	nln \		ble Cam operation	1	Edge
UDINT — UINT — LREAL — LREAL — LREAL — LREAL — LREAL — LREAL — UINT — UINT — UINT —	Execute VarOffset	date g istance osition	lnSync VarOffset Slave Busy Active CommandAborted Error ErrorID EndOfProfile	— U — В — В — В — В	OOL JINT IINT OOL OOL OOL OOL VORD

Name		Description		Operation condition
MC_CamOu	ıt	Cam operation out		Edge
BOOL — UINT —		MC_CamOut Done Slave Busy Error ErrorID	– BOOL – UINT – BOOL – BOOL – WORI	

4. Cam skip

- (1) This function skips the cam operation as many as the number of cam operation cycles that user wants in the axis where cam operation is underway.
- (2) When Cam Skip command is issued on a sub-axis where cam operation is underway, the current cam cycle ends, and the skip operation starts. The sub-axis is in stand-by at the end position of the cam table in the cam skip motion.

- (3) After the execution of cam motion by MC_CamIn command (FB1), if three cycles are skipped using LS_CamSkip command (FB2), the output of each function block FB1 and FB2and the motion of the cam sub-axis are as displayed as shown in the figure below
- (4) If Cam Skip command is re-executed during cam skip motion, or cam skip motion is aborted by another Cam Skip command, the SkimCount of the latter Cam Skip command applies, and a new cam skip motion starts from the beginning. In such a case, the number of cycles skipped at the time of re-execution is included in the cycles skipped after the re-execution. Therefore, the CoveredSkipCount value is 1 point larger than the SkipCount set by the user.
- (5) Even if the execute contact point is off before the end of the executed cap skip motion, the active contact point is on until the operation is completed. Done and CoveredKipCount are only applied for the scans performed after completing the operation.
- (6) Motion function block

Name	Description	Operation condition
LS_CamSkip	Cam skip	Edge
	LS_CamSkip	DOO!
BOOL — Execute UINT — Slave	Done Slave -	– BOOL – UINT
UINT — SkipCount	Busy - Active -	– BOOL – BOOL
	CommandAborted - Error -	– BOOL – BOOL
	ErrorID - CoveredSkipCount -	– WORD – UINT

5. Reverse Operation is Banned during Synchronized Operation

- (1) In the state that synchronization control commands such as CAM and Gear are executed, this function stops synchronization control of the slave axis when the master axis operates in the reverse direction of synchronized operation referenced by the slave axis.
- (2) After the master axis starts operation in the direction allowing synchronized operation again, when it passes by the position that started operation in the reverse direction, the slave axis starts synchronization control again.

(3) The operation direction of the master axis, which is referenced upon synchronized operation, can be set in the expanded setting of axis parameters.

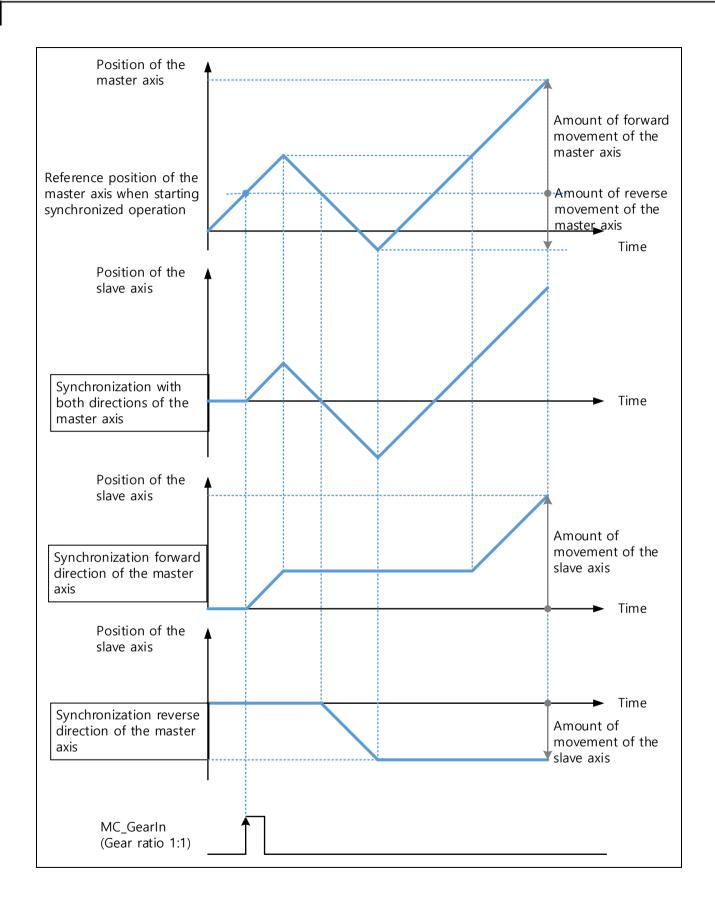
Group	Parameter	Setting value
		0: Synchronization with both
		directions of the master axis
Expanded	Synchronization methods according to	1: Synchronization with the forward
setting	the operation direction of the master axis	direction of the master axis
		2: Synchronization with the reverse
		direction of the master axis

(4) Operation according to parameter setting

control again.

1) 0: Synchronization with both directions of the master axis

Perform the synchronization control operation according to synchronization commands executed on the slave axis by the operation direction of the master axis. Synchronization control operation is not separately limited by the operation direction of the master axis.


- 2) 1: Synchronization with the forward direction of the master axis
 - a) If the master axis performs reverse operation when starting synchronization control
 the slave axis stands still without starting synchronization control. After the master axis changed its
 operation in the forward direction, when the position of the master axis passes by the position that started
 synchronization control, the slave axis starts synchronization control operation.
 - b) If the master axis performs forward operation when starting synchronization control the slave axis performs the synchronization control operation according to synchronization commands executed on the slave axis by the operation direction of the master axis. If the master axis changed its operation in the reverse direction, the slave axis stops synchronization control. After the master axis changed its operation in the forward direction, when the position of the master axis passes by the position that started operation in the reverse direction, the slave axis starts synchronization
- 3) 2: Synchronization with the reverse direction of the master axis
 - a) If the master axis performs forward operation when starting synchronization control the slave axis stands still without starting synchronization control. After the master axis changed its operation in the reverse direction, when the position of the master axis passes by the position that started synchronization control, the slave axis starts the synchronization control operation.
 - b) If the master axis performs reverse operation when starting synchronization control the slave axis performs synchronization control operation according to synchronization commands executed on the slave axis by the operation direction of the master axis. If the master axis changed its operation in the forward direction, the slave axis stops synchronization control. After the master axis changed its operation in the reverse direction again, when the position of the master axis passes by the position that started operation in the reverse direction, the slave axis starts
- synchronization control again.
 (5) Confirm the direction of the master axis according to MasterValueSource
 - 1) 0: The command position of the master axis

If the command position value increases, it is judged as the forward operation of the master axis.

If the command position value decreases, it is judged as the reverse operation of the master axis.

2) 1: Synchronization with the forward direction of the master axis

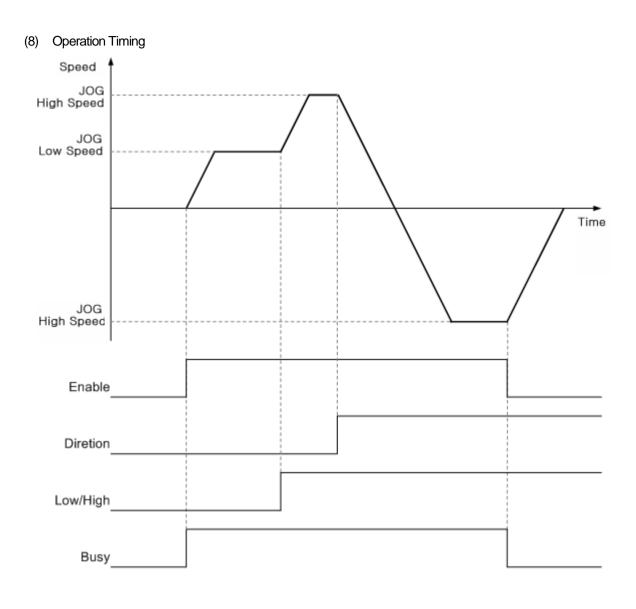
- If the current position value increases, it is judged as the forward operation of the master axis. If the current position value decreases, it is judged as the reverse operation of the master axis.
- If the master axis is an 'encoder' or a synchronization control command specifying variables, the operation according to the MasterValueSource input value is identical as there is no separation between the current position and separate command positions. In other words, if the encoder position or variable value increases irrespective of the MasterValueSource value, it is judged as forward operation. If it decreases, it is judged as reverse operation.
- (6) Operation timing
 - 1) Operation according to parameter setting when operating the Gear with the gear ratio of 1:1

- (7) Applying synchronization control commands
 - 1) CAM operation
 - MC_CamIn, LS_VarCamIn, LS_OnOffCam
 - 2) Gear operation
 - MC_GearIn, LS_VarGearIn, MC_GearInPos, LS_VarGearInPos
- (8) The version information that can use the function where reverse operation is banned during synchronized operation is as follows:

ltem Product	O/S	XG5000
XMC-E32A XMC-E16A	V1.40	V4.28
XMC-E08A XMC-E32C		

8.2.12 Manual Control

1. Jog operation


- (1) Jog operation makes positioning control by manual jog commands of users.
- (2) Jog operation is possible even in the state in which the origin of the axis is not determined.
- (3) Jog commands are executed even in the origin determined or undetermined status, which makes it possible to monitor changes in position values of the axis.
- (4) Acceleration/deceleration processing and jog speed
 - For processing acceleration and deceleration, acceleration and deceleration control is made based on the value set in Jog Acceleration/Deceleration/Jerk among [Operation parameter expansion parameter] setting items.
 - Jog speed is set in Jog high-speed and Jog low-speed among [Operation parameter expansion parameter] setting items.
- (5) Jog high-speed should be set to at the speed limit or less or at least Jog low-speed among [Operation parameter basic parameter] setting items.

(6) Parameter setting

Item	Settings	Initial Value
JOG High Speed	Long Book DEAL) Book a number	100000 pls/s
JOG Low Speed	Long Real(LREAL) Positive number	10000 pls/s
JOG Acceleration		100000 pls/s ²
JOG Deceleration	0 or Long Real(LREAL) Positive number	100000 pls/s ²
JOG jerk		0 pls/s ³

(7) Motion function block

Name	Description	Operation Condition
MC_Jog	JOG operation	Level
	LS_Jog	
BOOL - Enable	Ena	bled - BOOL
UINT - Axis		Axis – UINT
BOOL - Direction	n E	Busy - BOOL
BOOL - Low/High		Error – BOOL
	Err	orID — WORD

8.2.13 SuperImposed Operation

SuperImposed operation executes the positioning control additionally as much as the moving distance designated in the current motion operation.

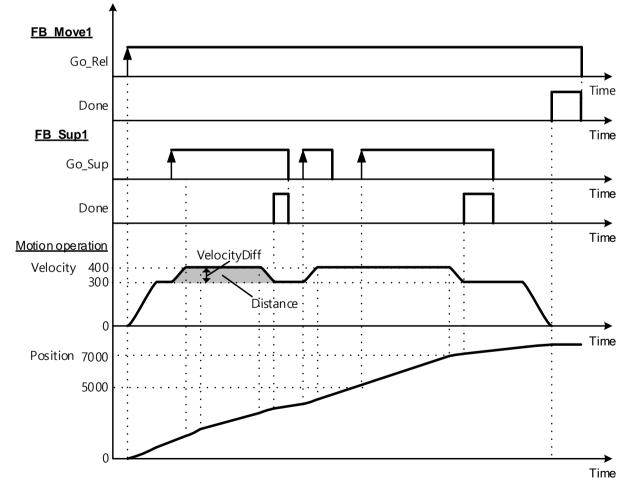
1. Features of control

- (1) When SuperImposed operation command is executed, the axis moves from the point at the time of command execution to the target distance specified in the Distance input.
- (2) The moving distance is determined depending on the signs of the target distance specified in the Distance input, and if the moving direction is positive (+ or no sign), it means forward movement, and if it is negative (-), it means reverse movement.
- (3) The existing motion is not canceled, but its operation overlaps with SuperImposed operation.
- (4) Even when the existing motion is completed, SuperImposed operation continues unless the amount of movement does not reach the one specified in the SuperImposedoperation.
- (5) If the axis is not in operation, but in "StandStill" status, SuperImposed operation works the same way as MC_MoveRelative operation.
- (6) The current SuperImposed operation can be halted with the MC_HaltSuperImposed command. After executing the command, SuperImposed operation decelerates and stops at the given acceleration and jerk. The existing motion which is currently being executed is not affected.

2. Motion function block

Name		Description		Operation Condition
MC_MoveSuperImpo	sed	SuperImpo	sed operation	Edge
		MC_MoveSu	7	
	Axis - Contin Distan Velocit Accele Decele	uousUpdate ce cyDiff ration	A: A: Bu Acti CommandAbort	sy - BOOL ve - BOOL ed - BOOL ror - BOOL ID - WORD

Name	Description	Operation Condition
MC_HaltSuperImposed	SuperImposed operation halt	Edge
	MC_HaltSuperImposed]
BOOL - Exe	cute Done	- BOOL
UINT — Axis	Axis	- UINT
LREAL — Dec	eleration Busy	- BOOL
LREAL - Jerk	Active	- BOOL
	CommandAborted	- BOOL
	Error	BOOL
	ErrorID	- WORD
		_


3. Limitation

In the following cases, SuperImposed operation cannot be performed due to errors.

- (1) SuperImposed command is executed during velocity control or torque control operation (Error Code: 0x1082)
- (2) MC_HaltSuperImposed command is executed when SuperImposed operation is not being performed (Error Code: 0x1083)

4. Operation timing

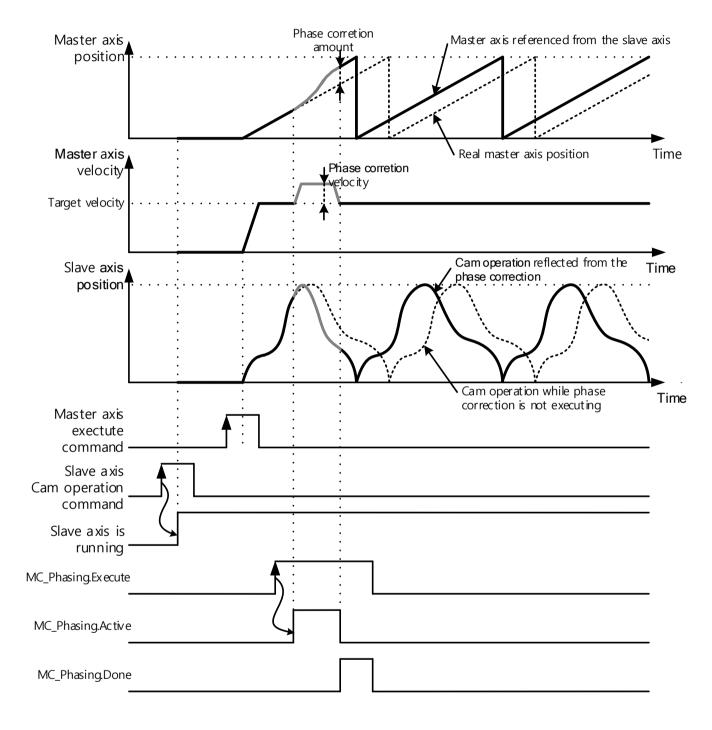
8.2.14 Phase Correction Control

Phase correction control performs phase correction for the main-axis of the axes during synchronization control operation. It performs a virtual movement of the position of the main-axis which the sub-axis refers to in synchronization control operation, and the sub-axis performs synchronized operation to the moved main-axis position.

1. Control features

- (1) Phase correction order can be executed with respect to the axes where synchronized operation is underway as in gear operation or cam operation.
- (2) Phase correction does not change the actual command position or current position of the main-axis, and phase correction is performed on the main-axis position referred to by sub-axis in synchronous control operation. In other words, the main-axis does not know that phase correction is executed by the sub-axis. Phase correction velocity is relative to the velocity of the current main-axis operation.
- (3) If the main-axis is encoder, when phase correction control is executed, the operation uses the velocity limit of the sub-axis.
- (4) The main-axis position which the sub-axis refers to during synchronized operation is "actual main-axis position + phase correction control position."
- (5) If the command is re-executed during the phase correction operation, phase correction is performed again from the current position. In other words, PhaseShift is operated in a relative value.
- (6) If re-executing phase correction by setting PhaseShiftto 0 during the phase correction operation, the existing phase correction operation stops immediately.

2. Motion function block

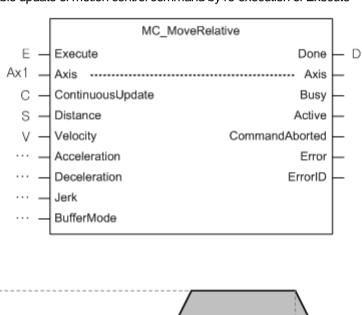

Name		Desci	ription	Operation Condition		
MC_Phasin	ıg	Phase c	correction	ction Edge		
		MC	_Phasing			
BOOL -	Execu	te		Done	– BOOL	
UINT —	Maste	r		Master	– UINT	
UINT —	Slave Slave UIN				– UINT	
LREAL -	PhaseShift Busy			– BOOL		
LREAL -	Velocity Active			– BOOL		
LREAL -	Acceleration CommandAborted			– BOOL		
LREAL -	Deceleration Error			– BOOL		
LREAL -	Jerk	Jerk ErrorID			– WORD	
			Covere	dPhaseShift	– LREAL	

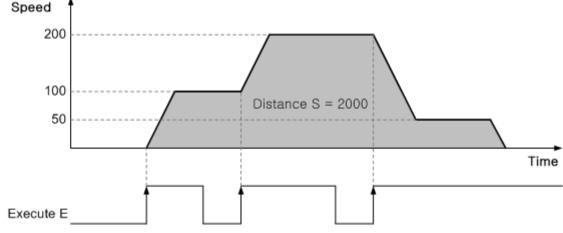
3. Limitation

In the following cases, Phase correction cannot be performed due to errors.

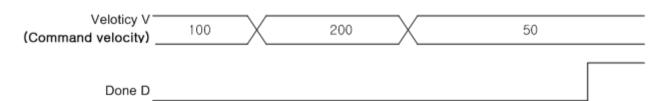
- (1) Sub-axis is not performing synchronization control operation (Error Code: 0x1130)
- (2) The designated main-axis is the main-axis of the actual synchronized operation (Error Code: 0x1131)
- (3) PhaseShift is outside the pulse unit position expression range (INT) (Error Code: 0x1132)
- (4) Velocity setting is less than0, or exceeds the velocity limit for the main-axis (Error Code: 0x1133)
- (5) Acceleration setting is less than 0 (Error Code: 0x1014)
- (6) Deceleration setting is less than 0 (Error Code: 0x1015)
- (7) Jerk setting is less than 0 (Error Code: 0x1016)

4. Operation timing

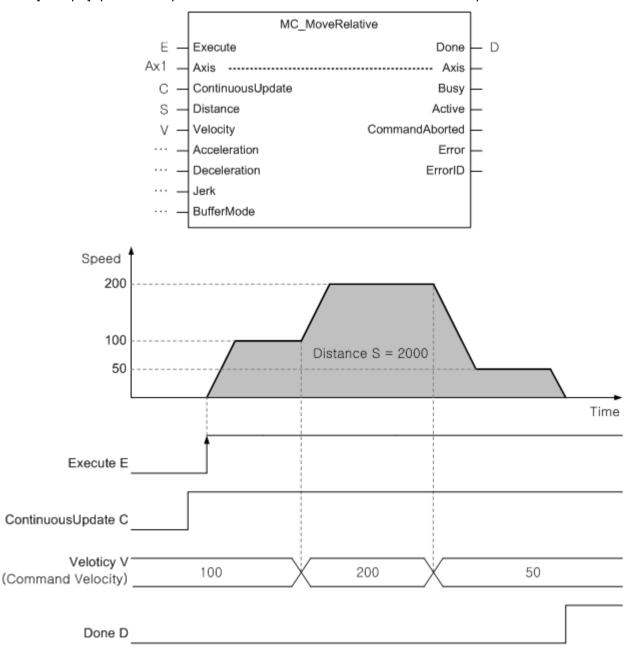

8.3 Other Functions


8.3.1 Functions to Change Control

1. Changes in input variables of motion function block in execution


(1) In case there is no ContinuousUpdate input in motion function block, or execution (Execute input enabled) is made when ContinuousUpdate input is Off, the motion function block is operated with the input at the time when Execute input is On(rising Edge) applied. To operate by changing the input of the motion function block during operation, get the Execute input to be On after changing input value, and the changed value is immediately applied for operation.

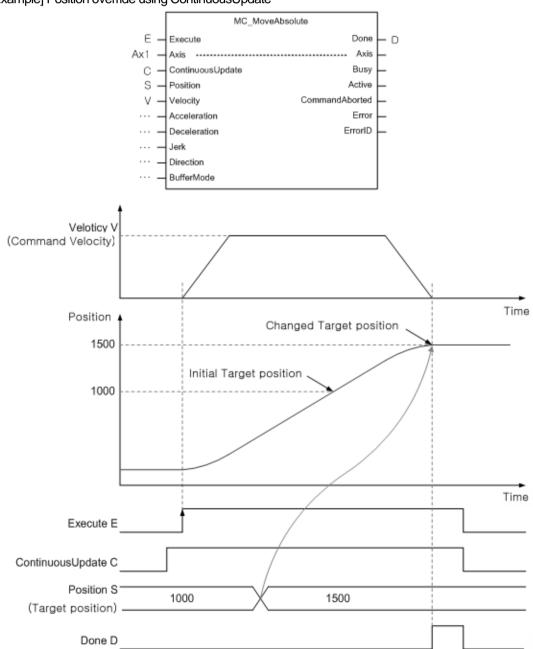
[Example] Input variable update of motion control command by re-execution of Execute



ContinuousUpdate C

(2) In case ContinuousUpdate input is On in Edge operation motion function block, the input at the time when Execute input is On (rising Edge) is applied to the motion function block if Execute input is On, and the motion function block makes a motion to reflect the change if the input is changed while ContinuousUpdate input is On. However, changes in input are no longer reflected after the operation of the motion function block is completed or stopped (Busy output disabled).

[Example]Input variable update of the motion control command when ContinuousUpdate is On



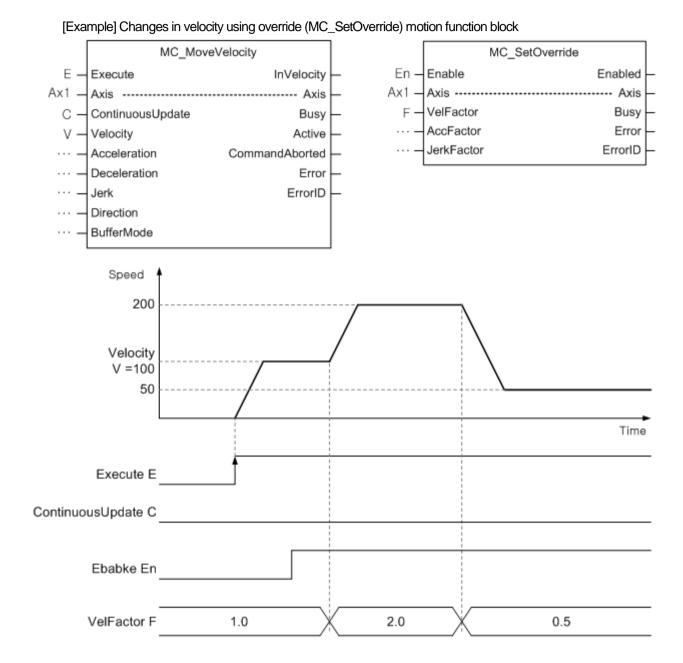
(3) In case of the level operation motion function block, input variables at the time when Enable input is On (rising Edge) are applied to operate, and input variables can be changed continuously while Enable input is On.

2. Position override

- (1) It is a function to override the target position of the axis in position operation. Override function is enabled by suing ContinuousUpdate input of the position operation motion function block. When the position operation motion function block is being executed, the position operation to reflect changed objectives is performed by tuning Execute input On again by changing the target position after turning ContinuousUpdate input of the motion function block On.
- (2) In case the target position changed at the point in time when changes in the target position are reflected is greater than the position in case of the velocity being reduced to stop from the current velocity, positioning is made in the direction of the current movement. On the contrary, in case the changed position is smaller than the position in case of the velocity being reduced to stop from the current velocity, positioning is made in the direction of the target position by operating to the opposite direction after deceleration stop.

[Example] Position override using ContinuousUpdate

3. Velocity, Acceleration/Deceleration, Jerk override


- (1) It is a function to conduct velocity, acceleration/deceleration and jerk override of the specified axis
- (2) It can override velocity, acceleration/deceleration, jerk to absolute value using ContinuousUpdate input of the motion function block in operation. When the operation motion function block is being executed, the operation to reflect changed velocity and acceleration is performed by tuning Execute input On again by changing the velocity and acceleration after turning ContinuousUpdate input of the motion function block On.
- (3) For the execution of speed override operation at the rate on the current command speed, not an absolute value override (MC_SetOverride) motion function block is used for the override.
 - In case the value is 1.0, the current operating speed, acceleration/deceleration, jerk is the same as before.
 - In case VelFactor value specified is 0.0, the axis comes to a stop, but it cannot be changed to 'StandStil' state.
 - If AccFactor value is 0.0, the changed velocity value is immediately applied without acceleration/deceleration.
 - If JerkFactor value is 0.0, the acceleration/deceleration rate is immediately applied, and therefore the command velocity linearly accelerates/decelerates.
 - The meaning of Factor value specified of override (MC_SetOverride) motion function block differs depending on the override item value of common parameters.

0: percentage specified – Factor value operates at the rate on the current command speed

1: unit value specified - Factor value is an absolute unit specified value of the set item

(4) Motion function block

Name		Description O		peration Condition
MC_SetOverride	•	Velocity override		level
		MC_SetOverride		
BOOL -	Enable	Er	nabled	– BOOL
UINT -	Axis		- Axis	– UINT
LREAL -			Busy	– BOOL
LREAL -	AccFactor	r	Error	– BOOL
LREAL -	JerkFactor	r E	rrorID	– WORD
_				

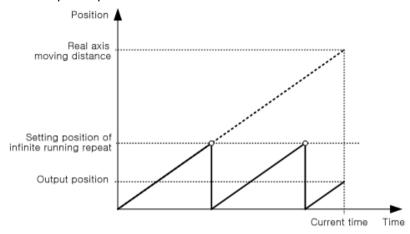
4. Changes in the current position

- (1) It is a function to change the current position of the axis to the value specified by users.
- (2) In Position input, the position is specified. In case Relative input is Off state when command is executed, the position of the axis is replaced with the Position input value, and in case Relative input is On state, Position input value is added to the current position of the axis.
 - 0: Absolute coordinate position
 - 1: Relative coordinate position
- (3) Set point can be specified with ExcutionMode input. When the input value is 0, the set value is set immediately after the execution of commands, and in case it is 1, it is set in the same time with 'Buffered' in a sequential operation setting.
 - 0: Position value applied immediately
 - 1: Applied in the same time with 'Buffered' of Buffermode
- (4) Relevant motion function block

Name	Description	Operation Condition
MC_SetPosition	Setting the current position	Edge
	MC_SetPosition	
BOOL - Ex	ecute Do	one BOOL
UINT — A>	ris A	xis – UINT
LREAL - Po	sition B	usy – BOOL
BOOL — Re	elative E	rror – BOOL
UINT - E>	ccutionMode Erro	rID — WORD

5. Encoder preset

- (1) It is a function to change the current encoder position value to any position value specified by users.
- (2) In Encoder input, encoder to be changed is specified.
 - 1: Encoder 1
 - 2: Encoder 2
- (3) In Position input, the encoder position is specified. In case Relative input is Off state when command is executed, the encoder position of the axis is replaced with the Position input value, and in case Relative input is On state, Position input value is added to the current position of the encoder.
 - 0: Absolute coordinate position
 - 1: Relative coordinate positionEncoder

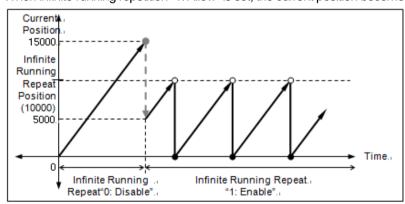

_

(4) Relevant motion function block

Name	Description	Operation Condition
LS_EncoderPreset	Encoder preset	Edge
	LS_EncoerPreset	
BOOL - Execute		Done - BOOL
UINT - Encode	•	Busy - BOOL
LREAL - Position		Error – BOOL
BOOL - Relative	E	rrorID — WORD

6. Infinite running operation

(1) Infinite running repetition function is to perform periodic updates on the display values of the command position and current position automatically with values set in 'infinite running repetition position' among expansion parameters of operating parameters. The use of infinite running repetition positioning function makes it possible to determine the position with repeated position value on the same direction.

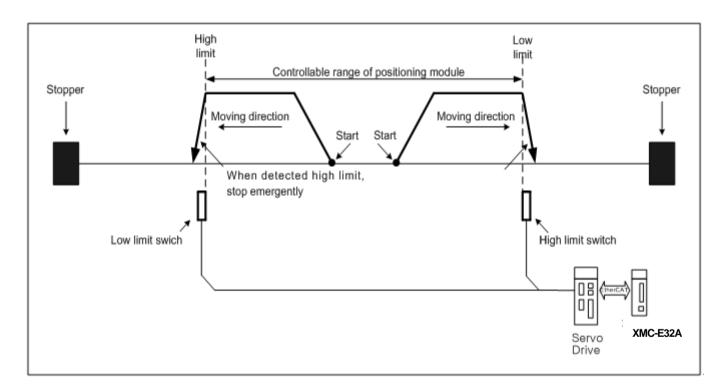

(2) The instant 'infinite running repetition' parameter among expansion parameters of operating parameters is set to Allow, the current position is automatically changed to value within the infinite running repletion position in case it is the value other than the range of infinite running repletion position.

[Example 1] In case the current position is -32100 and infinite running repetition position 10000

When infinite running repetition "1: Allow" is set, the current position becomes 7900.

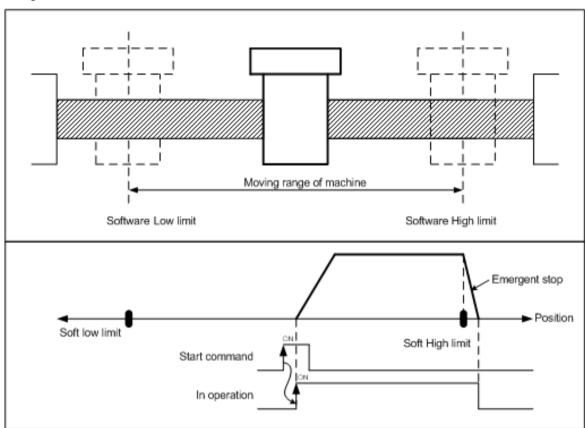
[Example 2] In case the current position is 15000, and infinite running repetition position 10000

When infinite running repetition "1: Allow" is set, the current position becomes 5000.


- (3) Infinite running repetition setting of driving axis can be made by using software package or axis parameter change function.
- (4) Relevant parameter setting

Item	Description	Initial Value		
Infinite running	Set repeated position range value in case of	Long Real (LREAL)	260 pla	
repetition position	being used as infinite running repetition mode	Positive	360 pls	
Infinite running	Set whether to allow infinite running repetition	0: Disable	O. probibitod	
repetition	operation function	1: Enable	0: prohibited	

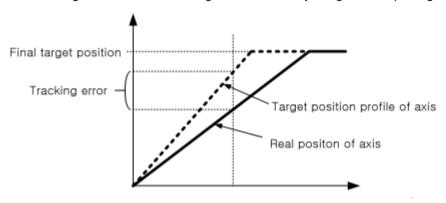
8.3.2 Auxiliary Function of Control


1. Hardware high/low limit

- (1) It is used to make a sudden stop of servo drive before reaching lower limit/upper limit of the machine side by installing high/low limit switch in the inside of the high/low limit, the physical operating range of the machine side. In this case, the range is out of the upper limit, error '0x1200' occurs, and lower limit, error '0x1201'.
- (2) Input of hardware high/low limit switch is connected to each servo drive, and operation is stopped by servo drive at the time of high/low limit detection, and module immediately terminates the motion which is currently being operated.
- (3) In case of the stop due to the detection of hardware high/low limit signals, it is required to move inside the controllable range of motion control module with jog operation of the opposite direction of the detected signals.
- (4) Hardware high/low limit motions are as follows.

2. Soft high/low limit

- (1) Software stroke high/low limit is a function that does not perform the operation in out of the range of soft high/low limit set by users.
- (2) Software stroke high/low limit of each driving axis can be set by using software package or axis parameter change function.
- (3) If the axis is outside the range of stroke, axis error occurs.
- (4) When the axis is positioned outside the range of stroke, operation of the axis is impossible except for jog. Operation can be resumed by moving it inside the range of stroke through jog operation or resetting the current position to the inside the stroke range.


- (5) Software high/low limit are don't detect in the following cases.
 - If the soft upper limit and lower limit values are set as the maximum and minimum values based on a pulse position
 - a) If 'Position Control Range Expansion' = '0: Disable'
 - Soft upper limit: 2147483647, Soft lower limit: -2147483648
 - b) If 'Position Control Range Expansion' = '1: Enable'
 - Soft upper limit: 140737488355327, Soft lower limit: -140737488355328
 - * If 'Position Control Range Expansion' is set to '1: Enabled' and soft upper/lower limits are 2147483647 and -2147483648, the existing initial values, soft upper/lower limits are checked by these values.
 - If the soft upper and lower limits are set to the same value (soft upper limit = soft lower limit)
 - In case of the operation with speed control when expansion parameter "SW limits during speed control" is set to "0: Don't detect"

(6) Relevant parameter setting

Item	Description	Settings	Initial Value
S/W upper limit		Land David DEAL)	2147483647 pls
S/W lower limit	Set the range of software limit function	Long Real(LREAL)	-2147483648 pls

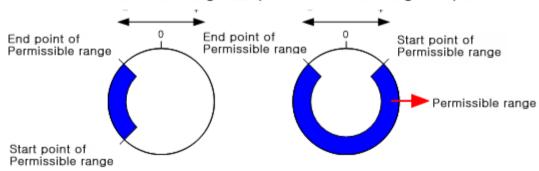
3. Position tracking error

- (1) It is a function to output an error when driving axis is in position operation, or the actual position read from the axis is further beyond tracking tolerance than the target position of the position operation instruction profile.
- (2) Position tracking tolerance of each driving axis can be set by using software package or axis parameter change function

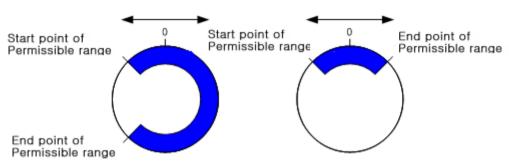
(3) Whether to set abnormality to a warning or an alarm in case of the occurrence of tracking error can be set in Tracking Error Level of expansion parameter.

Motions according to the set value are as follows.

- '0: warning'
 - When tracking error occurs, 「Above deviation alarm(_AXxx_DEV_WARN)」 flag becomes On, and tracking error warning error (error code: 0x101D) occurs. The axis continues to operate without stopping.
- '1: alarm'
 - When tracking error occurs, \lceil Above deviation alarm($_$ AXxx $_$ DEV $_$ ERR) \rfloor flag becomes On, and tracking error alarm error (error code: 0x101C) occurs. The axis makes a sudden stop at \lceil Sudden stop deceleration \rfloor .
- (4) Inspection on tracking error is not performed in the following cases.
 - In case Tracking error exceeding value is 0
 - In case of operation with homing or torque control


(5) Relevant parameter setting

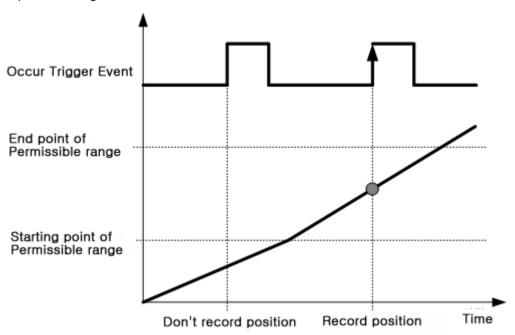
Item	Description Settings		Initial Value	
Tracking error	Set the value to detect more	0 or	0	
exceeding value	than the position deviation	Long Real(LREAL) Positive	U	
Tue alsie er a men las sal	Set the above deviation error	0: warning	0	
Tracking error level	level	1: alarm	0: warning	


4. Latch(Touch Probe)

- (1) It is a function to record the position of the axis when specific situation (Trigger event) occurs in the axis.
- (2) Touch probe 1 and 2 can be selected to use according to trigger input (TriggerInput) settings.
 - Trigger input (TriggerInput)=0: Latch function is performed when touch probe 1 signal is Off->On.
 - Trigger input (TriggerInput)=1: Latch function is performed when touch probe 2 signal is Off->On.
- (3) The area in which latch (touch probe) function is operated can be specified.
 - When permitted area is specified, operation can be made only within the specified area.
 - In case of the infinite running repetition operation (rotary axis), the relationship of latch (touch probe) operating area according to the beginning and end of the permitted area is as follows.

● In case of Permissible range start point < Permissible range end point

In case of Permissible range start point > Permissible range end point



(4) For the use of latch (touch probe) function, the following objects should be included in PDO setting of slave parameter.

Trigger input	RxPDO	TxPDO		
		0x60B9:0 Touch probe status		
Touch Probe1	0x60B8:0 Touch probe function	0x60BA:0 Forward direction positon value		
		of touch probe1		
		0x60B9:0 Touch probe status		
Touch Probe2	0x60B8:0 Touch probe function	0x60BC:0 Forward direction positon value		
		of touch probe1		

In case there are not above objects, an error (error code: 0x10E0) occurs when latch (touch probe) command is used.

(5) Operation timing

(6) Relevant motion function block

Name		Description	Op	peration Condition
MC_TouchProl	эе	Touch probe		Edge
BOOL —	Evocuto	MC_TouchProbe	Done	– BOOL
UINT —	Axis		Axis	— UINT
BOOL — LREAL —	Window(,	Busy	– BOOL – BOOL
LREAL —		tion	Error	– BOOL – WORD
		RecordedPos		-

Name		Description O		peration Condition	
MC_AbortTrigge	r	Abort trigger		Edge	
		MC_AbortTrigger			
BOOL -	Execute	e D	one	– BOOL	
UINT -	Axis Axis			— UINT	
UINT —	TriggerInput TriggerInput			- USINT	
		E	Busy	– BOOL	
		E	rror	– BOOL	
		Err	orlD	– WORD	

5. Error reset monitoring

- (1) In case an error occurs in servo drive at the time of resetting error that occurs in the axis due to error reset commands, whether servo drive error is properly reset can be verified by setting error reset monitoring time.
- (2) If monitoring time is exceeded, error reset is not executed any more even if the error of the drive is not reset.
- (3) Error reset monitoring time of each driving axis can be set by using software package or axis parameter change function.
- (4) Relevant parameter setting

ltem	Description	Settings	Initial Value
Error reset monitoring time	Set the monitoring time in case of	1 ~ 1000 ms	100 ms
Life reset monitoring time	resetting error that occurs in servo drive	1 ~ 1000 1115	1001115

8.3.3 Data Management Function

1. Parameter management

- (1) It is a function to read or change axis parameters stored in the module.
- (2) It can change desired parameter values by specifying axis number and corresponding parameter number.
- (3) Parameter value modified with parameter-write function is automatically stored in backup.ram in case there is no error.
- (4) For parameters to be set in "ParameterNumber", refer to the motion function block item.
- (5) Relevant motion function block

Name		Description		peration Condition	
MC_ReadParame	ter	Read parameter		Level	
BOOL — UINT — INT —		MC_ReadParameter	Busy Error ErrorID	– BOOL – UINT – BOOL – BOOL – WORD – LREAL	

Name	Name		Description Op	
MC_WriteParamete	er	Write parameter		Edge
LREAL —	Axis Parar Value	neterNumber	Vaild Axis Busy Error ErrorID	- BOOL

2. Cam data management

It is able to read and change the cam data in program by the cam data Cam data reading/writing command

(1) Cam data reading

- CmDataRead command reads the cam profile data designated by CamTable ID when Enable input is enabled, and saves the data to the data area specified as MasterPoint and SlavePoint.
- The first address of the variables to store "Main-axis Position" and "Sub-axis Position" read from the camp profile is set at the MasterPoint and the SlavePoint. For example, to save the "Main-axis Position" to the array vairable called MainAxPos[100], and "Sub-axis Position" value to SubAsPos[100] array variable, MainAxPos[0] should be set at MasterPoint of the function block, and SubAsPos[0] should be set at SlavePoint.
- At CamCurveSel[4], the interpolation typesof the applicable points for each bit are stored.

	D# 7	D# C	D# <i>E</i>	D# 4	D# 2	D# O	D# 4	D# O
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	Point 8	Point 7	Point 6	Point 5	Point 4	Point 3	Point 2	Point 1
	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
CamCurveSel[0]	Point 16	Point 15	Point 14	Point 13	Point 12	Point 11	Point 10	Point 9
	Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
	Point 24	Point 23	Point 22	Point 21	Point 20	Point 19	Point 18	Point 17
	Bit 31	Bit 30	Bit 29	Bit 28	Bit 27	Bit 26	Bit 25	Bit 24
	Point 32	Point 31	Point 30	Point 29	Point 28	Point 27	Point 26	Point 25
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	Point 40	Point 39	Point 38	Point 37	Point 36	Point 35	Point 34	Point 33
	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
ConsC: un ra Colf41	Point 48	Point 47	Point 46	Point 45	Point 44	Point 43	Point 42	Point 41
CamCurveSel[1]	Bit 23	Bit 22	Bit 21	Bit 20	Bit 109	Bit 18	Bit 17	Bit 16
	Point 56	Point 55	Point 54	Point 53	Point 52	Point 51	Point 50	Point 49
	Bit 31	Bit 30	Bit 29	Bit 28	Bit 27	Bit 26	Bit 25	Bit 24
	Point 64	Point 63	Point 62	Point 61	Point 60	Point 59	Point 58	Point 57
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	Point 72	Point 71	Point 70	Point 69	Point 68	Point 67	Point 66	Point 65
	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
	Point 80	Point 79	Point 78	Point 77	Point 76	Point 75	Point 74	Point 73
CamCurveSel[2]	Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
	Point 88	Point 87	Point 86	Point 85	Point 84	Point 83	Point 82	Point 81
	Bit 31	Bit 30	Bit 29	Bit 28	Bit 27	Bit 26	Bit 25	Bit 24
	Point 96	Point 95	Point 94	Point 93	Point 92	Point 91	Point 90	Point 89
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Not us	sed	•	Point 100	Point 99	Point 98	Point 97
	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
0 0 0 150				Notu	ısed		•	•
CamCurveSel[3]	Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
				Notu	ısed			
	Bit 31	Bit 30	Bit 29	Bit 28	Bit 27	Bit 26	Bit 25	Bit 24
				Notu	ısed			
<u> </u>								

(2) Cam data writing

- CamDataWrite command writes the value set in StartSlope and EndSlope of the cam profile designated by CamTable ID and the device value set in MasterPoint and SlavePoint in the number designated by CamPointNum as "Main-axis Position" and "Sub-axis Position" when Execute input is on.
- At CamCurveSel[4], the interpolation types of the applicable points for each bit can be set.

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	Point 8	Point 7	Point 6	Point 5	Point 4	Point 3	Point 2	Point 1
	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
	Point 16	Point 15	Point 14	Point 13	Point 12	Point 11	Point 10	Point 9
CamCurveSel[0]	Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
	Point 24	Point 23	Point 22	Point 21	Point 20	Point 19	Point 18	Point 17
	Bit 31	Bit 30	Bit 29	Bit 28	Bit 27	Bit 26	Bit 25	Bit 24
	Point 32	Point 31	Point 30	Point 29	Point 28	Point 27	Point 26	Point 25
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	Point 40	Point 39	Point 38	Point 37	Point 36	Point 35	Point 34	Point 33
	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
ComCun o Col[1]	Point 48	Point 47	Point 46	Point 45	Point 44	Point 43	Point 42	Point 41
CamCurveSel[1]	Bit 23	Bit 22	Bit 21	Bit 20	Bit 109	Bit 18	Bit 17	Bit 16
	Point 56	Point 55	Point 54	Point 53	Point 52	Point 51	Point 50	Point 49
	Bit 31	Bit 30	Bit 29	Bit 28	Bit 27	Bit 26	Bit 25	Bit 24
	Point 64	Point 63	Point 62	Point 61	Point 60	Point 59	Point 58	Point 57
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	Point 72	Point 71	Point 70	Point 69	Point 68	Point 67	Point 66	Point 65
	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
CamCurveSel[2]	Point 80	Point 79	Point 78	Point 77	Point 76	Point 75	Point 74	Point 73
CarriculveSel[2]	Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
	Point 88	Point 87	Point 86	Point 85	Point 84	Point 83	Point 82	Point 81
	Bit 31	Bit 30	Bit 29	Bit 28	Bit 27	Bit 26	Bit 25	Bit 24
	Point 96	Point 95	Point 94	Point 93	Point 92	Point 91	Point 90	Point 89
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Not us	sed		Point 100	Point 99	Point 98	Point 97
	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
CamCurveSel[3]				Notu	ısed			
Carriculvescijsj	Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
				Notu	ised			
	Bit 31	Bit 30	Bit 29	Bit 28	Bit 27	Bit 26	Bit 25	Bit 24
				Notu	ised			

- CamTableID input can set the range of 1~32. The setting value outside the setting range causes error "16#000B"
- CamPointNum can set the range of 1~100. The setting value outside the setting range causes error "16#000B"

(3) Motion function block

■ Cam data reading

Name	е	Description	Operation Condition
LS_ReadCa	amData	Cam data reading	Level
	LS_	ReadCamData	
BOOL-E	nable	Done -	- BOOL
UINT-A	xis	Axis	- UINT
UINT-C	amTable ID	Busy	- BOOL
LREAL-M	/lasterPoint	Error	- BOOL
LREAL-S	SlavePoint	ErrorID -	- WORD
		StartSlope -	- LREAL
		EndSlope -	- LREAL
		CamPointNum -	- UINT
L		CamCurveSel	- Array [4] of DWORD

■ Cam data writing

- Carri data writing				
Name		Description	Opera	tion Condition
LS_WriteCamData		Cam data writing		Edge
ſ		LS_WriteCamData		
BOOL -	Exe	cute	Done	- BOOL
UINT—	Axis	••••••	Axis	- UINT
UINT—	Can	nTable ID	Busy	– BOOL
LREAL—	Star	tSlope	Error	– BOOL
LREAL—	End	Slope	ErrorID	– WORD
UINT—	Can	nPointNum		
Array[4] of DWORD—	Can	nCurveSel		
LREAL—				
LREAL—	Slav	rePoint		
UINT-	ExecutionMode			
				1

3. SDO parameter management

- (1) This function reads or changes SDO parameters of slave devices connected via network.
- (2) Parameter values for a certain axis number and the corresponding object number can be read or changed. Parameter number is specified by Index and SubIndex. Parameter size is specified by Length
- (3) Index input can be set as follows. If it is not set as the setting value, "Error 0x1F12" occurs.

설정값	내용
16#0000 ~ 16#0FFF	Data Type Description
16#1000 ~ 16#1FFF	Communication objects
16#2000 ~ 16#5FFF	Manufacturer Specific Profile Area
16#6000 ~ 16#9FFF	Standardized Device Profile Area

- (4) In Subindex, values ranging from 0 to 255 can be entered, and if set outside the range, "Error 0x1F12." occurs.
- (5) In Length, values ranging from 1 to 4 can be entered, which mean 1 to 4 bytes. Setting the value outside the above range will cause "Error 0x1F12."
- (6) The parameter values changed by SDO write function are not automatically stored to the ROM of the slave device. In order to store the changed parameters to the servo drive EEPROM, please use SDO Save command.
- (7) Motion function block

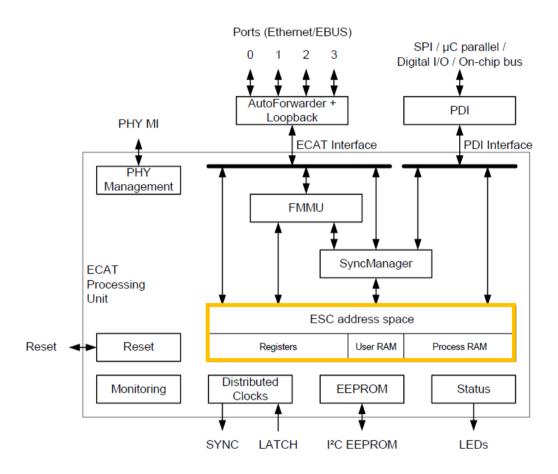
■ SDO reading

Name	Name		Operation Condition
MC_ReadSDO		SDO reading	Level
		LS_ReadSDO	
BOOL-	Execute	Doi	ne – BOOL
UINT —	Slave	Slav	/e — UINT
UINT —	Index	Bu	sy – BOOL
UINT —	SubInde	x Err	or BOOL
UINT —	Length	Error	ID - WORD
		Valu	ue — DINT

■ SDO writing

Name	Name		Description	
MC_WriteSDO		SDO writing		Edge
Г		LS_WriteSDO		7
BOOL-	Execute		Done	BOOL
UINT —	Slave		Slave	UINT
UINT -	Index		Busy	BOOL
UINT —	SubIndex	X	Erro	BOOL
UINT -	Length		ErrorID	- WORD
DINT —	Value			
UINT -	Execution	nMode		
L				

■ SDO saving


Description	Operation Condition	
SDO saving	Edge	
Jode Susy Error	– UINT – BOOL	
lo	SDO saving LS_SaveSDO Done Slave	

8.3.4 EtherCAT Communication Diagnosis Function

EtherCAT slave devices performsEtherCAT communication using ASIC, FPGA, or EtherCAT Slave Controller (ESC) included in the standard micro controller. The communication diagnosis function of EtherCAT reads and writes the ECS (EtherCAT Slave Controller) registers and memories of the slave device, allowing the user to check EtherCAT communication status and errors. EtherCAT communication diagnosis function can be used whether communication is normal or disconnected.

1. EtherCAT Slave Controller (ESC)

(1) ECS is configured as follows. Diagnosis function commands can be used to read and write in the ESC address spaces shown in the block diagram below.

(2) ESC address space is configured as follows.

Address	Define	Remarks		
0x0000		ESC Information,		
:	ESC Register FMMU, SyncManager,			
0x0FFF		Distributed Clocks(DC).		
0x1000		B: 11/01		
:	Process Data RAM	Digital I/O Input Data,		
0xFFFF		Process Data RAM (1KB ~ 60KB)		

Please refer to EtherCAT Slave Controller (ESC) data sheet for detailed information on register and Process RAM.

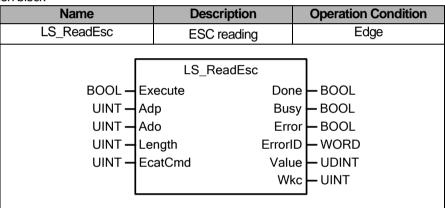
2. ESC reading

- (1) This function reads data in ESC of the slave devices connected via network.
- (2) Adp(Address position) is designating the address of the EtherCAT slave device. The following values can be set depending on the EcatCmd setting. If EcatCmd setting is 7(BRD), Adp input value is ignored

EcatCmd	Adp range
1 (APRD)	0x0000: The first slave connected
	0xFFFF: The second slave connected
	0xFFFE: The third slave connected
	:
	0xFFDD: 36th slave connected
4 (FPRD)	1001 ~ 1032: 1 Axis ~ 32 Axis
	1033 ~ 1036: 33 Axis IO ~ 36 Axis IO
7 (BRD)	-

- (3) In Length, values ranging from 1 to 4 can be entered, which means 1-4 bytes.
- (4) At EcatCmd, the type of command to use when reading ESC (EtherCAT Slave Controller) is specified. The following three commands can be used:
 - 1) 1- APRD(Auto Increment Physical Read)

This command is used when reading the slave device data following the order of physical connection before normal communication connection by the master. The slave device receiving Adp with 0 value will read the data of the size designated by Length. Adp of each slave device increases when EtherCAT frame is received. For example, if EcatCmd is 1, and Adp is set to 0xFFFF, when executing ESC read function block, reading is not performed because the Adp at the time of receiving EtherCAT frame from the first slave device is not 1, only increasing Adp by 1. When the second slve device receives EtherCAT frame, reading is performed because the Adp value of the first slave value increased by 1 to 0. The Adp values depending on the slave device connection order are as follows


Slave controller	Setting value
The first slave connected	0
The second slave connected	0xFFFF
:	:
36th slave connected	0xFFDD

2) 4 - FPRD (Configured Address Physical Read)

This order is used to read the data by designating the station address of the slave device after normal communication connection by the master. If the Station Address of the slave device set by EtherCAT master matches the transmitted Adp, the slave device reads data of the size designated by Length in the Ado area. The Station Address of slave device set by the master are as follows.

Slave controller	Setting value
1 Axis	1001
2 Axis	1002
:	·
32 Axis	1032
33 Axis IO	1033
:	:
36 Axis IO	1036

- 3) 7 BRD (Broadcast Read)
 - All connected slave devices read data of the size set by Length in the Ado area, and saves the result after Bitwise-OR. The designated address value at Adp is ignored, and Wkc increase by 1due to all slaves that performed normal read operation
- (5) Value and Wkc is displayed as 0 when the motion function block is executed. When the execution is completed (Done output is on), the read data value is displayed at Value, and the Working Counter value is displayed at Wkc.
- (6) Wkc stands for Working Counter. If data is successfully written at the designated slave device, it increases by 1. If EcatCmd is 7(BRD), it increases by 1 due to all slaves that performed normal reading operation.
- (7) After the execution of ESC read command, if normal data read operation is executed from the designated slave device, Doneoutput is on.
- (8) ESC read command and ESC write command cannot be simultaneously executed. If they are executed at the same time, the command of the program last executed is executed, and an error (0x1021) occurs in the preceding command.
- (9) Function block

- (10) In the following cases, ESC reading cannot be performed due to errors, properly.
 - 1) No slave device is connected to module (Error Code: 0x0F09)
 - 2) Adp setting value is outside the range (Error Code: 0x0F60)
 - 3) Length setting value is outside the range (Error Code: 0x0F61)
 - 4) EcatCmd setting value is outside the range (Error Code: 0x0F62)
 - 5) No response to ESC read command (Error Code: 0x0F63)

3. ESC writing

(1) This function writes data in ESC of the slave devices connected via network.

(2) Adp input specifies the EtherCAT slave device address, and the following values can be set depending on EcatCmd

settings. If EcatCmd setting is 8(BWR), Adp input value is ignored

EcatCmd	Adp range		
	0x0000: The first slave connected 0xFFFF: The second slave connected		
2 (APWR)	0xFFFE: The third slave connected :		
	0xFFDD: 36th slave connected		
5 (FPWR)	1001 ~ 1032: 1 Axis ~ 32 Axis		
3 (FFWK)	1033 ~ 1036: 33 Axis IO ~ 36 Axis IO		
8 (BWR)	-		

- (3) Adp input specifies the EtherCAT slave device address, and the following values can be set depending on EcatCmd settings. If EcatCmd setting is 8(BWR), Adp input value is ignored.
- (4) At EcatCmd, the type of command to use when readingESC (EtherCAT Slave Controller) is specified. The following three read commands can be used:
 - 1) 2- APWR(Auto Increment Physical Write)

This command is used when reading the slave device data following the order of physical connection before normal communication connection by the master. A slave device receiving Adp with 0 value will read data of the size designated by Length. Adp of each slave device increases when EtherCAT frame is received. For example, if EcatCmd is 2, and Adp is set to 0xFFFF, when executing ESC read function block, reading is not performed because the Adp at the time of receiving EtherCAT frame from the first slave device is not 0, only increasing Adp by 1. When the second slave device receives EtherCAT frame, writing is performed because the Adp value of the first slave value increased by 1 to 0. The Adp values depending on the slave device connection order are as follows.

Slave controller	Setting value
The first slave connected	0
The second slave connected	0xFFFF
:	:
36th slave connected	0xFFDD

2) 5 - FPWR(Configured Address Physical Write)

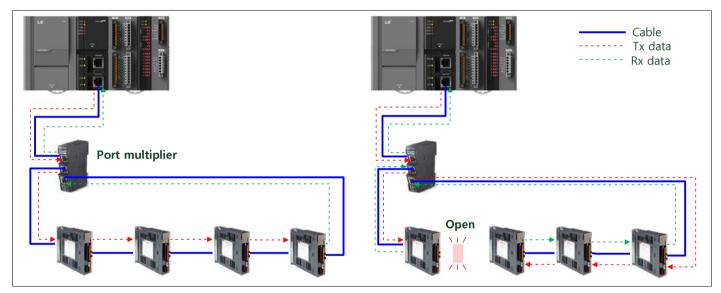
This order is used to write the data by designating the station address of the slave device after normal communication connection by the master. If the Station Address of the slave device set by EtherCAT master matches the transmitted Adp, the slave device writes data of the size designated by Length in the Ado area. The Station Address of slave device set by the master is as follows.

Slave controller	Setting value
1 Axis	1001
2 Axis	1002
:	:
32 Axis	1032
33 Axis IO	1033
:	:
36 Axis IO	1036

- 3) 8 BWR(Broadcast Write)
 - All connected slave devices write data of the size set by Length in the Ado area. The designated address value at Adp is ignored, and Wkc increase by 1 due to all slaves that performed normal write operation.
- (5) Wkc value is displayed as 0 when the motion function block is executed, and the Working Counter value is displayed when execution is completed (Done output is on). Wkc increases by 1through each slave device specified in EcatCmd and Adp.
- (6) Wkc stands for Working Counter. If data is successfully written at the designated slave device, it increases by 1. If EcatCmd is 8(BWR), it increases by 1 through each slave device that performed normal write operation.
- (7) After the execution of ESC write command, if normal data write operation is executed in the specified slave device, Done output is on.
- (8) Slave devices use ESC to perform EtherCAT communication. Therefore, changing ESC register values while executing connection/disconnection command or during normal EtherCAT communication may prevent the slave device from maintaining existing motions or cause communication errors. Therefore, using the following ESC Register causes an error without executing write motion. (Error Code: 0x0F74)

Ado range	Define	
0x0010 ~ 0x0011	Configured Station Address	
0x0020 ~ 0x0021	Wite Protection	
0x0030 ~ 0x0031	Write Protection	
0x0040	ESC Reset ECAT	
0x0100 ~ 0x0103	DL Control	
0x0120 ~ 0x0121	AL Control	
0x0600 ~ 0x06FF	FMMU	
0x0800 ~ 0x087F	SyncManager	
0x0900 ~ 0x09FF	Distributed Clocks	

- 3 0x0120 (AL Control) register can be written after the connection of normal communication, not the execution of connection/disconnection command.
- (9) ESC read command and ESC write command cannot be simultaneously executed. If they are executed at the same time, the command of the program last executed is executed, and an error (0x1021) occurs for the preceding command
- (10) Motion function block

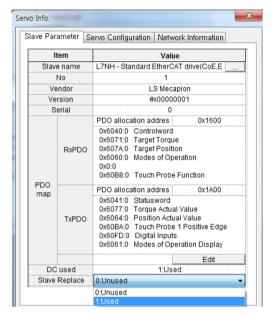

Name		Description		Operation Condition
LS_WriteEsc	LS_WriteEsc		C writing	Edge
				1
		LS_W	riteEsc	
BOOL -	Exe	cute	Done	– BOOL
UINT —	Adp		Busy	– BOOL
UINT —	Ado		Error	– BOOL
UINT —	Leng	jth	ErrorID	– WORD
UINT —	Ecat	Cmd	Wkc	— UINT
UDINT -	Value			
l l				J

Chapter8 Motin Control Function

- (11) In the following cases, ESC writing cannot be performed due to errors, properly
 - 1) No slave device is connected to module (Error Code: 0x0F09)
 - 2) Adp setting value is outside the range (Error Code: 0x0F70)
 - 3) Length setting value is outside the range (Error Code: 0x0F71)
 - 4) EcatCmd setting value is outside the range (Error Code: 0x0F72)
 - 5) No response to ESC read command (Error Code: 0x0F73)
 - 6) Ado setting value is not correct (Error Code: 0x0F74)

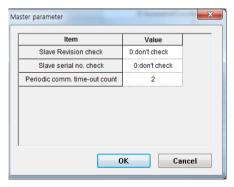
8.3.5 Cable Duplication Function

It provides cable duplication function using port multiplier. Constructing a ring topology using port multiplier will prevent the network between slaves from disconnecting even in case of a cable disconnection on one side. When the disconnected cable is re-connected, it is recovered to the original communication method.


* Port multiplier of up to 1 can be used. In case of using a port multiplier, it occupies an IO slave number. Therefore, a caution is required when using since the use of the port multiplier reduces the number of IO slaves available.

8.3.6 Replace Function during Connection

While using the cable duplication function, if a slave device previously not in operation due to network disconnection or a failure is restored and connected to the network, this function detects the connection and connects to the network of the individual slave device without having to reconnect the overall network.


1. Replace function during connection setting

To set the slave device to use the function to replace slaves during connection, the "In-connection Replacement Function" at the slave information should be set to Enabled. In case of a slave for which the replacement function is not set to use, if the slave is removed from the network, the removal is regarded as a network error, which stops the entire network.

2. Master parameter setting

When using the in-connection replacement function, the slaves being replaced should be identical to the replacing slave. To determine whether the slaves being replaced are identical, check whether the manufacturer/product codes match. In addition, check whether the revision/serial numbers are identical, depending on the master parameter settings.

3. The way of slave exchange during connection

- (1) Remove the input/output cable of the slave to be replaced during the network connection.
- (2) Shut off the power of the slave.
- (3) Apply the power to the slave to be replaced.
- (4) Connect the cable of one side of the port.
- (5) Connect the cable of one side of the port.(The simultaneous connection of input/output cables may prevent normal replacement.)
- (6) When the slave communication is restored, connect the cable of the other side.

8.3.7 Encoder Position Latch Function

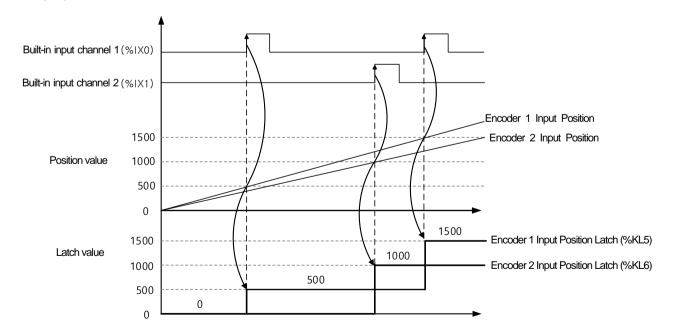
If using the encoder position latch function, you can use the encoder value that is not affected by the program task cycle through the built-in input by latching the value.

Encoder latch operates through the input of the built-in input channel 1 (%IX0) and channel 2 (%IX1).

(1) Parameter setting

To use the encoder position latch function, setting of the 'Encoder - Encoder 1/2 Position Latch' parameter is needed. This parameter sets whether to use the 'Encoder 1/2 Position Latch' function as follows:

Item	Setting range	Initial value
Encoder 1 Position Latch	0: Disable	O. Diaghta
	1: Enable	0: Disable
Encoder 1 Position Latch	0: Disable	O. Disable
	1: Enable	0: Disable


(2) Operation condition

Input condition	Latch value	Flag name (device)
Increase of the built-in input channel 1	Encoder 1 Input Position	_ENC1_POS_LATCH (%KL5)
(%IX0)	Latch	
Increase of the built-in channel 2 (%IX1)	Encoder 2 Input Position	_ENC2_POS_LATCH (%KL6)
input	Latch	

The relative operation is as follows:

If a signal is input into the built-in input channel 1, the position value is latched in the rising edge and saved as the encoder 1 input position latch value.

If a signal is input into the built-in input channel 2, the position value is latched in the rising edge and saved as the encoder 2 input position latch value.

8.3.8 Position Control Range Expansion

When executing the position control among motion functions, the target position value can be set in the range of 32-bit integer types based on the pulse position. However, if the resolution of a motor encoder is high or the transfer distance of the machine is long, position control is sometimes needed to exceed the range of 32-bit integer types.

In such case, the 'Position Control Range Expansion' function can position control by expanding the range of position control to the range of 48-bit integer types.

(1) Parameter setting

To use the 'Position Control Range Expansion' function, the setting of 'Axis Parameter - Basic Setting - Position Control Range Expansion' parameters is needed. This parameter sets whether to use the 'Position Control Range Expansion' function as follows:

Item	Setting range	Initial value
Position Control Bongo Evennoine	0: Disable	0: Disable
Position Control Range Expansion	1: Enable	0. Disable

(2) Position Control Range

An error occurs when a position exceeds the position control range after conversing the unit position set to LREAL into the pulse unit when specifying the target position in motion control commands.

The range of position control according to whether to use the 'Position Control Range Expansion' function is as follows:

Item	Setting value	Position Control Range
	0.50	32-Bit integer type
Position Control Range	0: Disable	→ -2 ³¹ ~ 2 ³¹ -1 (-2,147,483,648 ~ 2,147,483,647)
Expansion		48-Bit integer type
	1: Enable	→ -2 ⁴⁷ ~ 2 ⁴⁷ -1 (-140,737,488,355,328 ~ 140,737,488,355,327)

If using the 'Position Control Range Expansion' function, the range of position control is expanded 65,536 times more than previously.

(3) Software Upper/Lower Limits

If 'soft upper/lower limit' parameters are set to the initial value (the soft upper limit = 2147483647 and the soft lower limit = -2147483648), operation changes according to 'Position Control Range Expansion' parameters as follows:

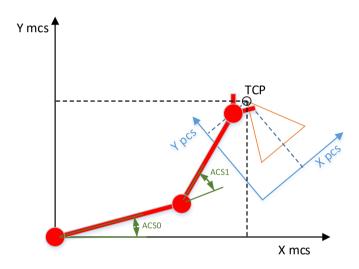
- 1) If 'Position Control Range Expansion' = '0: Disable'
 - If the soft upper limit is 2147483647 and the soft lower limit is -2147483648, the software upper/lower limits are not detected.
- 2) If 'Position Control Range Expansion' = '1: Enable'
 - If the soft upper limit is 2147483647 and the soft lower limit is -2147483648, the software upper/lower limits are examined with these values. When the position control exceeds these values, an axis stops suddenly after the software upper/lower limit error occurs.
- If the soft upper limit and lower limit are set to the same value, the software upper/lower limits are not detected irrespective of the 'Position Control Range Expansion' setting.

(4) Restrictions

When the position value is specified for the next item, the position range after being converted into pulse unit is limited to the '32-bit integer type' value.

- 1) Transfer distance per rotation
- 2) Infinite running repeat position
- 3) Command position width

Chapter8 Motin Control Function


- 4) Excessive following error value
- 5) Compensation amount of the current position
- 6) Phase compensation amount of the phase compensation command
- 7) Target distance of the SuperImposed operation command
- 8) If the linear interpolation, TransitionMode is TMCornerDistance, the value of TransionParameter

8.4 Coordinate Systems Operation Function

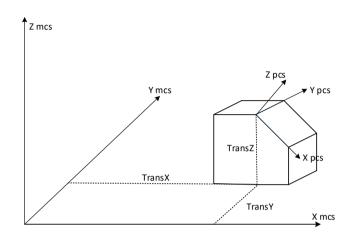
8.4.1 Summary of the Coordinate Systems Operation

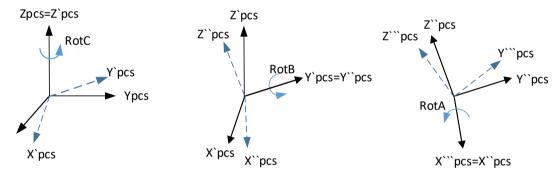
Different coordinate systems define various ways specifying certain positions or directions in the space. The figure below shows how to represent a certain TCP through each coordinate system. In the ACS coordinate system, TCP is represented as the rotation angle of a robot joint consisting of two links. In the MCS coordinate system, TCP position is represented based on the home position of MCS. In the PCS coordinate system, TCP position is represented based on the home position of TCP

TCP represented as PCS/MCS cannot be delivered to the motor connected to the robot for operation. To operate the motor connected to the robot, the values converted to ACS should be used, as it represents the actual movement of the motor. Therefore, for operation in a coordinate system, convert PCS to MCS coordinates through the Cartesian coordinate conversion, and convert the MCS coordinates to ACS coordinates through inverse kinematics conversion, and deliver the CA values to each motor to begin operation.

8.4.2 ACS/MCS/PCS/TCP

ACS: Axes Coordinate System (ACS) represents the actual movement of the physical motors.


MCS: Machine Coordinate System (MCS) is related with machines (robots). It is the fixed home position of the mechanical system represented as the Cartesian coordinate system.


PCS: Product Coordinate System based on MCS represents the position of products being moved or rotated. PCS is linked to the products through a program, and a user can be changed.

TCP(Tool Center Point) is the center or end point of the tool as a position to which a machine (robot) is moved by the command. In case of operation using MCS or PCS, the target position is represented by TCP. TCP consists of 6 RotC data: Px,Py,Pz, representing movement along XYZ axes; RotA representing rotation along X axis; RotB representing rotation along Y axis; and RotC representing rotation along Z axis.

8.4.3 PCS Setting

PCS represents TCP on the work stand. TCP is defined by rotation and movement from the origin point. The parameter to convert PCS into MCS can be set using MC_SetCartesianTransform function block or setting axes group parameter. In MC_SetCartesianTransform, TransX/TransY/TransZ represents the distance of movement from the MCS origin point to the PCS origin point. RotA/RotB/RotCare rotation values for PCS. RotA represents PCS rotation along X-axis. RotB represents PCS rotation along Y-axis. RotC represents PCS rotation along Z-axisPCS rotation is performed in the following order: RotC->RotB->RotA

1. Function block

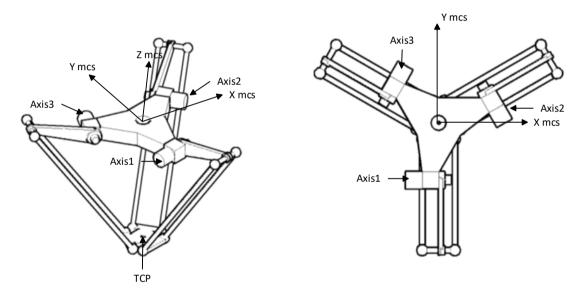
Name		Descrip	Description		Operation Condition	
MC_SetCartesianTransform	PCS s		tting		Edge	
	_					
	MC_SetCartesianTransform					
ВО		Execute		Done	- BOOL	
Ul	INT -	AxesGroup	Axes(Group	— UINT	
LRE	EAL 🚽	TransX		Busy	– BOOL	
LRE	EAL —	TransY	A	Active	– BOOL	
		TransZ	CommandAb	orted	– BOOL	
		RotAngleA		Error	– BOOL	
		RotAngleB	Eı	rorID	– WORD	
LRE	EAL \neg	RotAngleC				
	L					

8.4.4 Machine Information Setting

To operate the robot using coordinate system operation, the type of the robot (machine) and the machine parameters should be set at the axes group parameter in advance. Machine parameters can be set using MC_SetKinTransform function block. XG5000 axes group parameters can be set using the same.

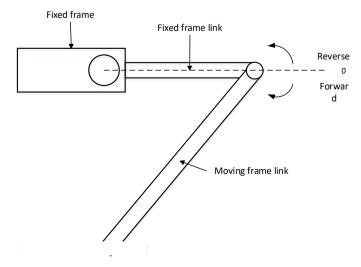
1. Machine information, machine type setting

In the machine type settings, select the type of machine (robot) to perform coordinate system operation. XYZ / Delta3 / Delta3R / LinearDelta3R can be selected as the robot type.


(1) XYZ(Cartesian coordinates) robot

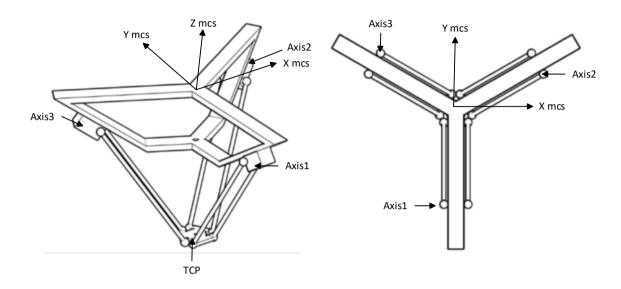
XYZ is a robot type with servo motors connected to X/Y/Z axes, which can perform the operation in Cartesian coordinates, and it does not require additional kinematic analysis between ACS and MCS.

(2) Delta3

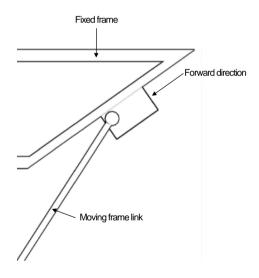

MCS of the Delta robot

In case of a Delta robot, the center of Fixed Frame is defined as MCS, and the relationship between each axis connected to Delta and MCS are as shown below.

ACS of the Delta robot

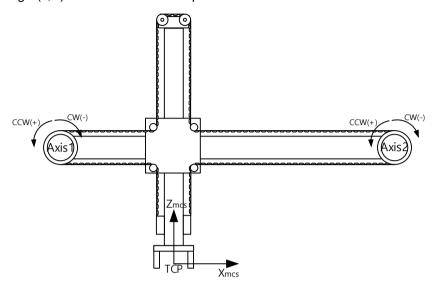

The direction of the link connected to Delta's fixed frame facing the floor is defined as the forward direction of the axis operating the link, and the other direction is defined as the opposite direction.

(3) Linear Delta 3


MCS of the LinearDelta robot

In case of a LinearDelta robot, the center of Fixed Frame is defined as MCS, and the relationship between each axis connected to LinearDelta and MCS are as shown below.

ACS of the LinearDelta robot


The utmost position that the linear axis of the LinearDelta robot moves toward the ceiling is defined as 0. The direction that the linear axis moves toward the bottom is defined as the forward direction, and the opposite direction is defined as the reverse direction.

(4) T-Gantry

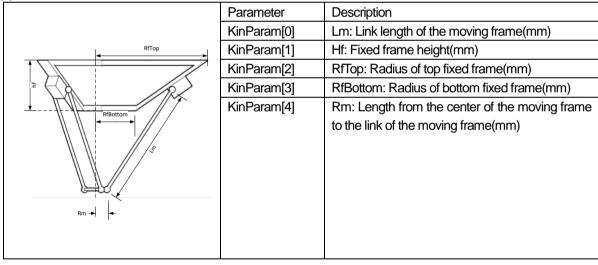
MCS of the T-Gantry robot

The MCS of the T-Gantry robot defines the position of the end of a tool when the positions of Axis 1 and Axis 2 are 0 as the origin (0, 0) of MCS. The relationship between MCS and the axis connected with T-Gantry is shown in the following figure:

ACS of the T-Gantry robot

If the structure of the T-Gantry robot is the same as the above, define a counterclockwise operation as a forward one and a clockwise operation as a reverse one.

2. Machine information, machine parameter setting

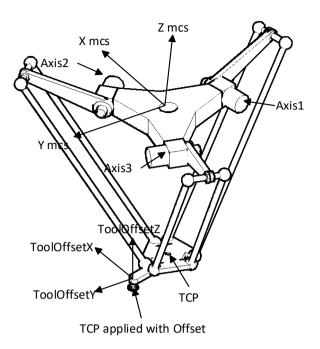

(1) XYZ

XYZ robot does not require separate machine parameters, as the position of each axis matches the XYZ coordinates of TCP.

(2) Delta3/Delta3R

	Parameter	Description
	KinParam[0]	Lf:Link length of the fixed frame(mm)
Rf Lf _	KinParam[1]	Lm: Link length of the moving frame(mm)
0,000	KinParam[2]	Rf: Length from the center of the fixed frame to
		the link of the fixed frame(mm)
	KinParam[3]	Rm: Length from the center of the moving frame to the link of the moving frame(mm)
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
Rm →		

(3) LinearDelta3/LinearDelta3R



(4) T-Gantry

The T-Gantry robot does not need the parameter setting of a separate mechanism.

3. Machine information, tool offset setting

A tool offset function is provided in addition to the machine information, as additional equipment may be connected to the end of the robot's TCP. Activating tool offset applies the offset to the TCP target position applied to the coordinate system operation.

4. Axis group, axis configuration setting

To perform coordinate system operation, the axes should be set to suit the machine type. Coordinate system operation is not performed if the number of axes or the axis unit does not match.

Machine tree	Axis number		EA	4	
Machine type	AXIS HUITIDEI	1 Axis	2 Axis	3 Axis	4 Axis
XYZ	3 Axes	mm	mm	mm	-
Delta3	3 Axes	degree	degree	degree	-
Delta3R	4 Axes	degree	degree	degree	degree
LinearDelta3	3 Axes	mm	mm	mm	-
LinearDelta3R	4 Axes	mm	mm	mm	degree

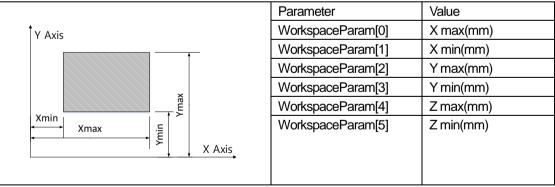
5. Function block

Name	Descri	otion	Oper	ration Condition
MC_SetKinTransform	Machine inform	nation setting		Edge
				1
	MC_	SetKinTransform		
ВО	OL - Execute		Done	-BOOL
UI	NT - Axes Group	Axe	sGroup	- UINT
UI	NT - KinType		Busy	-BOOL
UI	NT - KinExtParam		Active	-BOOL
ARRAY[012] OF LREA	L[] − KinParam	Command/	Aborted	-BOOL
LRE	EAL — ToolOffsetX		Error	-BOOL
LRE	EAL — ToolOffsetY		ErrorID	- WORD
UI	NT - ToolOffsetZ			

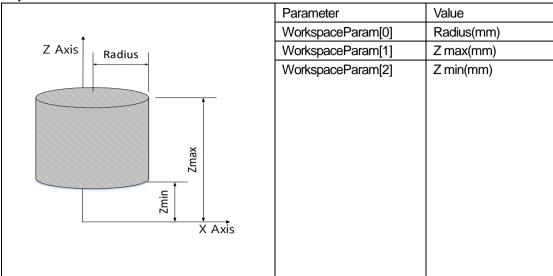
8.4.5 Work Space Setting

For coordinate system operation, in order to prevent machine damage or safety accident caused by the robot performing impossible motion, a work space function is provided to prevent the robot from going out of the preset work space. Coordinate system operation is not performed if the robot's current position or target position is outside the work space. Work space setting can be performed using LS_SetWorkspace function block. XG5000 axes group parameters can be set using the same

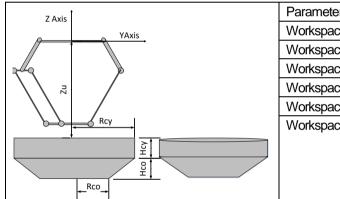
1. Work space setting


Perform work space settings, and the occurrence of work space error can be set. Set the workspace type set in the WorkspaceType as the work space parameter set in the WorkspaceParam in the axis group specified in the set AxesGroup inputIf WorksaceError value is set to 0, the operation continues without errors even when it goes out of the work space. Work space settings cannot be performed while the axes group is in operation.

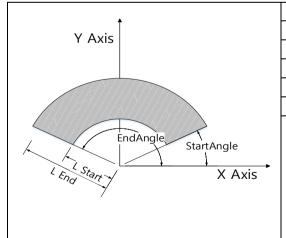
	Description	Operation Condition
LS_SetWorkspace	Work space setting	Edge
BO UI UI BO	LS_SetWorkspace DOL — Execute INT — AxesGroup Axi INT — WorkspaceType DOL — WorkspaceError	Done - BOOL


2. Work space type and parameter

The work space type supports 4 types of Rectangle/Cylinder/Delta/Sector.


Rectangle

Cylinder



Delta

Parameter	Value
WorkspaceParam[0]	Zu(mm)
WorkspaceParam[1]	Hcy(mm)
WorkspaceParam[2]	Hco(mm)
WorkspaceParam[3]	Rcy(mm)
WorkspaceParam[4]	Rco(mm)
WorkspaceParam[5]	-

Sector

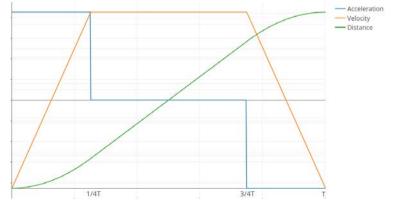
Parameter	Value
WorkspaceParam[0]	L end (mm)
WorkspaceParam[1]	L start(mm)
WorkspaceParam[2]	Z max(mm)
WorkspaceParam[3]	Z min(mm)
WorkspaceParam[4]	EndAngle(degree)
WorkspaceParam[5]	StartAngle(degree)

8.4.6 Time Linear Interpolation Operation for Absolute Position of Coordinate System

Use the related axes set in the axes group to perform interpolation control by moving the TCP from the current position to the target position in the set time in a linear trajectory.

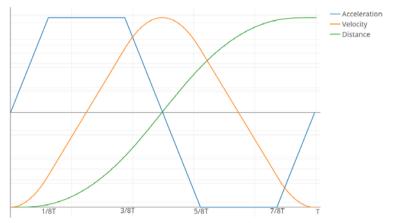
- 1. Perform linear interpolation from the start position to the target position (position designated by the positioning data). Positioning control is based on the position designated at return to origin point.
- 2. Set Position[] to define the TCP target position.

Variable	Define	Unit
Position[0]	X Axis position	mm
Position[1]	Y Axis position	mm
Position[2]	Z Axis position	mm
Position[3]	X Axis rotation amount	degree
Position[4]	Y Axis rotation amount	degree
Position[5]	Z Axis rotation amount	degree

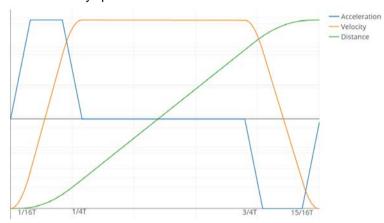

3. Depending on the robot type, some Position variable areas may not be applied. Data input in the unapplied areas is not reflected in coordinate system operation.

Variable	Define			
variable	XYZ	Delta3		
Position[0]	Applied	Applied		
Position[1]	Applied	Applied		
Position[2]	Applied Applied			
Position[3]	Not applied	Not applied		
Position[4]	Not applied	Not applied		
Position[5]	Not applied	Not applied		

- 4. Perform linear interpolation to reach the target TCP in the time set in TrajTime.
- 5. TrajType input determines the type of acceleration/deceleration for reaching the interpolation trajectory. Three types of 0: Trapezoid/Sine1/Sine2are available.


Trapezoid

Operation profile of basic trapezoidal linear acceleration/deceleration


Sine1

The velocity profile of this operation type consists of sine curves. It is suitable for low-load high-velocity operation, and reduces impact on the motor caused by load changes.

Sine2(Sine With Constant)

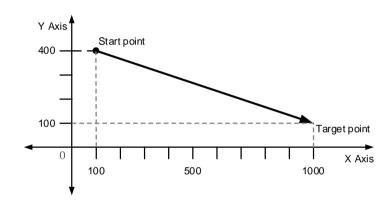
This velocity profile of this operation type consists of sine curves and constant speed sections. It is suitable for high-load, medium-velocity operation.

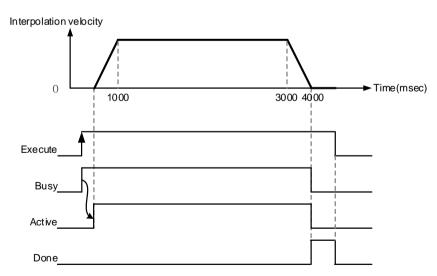
- 6. When CoordSystem input is set to 1, the robot operates using the Position values as MCS coordinates. When it is set to 2, the robot operates using the Position values as PCS coordinate system.
- 7. To stop the current interpolation control, use MC_GroupHalt or MC_GroupStop motion function block.
- 8. Function block

Name		Description	0	peration Condition	
NC Mayal in an Time Abachuta Coordin		dinate system absolute position		Edge	
MC_MoveLinearTimeAbsolute	time l	linear interpolation operation		Edge	
	Γ	LS_MoveLinearTimeAbso	lute]	
	BOOL-	Execute	Done	-BOOL	
	UINT -	AxesGroup A	xesGroup	- UINT	
		CoordSystem	Busy	- BOOL	
ARRAY[06] OF LF			Active	-BOOL	
	UINT —	TrajType	Error	– BOOL	
l I	LREAL —	•	ErrorID	-WORD	
	-	BufferMode			
	-	TransitionMode			
1	LREAL —	TransitionParameter			
	L			J	

9. Limitation

Coordinate system absolute position time linear interpolation control cannot be performed in case of the following errors


- CoordSystem input is set to a value other than 1 or 2 (Error Code: 0x20BC)
- The operation parameter unit of the component axes is not compatible with the coordinate system type (Error Code: 0x2063)
- Of the component axes, an axis where the home position is not determined exists (Error Code: 0x20B0)
- The operation velocity of the component axes exceeds the velocity limit of each axis (Error Code: 0x20B9)
- Of the component axes, there is an axis being executed with the infinite running repeat operation (Error Code: 0x20BA)

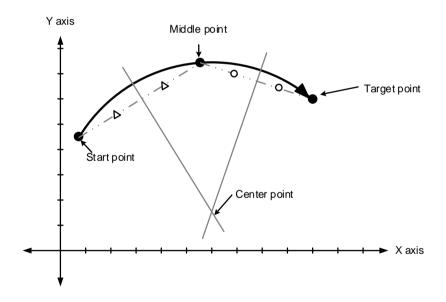

10. Operation timing

Start point: (100.0, 400.0, 0.0)

- Target point: (1000.0, 100.0, 0.0)

Target time: 4000msecOperation type: 0

8.4.7 Circular Interpolation Operation for Coordinate System


Coordinate system-based circular interpolation operation is performed, where the TCP moves in a circular trajectory on the XY plane using the designated axis in the axes group. Coordinate system absolute position circular interpolation control involves the same setting and motion except that it is based on a coordinate system. There are three types of circular interpolation: center point method, where the TCP passes the position designated by the auxiliary point following the CircMode setting and the auxiliary point; center point method where the position designated by the auxiliary point is the center point; and diameter method where the value set as the auxiliary point is the diameter of the arc. To stop the current interpolation control use MC_GroupHalt or MC_GroupStop motion function block.

1. EndPoint/AuxPoint

In case of coordinate system circular interpolation control, enter the Px,Py,Pz of TCP to EndPoint/AuxPoint. The RotA, RotB, RotC values, which determine the TCP posture, is not entered, instead maintaining the values at the start position.

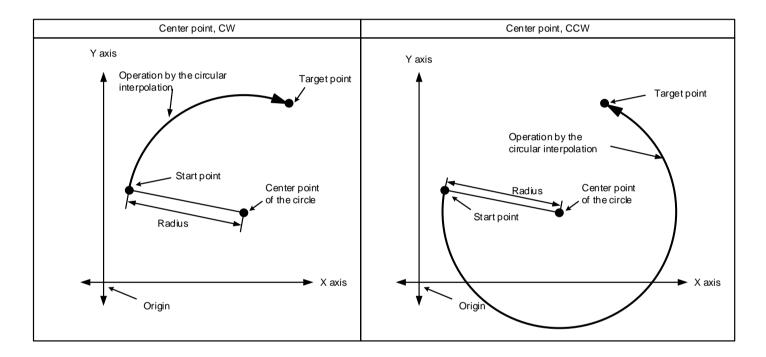
2. Circular interpolation using midpoint specification

- (1) Circular interpolation is performed by starting at the start position, passing the center point set as the auxiliary point, and moving to the target position
- (2) A circular trajectory is created of which the center point is the crossing point of the perpendicular bisectors bet ween the start position and the mid position, and the mid position and the target position.
- (3) The movement direction is automatically determined by the set target position and the auxiliary point for circular interpolation

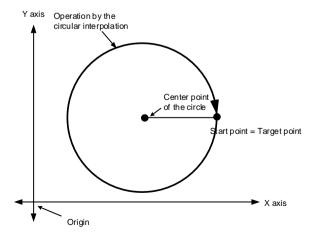
(4) Limitation

Circular interpolation control using mid-point specification method cannot be performed in case of the following errors.

- During absolute coordinate circular interpolation, home position has not been determined in one or more of the component axes (Error Code: 0x20A0)
- The midpoint specified as the auxiliary point is the same as the start or target position (Error Code: 0x20A4)
- The start point is the same as the target point (Error Code: 0x20A5)
- The calculated radius of the arc exceeds 2147483647pls (Error Code: 0x20A6)
- The start point, the auxiliary point, and the target point are on the same straight line (Error Code: 0x20A7)
- One or more of the component axes is performing the infinite running repeat operation (Error Code: 0x20A8)


Chapter8 Motin Control Function

(5) Operation pattern


- Start point: (0.0, 0.0,0.0)
- Target point: (100.0, 60.0,0.0)
- Middle point: (20.0, 60.0)
- CircMode: Middle point(0)
- PathChoice: (Ignore in the circular Interpolation using midpoint)

- 3. Circular interpolation using center point specification
 - (1) Circular interpolation is performed by starting at the start position, and reaching the target position in a circular trajectory of which the diameter is the distance to the designated center point.
 - (2) The movement direction is determined as the direction set in the absolute position circular interpolation operation (MC_MoveCircularAbsolute2D), the relative position circular interpolation operation (MC_MoveCircularRelative2D), or "PathChoice" of the motion function block.
 - 0: 「CW」 perform circular interpolation in the clockwise direction from the start position.
 - 1: 「CCW」 perform circular interpolation in the counter-clockwise direction from the start position.

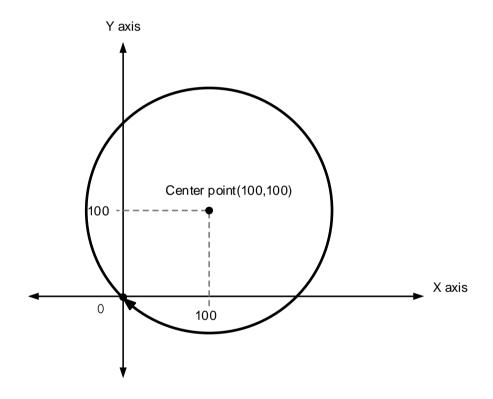
(3) Setting the target position to be the same as the start position creates a proper circle trajectory for the circular interpolation, of which the diameter is the distance between the start position and the center point of the circle.

(4) Limitation

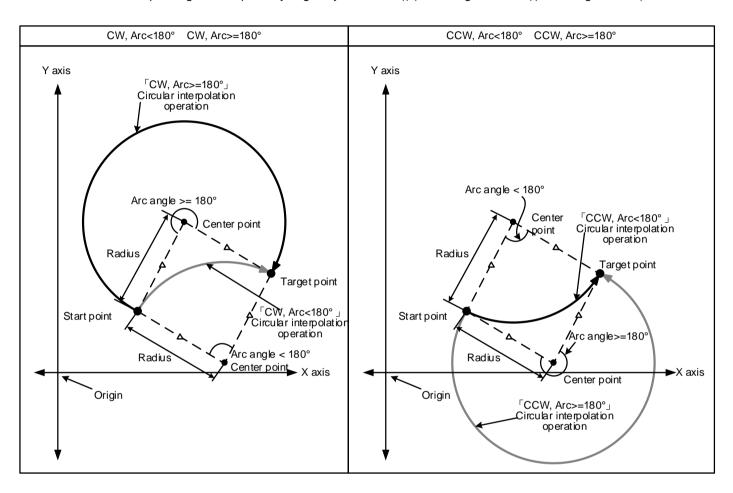
Circular interpolation control using center point specification method cannot be performed in case of the following errors.

- During absolute coordinate circular interpolation, home position has not been determined in one or more of the component axes (Error Code: 0x20A0)
- The center point set as the auxiliary point is the same as the start or target position (Error Code: 0x20A4)
- The calculated radius of the arc exceeds 2147483647pls (Error Code: 0x20A6)
- The start position, the auxiliary point, and the target position are on the same straight line (Error Code: 0x20A7)
- One or more of the component axes is performing infinite running repeat operation (Error Code: 0x20A8)

(5) Operation pattern


- Start point: (0.0, 0.0,0.0)

- Target point: (0.0, 0.0, 0.0)


- Aux point: (100.0, 100.0, 0.0)

- CircMode: Center point(1)

- PathChoice: - CW(0)

- 4. Circular interpolation using radius specification
 - (1) Circular interpolation is performed by starting at the start point, and reaching the target point in a circular traject ory of which the diameter is the distance set by the auxiliary point for the circular interpolation. The center point arc varies depending on the positivity/negativity of radius ((+): arc angle <180°, (-): arc angle>=180°).

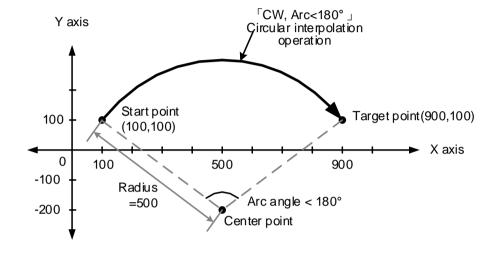
- (2) In case of designating the diameter, the target position cannot be identical to the start position.
- (3) The movement direction and the size of the arc are determined by the signs of the auxiliary point and the direction set in the absolute position coordinate system circular interpolation operation (MC_MoveCircularAbsolute2D), the relative position coordinate system circular interpolation operation (MC_MoveCircularRelative2D), or "PathChoice" of the motion function block.
- (4) Limitation

Circular interpolation control by radius specification method cannot be performed in case of the following errors.

- During absolute coordinate circular interpolation, home position has not been determined in one or more of the component axes (Error Code: 0x20A0)
- The start position is the same as the target position (Error Code: 0x20A5)
- The calculated radius of the arc exceeds 2147483647pls (Error Code: 0x20A6)
- The start position, the auxiliary point, and the target position are on the same straight line (Error Code: 0x20A7)
- One or more of the component axes is performing infinite running repeat operation (Error Code: 0x20A8)

Chapter8 Motin Control Function

(5) Operation pattern


Start point: (100.0, 100.0, 0.0)

Target point: (900.0, 100.0)

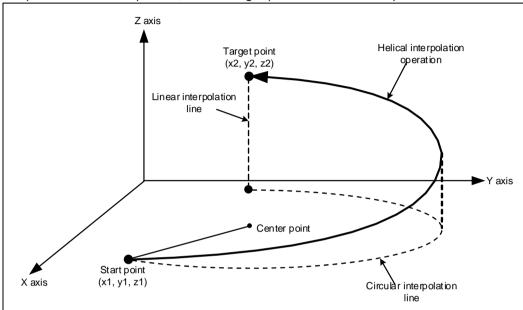
Aux point: (500.0, 0.0)

CircMode: Radius(2)

PathChoice: - CW(0)

5. Function block

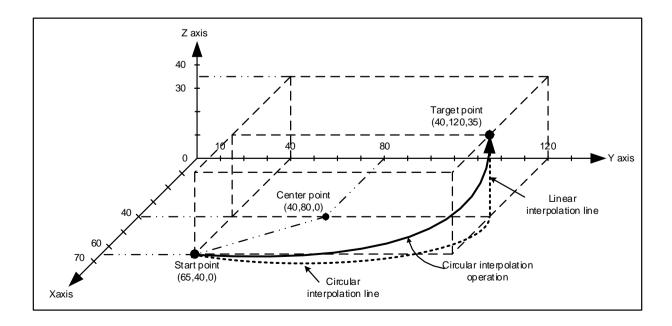
(1) Absolute position coordinate system circular interpolation operation


Name		D	escription		Operatio	n Condition
MC_MoveCircularAbsolute2D		Absolut	e position circular		_	dao
IVIC_IVIOVECII CUIAI ADSOIC	uleZD	interpo	olation operation			Edge
•				,		
	MC	_MoveCircul	arAbsolute2D			
BOOL -	Execute		Done	⊢B	OOL	
UINT -	AxesGrou	р	AxesGroup	ŀυ	INT	
_	CircMode		Busy		OOL	
LREAL[]			Active	1 -	OOL	
LREAL[]			CommandAborted	1 -	OOL	
	PathChoic	æ	Error	1	OOL	
LREAL —	,		ErrorID	۲v	/ORD	
	Accelerati			l		
	Decelerat	ion		1		
LREAL —				1		
	CoordSys			l		
UINT —	BufferMod	le		l		
UINT —	Transition	Mode		l		
LREAL —	Transition	Parameter]		

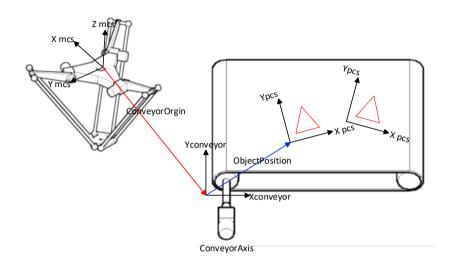
(2) Relative position coordinate system circular interpolation operation

MC_MoveCircularRelative2D MC_MoveCircularRelative2D BOOL — Execute Done UINT — AxesGroup UINT — CircMode Busy BOOL — BOOL LREAL[] — AuxPoint Active — BOOL — BOOL UINT — PathChoice Error Dath CommandAborted UINT — PathChoice Error LREAL — Velocity ErrorID — WORD LREAL — Deceleration LREAL — Jerk UINT — BufferMode UINT — TransitionMode Relative position circular Edge MC_MoveCircularRelative2D — BOOL —	Name		Description	-	Operation Condition
interpolation operation MC_MoveCircularRelative2D Execute Done AxesGroup UINT CircMode Busy BOOL LREAL[] - AuxPoint Active BOOL LREAL[] - BOOL LREAL - Velocity ErrorID LREAL - Acceleration LREAL - Deceleration LREAL - Jerk UINT - UINT - UINT CoordSystem UINT - TransitionMode	MC May of Circular Polatica 2D		Relative position circular	•	Edgo
BOOL — Execute Done — BOOL UINT — AxesGroup — AxesGroup — UINT UINT — CircMode Busy LREAL[] — AuxPoint Active LREAL[] — EndPoint CommandAborted UINT — PathChoice Error LREAL — Velocity ErrorID LREAL — Acceleration LREAL — Deceleration LREAL — Deceleration LREAL — UINT — UINT — BufferMode UINT — TransitionMode	IVIC_IVIOVECII CUIAI REIAU	vezD	interpolation operation		Euge
BOOL — Execute Done — BOOL UINT — AxesGroup — AxesGroup — UINT UINT — CircMode Busy LREAL[] — AuxPoint Active LREAL[] — EndPoint CommandAborted UINT — PathChoice Error LREAL — Velocity ErrorID LREAL — Acceleration LREAL — Deceleration LREAL — Deceleration LREAL — UINT — UINT — BufferMode UINT — TransitionMode					
BOOL — Execute Done — BOOL UINT — AxesGroup — AxesGroup — UINT UINT — CircMode Busy LREAL[] — AuxPoint Active LREAL[] — EndPoint CommandAborted UINT — PathChoice Error LREAL — Velocity ErrorID LREAL — Acceleration LREAL — Deceleration LREAL — Deceleration LREAL — UINT — UINT — BufferMode UINT — TransitionMode	,			_	
UINT — AxesGroup — UINT — BOOL LREAL[] — AuxPoint — Active LREAL[] — RoOL UINT — PathChoice — Error LREAL — Velocity — ErrorID LREAL — LREAL — Deceleration LREAL — UINT — Deceleration UINT — UINT — UINT — BufferMode UINT — TransitionMode		MC	C_MoveCircularRelative2D		
UINT — CircMode Busy LREAL[] — AuxPoint Active LREAL[] — EndPoint CommandAborted UINT — PathChoice Error LREAL — Velocity ErrorID LREAL — Acceleration LREAL — Jerk UINT — CoordSystem UINT — BufferMode UINT — TransitionMode	BOOL -	Execute	Don	e – B0	OOL
LREAL[] — AuxPoint Active LREAL[] — EndPoint CommandAborted UINT — PathChoice Error LREAL — Velocity ErrorID LREAL — Acceleration LREAL — Deceleration LREAL — UINT — UINT — UINT — UINT — UINT — UINT — TransitionMode LREAL — UINT — TransitionMode — BOOL — BOOL — BOOL — WORD	UINT -	AxesGrou	ıp AxesGrou	p├UI	INT
LREAL — EndPoint CommandAborted — BOOL — WORD — W	UINT —	CircMode	Bus	у – во	OOL
UINT — PathChoice Error — BOOL LREAL — Velocity ErrorID — WORD LREAL — Acceleration LREAL — Deceleration LREAL — UINT — CoordSystem UINT — BufferMode UINT — TransitionMode	LREAL[]	AuxPoint	Activ	e − B0	OOL
LREAL — Velocity ErrorID — WORD LREAL — Acceleration LREAL — Deceleration LREAL — UINT — CoordSystem UINT — BufferMode UINT — TransitionMode	LREAL[]	EndPoint	CommandAborte	d⊣B0	OOL
LREAL — Acceleration LREAL — Deceleration LREAL — Jerk UINT — CoordSystem UINT — BufferMode UINT — TransitionMode	UINT —	PathChoic		- 1	
LREAL — Deceleration LREAL — Jerk UINT — CoordSystem UINT — BufferMode UINT — TransitionMode	LREAL —	Velocity	Errorl	P⊨w	ORD
LREAL — Jerk UINT — CoordSystem UINT — BufferMode UINT — TransitionMode	LREAL —	Accelerati	on		
UINT — CoordSystem UINT — BufferMode UINT — TransitionMode	LREAL —	Decelerat	ion		
UINT — BufferMode UINT — TransitionMode	LREAL —	Jerk			
UINT - TransitionMode	UINT -	CoordSys	etem		
	UINT —	BufferMod	de		
	-				
LREAL — TransitionParameter	LREAL —	Transition	Parameter	╛	

6. Helical interpolation


- (1) When circular interpolation commands (absolute position coordinate system circular interpolation operation (MC_MoveCircularAbsolute2D), relative position coordinate system circular interpolation operation (MC_MoveCircularRelative2D)) are executed, circular interpolation is performed by moving in a circular trajectory on the XY plane, while linear interpolation synchronized to the circular interpolation motion is performed with respect to Z-axis
- (2) To perform helical interpolation, set the target position for linear interpolation at Pz of 'EndPoint'.

(3) Limitation


The restrictions for the circular interpolation mode designated for helical interpolation also apply to the helical interpolation.

- (4) Operation pattern
 - Start point: (65.0, 40.0, 0.0)
 - Target point: (40.0, 120.0, 35.0)
 - Center point: (40.0, 80.0, 0.0)
 - CircMode: Center point(1)
 - PathChoice: CCW(1)

8.4.8 Synchronized Operation for Conveyor Belt

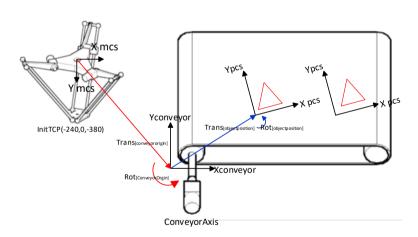
In a coordinate-based operation, one of the axes group is designated as the conveyor axis, and the objects moving on the conveyor in a straight line are tracked.

1. Setting and disable of the conveyor belt synchronized operation

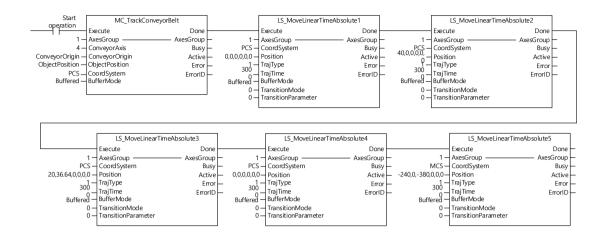
MC_TrackConveyorBelt function block performs the setting for conveyor belt synchronized operation. It is not directly involved in operation. After performing the setting for conveyor belt synchronization with MC_TrackConveyorBelt function block, coordinate system-based motion function blocks where the CoordSystem performed after the setting is set to PCS are synchronized to the conveyor belt for operation. After completing synchronized conveyor belt operation, to perform PCS operation which does not perform conveyor belt synchronized operation, the synchronized conveyor belt operation should be disabled. In order to disable synchronized conveyor belt operation by performing MCS operation or using MC_TrackConveyorBelt function block, the PCS coordinate system should be reset using MC_SetCartesian function block.

2. Function block

(1) Conveyor belt synchronized setting


Name	Description		Operation Condition
MC_TrackConveyorBelt	Conveyor belt synchroniz	zed setting	Edge
	MC_TrackConv	eyorBelt	
BOO	DL - Execute	D	one BOOL
	NT - AxesGroup		'
	NT - ConveyorAxis	В	usy – BOOL
ARRAY[06] OF LREAL		Ac	tive – BOOL
ARRAY[06] OF LREAL	·· ·	E	rror — BOOL
	IT — CoordSystem IT — BufferMode	Erro	orID — WORD

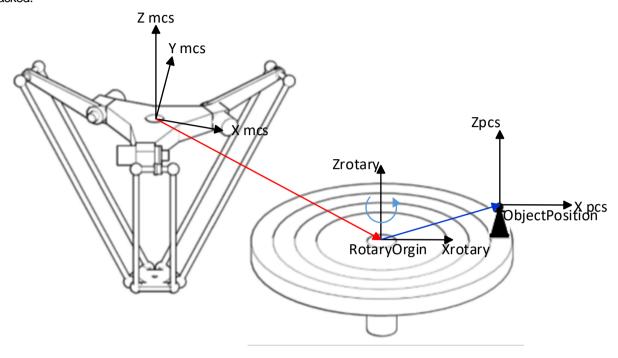
Name	D	Description (Operation Condition
MC_SetCartesianTransform	F	PCS setting	Edge
	MC_	SetCartesianTransform]
BOO	Execute	Done	-BOOL
UIN	Γ → AxesGroup	AxesGroup	- UINT
LREA	∟ — TransX	Busy	- BOOL
LREA	∟ — TransY	Active	- BOOL
LREA	∟ — TransZ	CommandAborted	- BOOL
LREA	L - RotAngleA	Error	-BOOL
LREA	L - RotAngleB	ErrorID	- WORD
LREA	L - RotAngleC		


(2) Conveyor belt synchronized setting disable(PCS setting)

(3) Conveyor belt synchronized function operation example

The conveyor belt synchronization function begins with setting conveyor synchronization using MC_TrackConveyorBelt function block, enter conveyor axis value at the ConveyorAxis input, enter the conveyor belt position from the robot's origin point at the ConveyorAxis input, and enter the position of the product origin point from the conveyor origin point at the ConveyorOrigin input. Once MC_TrackConveyorBelt function block setting is complete, LS_MoveLinearTimeAbsolute function block where the subsequently applied CoordSystem input is set to PCS is operated in sync with the conveyor. Synchronized conveyor operation performs an operation of drawing a triangle on a product. After synchronized conveyor belt operation is completed, execute LS_MoveLinearTimeAbsolute function block where the CoordSystem is set to MCS to return to the previous status where the conveyor work is not yet performed.

Function Block	CoordSystem	Position[]	Description
MoveLinearTimeAbsolute1	PCS	0,0,0	Move to ConveyorOrigin
MoveLinearTimeAbsolute2	PCS	40,0,0	Draw a triangle1
MoveLinearTimeAbsolute3	PCS	20,36.64,0	Draw a triangle2
MoveLinearTimeAbsolute4	PCS	0,0,0	Draw a triangle3
MoveLinearTimeAbsolute5	MCS	-240,0,-380	Move the robot to its initial position


(4) Limitation

Conveyor belt synchronization cannot be set in the case of the following errors.

- Value other than 2 is set in CoordSystem and performed (Error Code: 0x20BC)
- Axis set in ConveyorAxis is not connected (Error Code: 0x20C3)
- The unit of operation parameter of the axis set in ConveyorAxis is not mm/inch(Error Code: 0x20C2)
- Axis set in ConveyorAxis is not set as the infinite running repeat operation (Error Code: 0x20C6)
- Axis set in ConveyorAxis is the component axis in the applicable axis group (Error Code: 0x20C1)
- Of component axes, an axis where home position is not determined exists (Error Code 0x20B0)
- Of component axes, there is an axis being executed in infinite running repeat operation (Error Code: 0x20BA)

8.4.9 Synchronized Operation for Rotary Table

In a coordinate-based operation, one of the axes group is designated as the rotary axis, and the objects moving on the rotary table are tracked.

1. Setting and disable of the rotary table synchronized operation

MC_TrackRotaryTable function block performs the setting for rotary table synchronized operation. It is not directly involved in operation. After performing the setting for rotary table synchronization with MC_TrackRotaryTable function block, coordinate system-based motion function blocks where the CoordSystem performed after the setting is set to PCS are synchronized to the rotary table for operation. After completing synchronized rotary table operation, to perform PCS operation which does not perform rotary table synchronized operation, the synchronized rotary table operation should be disabled. In order to disable synchronized rotary table operation by performing MCS operation or using MC_TrackRotaryTable function block, the PCS coordinate system should be reset using MC_SetCartesian function block.

2. Function block

(1) Rotary table synchronized setting

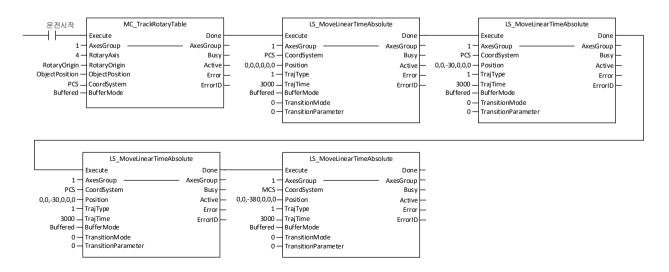
Name	Description		Operation Condition
MC_TrackRotaryTable	Rotary table synchronized set	ting	Edge
POO	MC_TrackRotaryTable		
	DL - Execute		one BOOL
UII	NT — RotaryAxis	Вι	up — UINT Isy — BOOL
ARRAY[06] OF LREAL ARRAY[06] OF LREAL	[] ObjectPosition		ive — BOOL ror — BOOL
	√T — CoordSystem √T — BufferMode	Erro	rID — WORD

(2) Rotary table synchronized setting disable (PCS setting)

Name	Des	cription	Operation Condition		
MC_SetCartesianTransform	PCS	S setting	Edge		
	MO 0-11	O and a sile of Transaction	\neg		
	IVIC_Set	CartesianTransform			
ВОО	L - Execute	Dor	ne – BOOL		
UIN	T ┩ AxesGroup	Axes Grou	p – UINT		
LREA	L - TransX	Bus	sy – BOOL		
LREA	L - TransY	Activ	/e – BOOL		
LREA	L - TransZ	CommandAborte	ed – BOOL		
LREA	L - RotAngleA	Err	or – BOOL		
LREA	L - RotAngleB	Error	D - WORD		
LREA	L - RotAngleC				

(2) Rotary table synchronized function operation example

The rotary table synchronization function begins with setting rotary synchronization using MC_TrackRotaryTable function block.


For MC_TrackRotaryTable function block, enter rotary axis value at the RotaryAxis input, enter the rotary table center position from the robot's origin point at the RotaryOrigin, enter the position of the product origin point from the rotary table center point at the ObjectPosition input.

Once MC_TrackRotaryTable function block setting is complete, LS_MoveLinearTimeAbsolute function block where the subsequently applied CoordSystem input is set to PCS is operated in sync with the rotary.

Synchronized rotary operation performs to track the object with moving to Z positive direction and Z negative direction.

After synchronized rotary table operation is completed, execute LS_MoveLinearTimeAbsolute function block where the CoordSystem is set to MCS to return to the previous status where the rotary work is not yet performed.

Function Block	CoordSystem	Position[]	Description
MoveLinearTimeAbsolute1	PCS	0,0,0	Move to Rotary center
MoveLinearTimeAbsolute2	PCS	0,0,-30	Track the Object 1
MoveLinearTimeAbsolute4	PCS	0,0,30	Track the Object 2
MoveLinearTimeAbsolute5	MCS	0,0,-380	Move the robot to initial position

Chapter8 Motin Control Function

(3) Limitation

Rotary table synchronization cannot be set in the case of the following errors.

- Value other than 2 is set in CoordSystem and performed (Error Code: 0x20BC)
- Axis set in RotaryAxis is not connected (Error Code: 0x20C3)
- The unit of operation parameter of the axis set in RotaryAxis is not degree(Error Code: 0x20C2)
- Axis set in RotaryAxis is not set as the infinite running repeat operation (Error Code: 0x20C6)
- Axis set in RotaryAxis is the component axis in the applicable axis group (Error Code: 0x20C1)
- Of component axes, an axis where home position is not determined exists (Error Code 0x20B0)
- Of component axes, there is an axis being executed in infinite running repeat operation (Error Code: 0x20BA)

8.4.10 Path Operation Function for Coordinate System

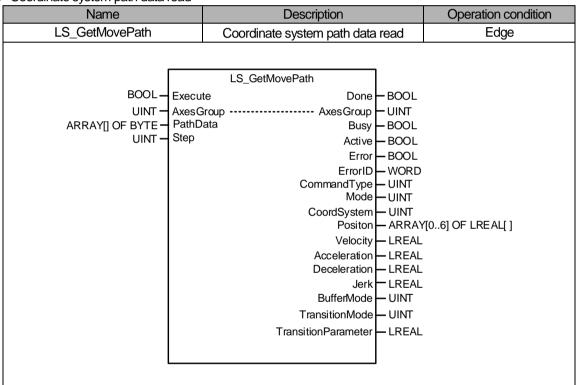
The coordinate system path operation function stores operation command information in a specific memory area and sequentially executes the stored operation commands to indirectly perform coordinate system operations such as coordinate system linear interpolation operation/circular interpolation operation.

(1) Coordinate system path operation settings

The data of the coordinate system path operation is set using the LS_SetMovePath function block. The path data set in the LS_SetMovePath is stored in the array variable specified as the PathData input. The array variable specified as input of PathData should use an array that is large enough to store the coordinate system path data as an input. Since the size of one step of the coordinate system path data is 96 Bytes, the PathaData should use at least 96 arrays. The sequence of path operation to be set in Step is specified. In the CommandType, the type of command to execute the operation (0: None 1: 1: Coordinate system absolute position linear interpolation operation 2: Coordinate system relative position circular interpolation operation 4: Coordinate system relative position circular interpolation operation) are specified. Mode input is an input for selecting the path of an arc if circular interpolation is selected in the CommandType, and you can select the direction of the arc (0: clockwise 1: counterclockwise). Position is an input for setting the target position, and inputs of the X, Y, Z, A, B and C directions are entered sequentially

The coordinate system path operation is performed using the LS_RunMovePath function block. When the coordinate system path operation is executed, the path data of steps designated as StartStep and EndStep are sequentially executed. Even if the EndStep is not reached at the time of path operation, the path operation is terminated if the CommandType value of the step is set to 0. The step number which is currently being executed during the coordinate system path operation is displayed via CurStep.

(2) Motion function block


(1) Coordinate system path data setting

Name	Description	Operation condition
LS_SetMovePath	Coordinate system path data setting	Edge
ARRAY[] OF BYTE— UINT— UINT— UINT— UINT — UINT — ARRAY[06] OF LREAL[]— LREAL— LREAL— LREAL— LREAL— UINT— UINT—	AxesGroup	– ARRAY[] OF BYTE – BOOL – BOOL – BOOL

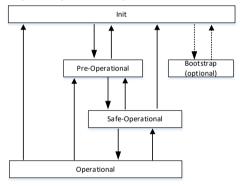
(2) Coordinate system path data remove

Coordinate system path data remove	Edge
LS_ResetMovePath	
OL - Execute Dor	ne - BOOL
INT - AxesGroup AxesGrou	ıp — UINT
TE PathData Bus	sy – BOOL
INT - Step Activ	/e – BOOL
Err	or — BOOL
Error	D — WORD
,	TE — PathData Bus NT — Step Activ Ern

(3) Coordinate system path data read

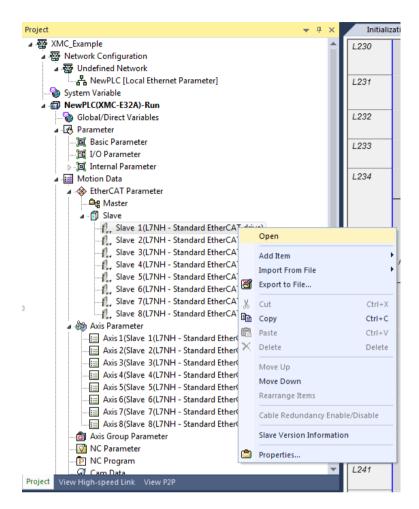
(4) Coordinate system path operation

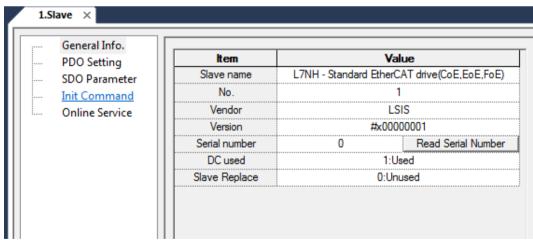
Name	Descri	ption	Operation condition
LS_RunMovePath	Coordinate syster	n path operaton	Edge
		•	
			7
	LS_	RunMovePath	
В	OOL - Execute	Dor	e BOOL
L	JINT - Axes Group	AxesGrou	p – UINT
ARRAY[] OF B	YTE - PathData	Bus	y – BOOL
	JINT - StartStep	Activ	re – BOOL
ι	JINT - EndStep	CommandAborte	ed - BOOL
		Erro	or — BOOL
		Errorl	D - WORD
		CurSte	p 🗕 UINT


8.5 FoE(File Access over EtherCAT) Function

8.5.1 Overview of FoE Function

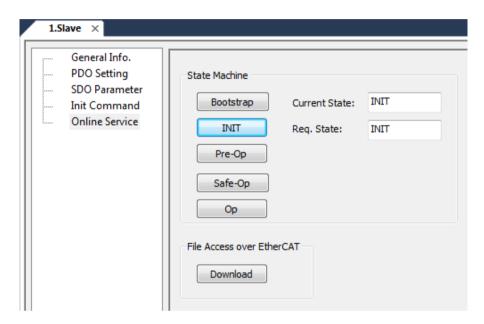
FoE is a function that supports firmware download from the motion controller to the slave which is in bootloader state through the EtherCAT network as a simple file access protocol provided by EtherCAT communication. In order to use the FoE function, both master and slave should support the FoE protocol. Therefore, it is necessary to check whether the FoE is supported prior to using the function.

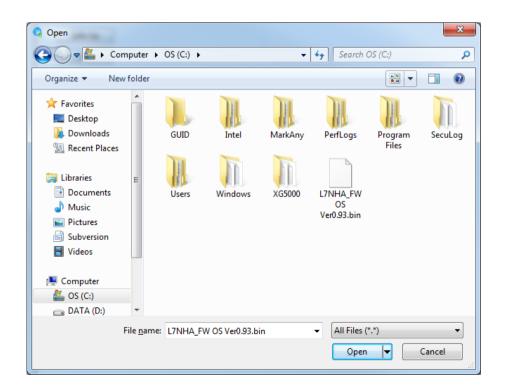

8.5.2 FoE Download


The slave operates as a state machine depending on the functions it actually supports. Since the FoE function is supported only in Boot (Bootstrap) mode, which is the bootloader state, the salve state should be converted to the Boot mode in order to use the FoE function. If the motion controller performs a network connection with full servo connection command, the state of all the connected slaves will be changed from Init to Op (Operational) mode. Therefore, the mode should be switched in the order of Op->Init->Boot to switch from the Op mode to the Boot mode. The FoE download is executed while the Boot mode is running. After the FoE download is completed, you should perform a mode switch to Boot->Init again

(1) StateMachine Setting

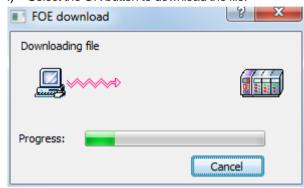
The StateMachine setting is executed by selecting the slave in a project tree while the slave is connected, the Shortcut Menus>> Registered Information and the Online Service tab from the slave information dialog box. The current slave's StateMachine state and the entered requests are displayed on the screen. Since the Bootstrap is not supported depending on the slave in most cases, it is necessary to check whether the slave supports the Bootstrap mode. If the Bootstrap mode is set in the slave that does not support the Bootstrap mode, it may cause malfunction.




(2) Downloading files

Download a file using the FoE protocol. FoE download can be executed when the StateMachine state is in Boot model. The procedures for downloading the FoE files may vary depending on the slave. Please refer to the salve instruction manual.

1) Change OpMode to Boot and click the Download button in the FoE to start the download.


Select the file you want to download from the open dialog box.

3) Enter the password (number) in the password confirmation dialog box.

4) Select the OK button to download the file.

5) When the download is completed, change the StateMachine state to Init.

Chapter 9 NC Control Function

Chapter 9 describes how the motion controller user creates the motion program of the G-code format.

The motion controller can program motions through a kind of scripting language called the G code. Chapter 9 describes the basic terms and conceptual explanations for the G code programming, and explains how to configure the program. It also describes the command scripts such as G, M, and F supported by the motion controller.

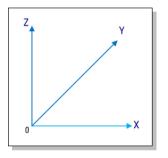
9.1 NC Command

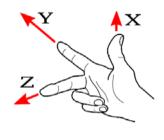
9.1.1 Definition of the NC Command

The motion control is used by the user to move the machine from any position to the desired position at the specified speed or to control the input / output. At this time, the axis that moves the machine will operate in various ways depending on each control environment. It is the motion control program that is used to control the movement of various axes, and in the motion controller, when the G code is used among the control information constituting the motion control program this is called the NC command.

9.1.2 Definition of the Command Character

The NC commands of the motion controller have specific Descriptions for certain alphabetical characters. The types and Descriptions of reserved character used in NC commands are as follows.


Reserved character	Description
Character set	
(Start comment
)	End comment
[Left parenthesis
]	Right parenthesis
+,-,*,/	Four fundamental arithmetic operations
A(AND), O(OR)	Comparison operation
=	Assignment operation
0~9	Numeric data
;	Block end
#	Variable
Address character	
X	X axis of the XYZ rectangular coordinate system (Primary Axis)
Y	Y axis of the XYZ rectangular coordinate system (Secondary Axis)
Z	Z axis of the XYZ rectangular coordinate system (Third Axis)
А	In the XYZ rectangular coordinate system, the rotation axis parallel to the X
	axis.(When it is set to the rotation axis in the parameters setting)


Reserved character	Description
В	In the XYZ rectangular coordinate system, the rotation axis parallel to the Y
	axis(When it is set to the rotation axis in the parameters setting)
С	In the XYZ rectangular coordinate system, the rotation axis parallel to the Z axis
	(When it is set to the rotation axis in the parameters setting)
U	1st additional linear axis (rotation axis, when it is set to the rotation axis in the
	parameters setting)
V	2 nd additional linear axis (rotation axis, when it is set to the rotation axis in the
	parameters setting)
W	3rd additional linear axis (rotation axis, when it is set to the rotation axis in the
	parameters setting)
S	Used to specify the speed of revolution or to make the position command for the
	spindle axis
G	Preparatory Functions
F	Feed rate
M	Miscellaneous Functions
S	Specify the rotation speed
I	Rotational center coordinate value for X-axis circular interpolation
J	Rotational center coordinate value for Y-axis circular interpolation
K	Rotational center coordinate value for Z-axis circular interpolation
N	Statement Number (Sequence Number)
0	Used for the same purpose as N
Р	Used to represent the optional data of Preparatory Functions and Miscellaneous
	Functions.
Q	Secondary option data representation. Drill's cutting depth and so on.
R	Circle radius
Т	Tool functions
L	Repetition number
Н	Tool length offset number
Other character	
IF	Conditional branch operation
GOTO	Branch jump
WHILE, DO	Loop iteration declaration
END	End loop
%, ;, ()	Comment
/	Optional Block Skip

Reserved character	Description
LE,GE,EQ,LT,GT,NE	Compare instruction
SIN, COS, TAN, ATAN,	Mathematical function
SQRT, ABS, ROUND,	
AND, OR, FIX, FUP	

9.1.3 Coordinate System

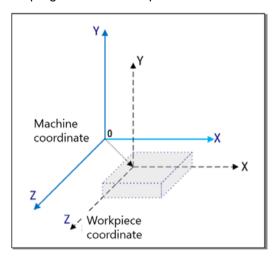
The coordinate system means the space to be used as a basis for operating the machine. The motion controller uses the right-handed rectangular coordinate system and supports four modes: machine coordinate system, work coordinate system, local coordinate system, and relative coordinate system.

[Basic coordinate system]

(1) Machine coordinate system

Each machine used for motion control has its own specific position setting, and the coordinate system is set based on this specific position. This particular position is the "machine origin" of the machine, and the coordinate system based on this machine origin is the "machine coordinate system". The "machine origin" and its accompanying "machine coordinate system" differ depending on the machine to which the motion controller is applied. Accordingly, please refer to the instruction manual of the applicable machine.

Generally, when power is applied and the machine is started, homing is performed first. After homing, the reset machine position is reset to "0" position and at this time, the machine coordinate system is changed to the origin position. However, in the case of machinery equipped with the absolute encoder-positioning feedback, the absolute position is maintained independent of homing.

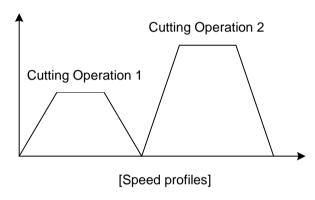

For more details on setting the machine coordinate system, refer to the G53 command description.

(2) Workpiece coordinate system

The workpiece coordinate system means the coordinate system whose origin is the machining reference point of the product. Generally, the origin of the workpiece coordinate system is set by the workpiece coordinate system setting command. When the workpiece coordinate system is set, since then, the command operates at the new coordinate whose origin is the machining start point of the product. For the setting (G92) and selection (G54 \sim G59) of the workpiece coordinate system, please refer to the description section of the commands.

(3) Local coordinate system

It is called the local coordinate system to set the reference point at any position on the workpiece coordinate system and make the command when programing with the workpiece coordinate system. It refers to the coordinate system created newly within the program of the workpiece coordinate.

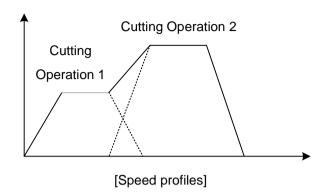

[Each coordinate system and offset]

9.1.4 How to Accelerate/Decelerate Interpolation Operation

The NC control function can set how to accelerate and decelerate operation during cutting feed. A method of acceleration and deceleration has an acceleration/deceleration before interpolation mode and an acceleration/deceleration after interpolation mode. According to each mode, the form of acceleration and deceleration zones of an axis in cutting feed varies.

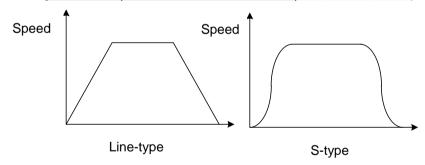
(1) Acceleration and deceleration before interpolation

The acceleration/deceleration before interpolation mode performs operation by calculating the form of acceleration and deceleration before the cutting feed operation is performed. When the acceleration/deceleration before interpolation mode performs the cutting feed operation, the position of each axis stops at a command position when the cutting feed ends because the operation is performed by previously calculating the acceleration and deceleration profiles.



The speed profile of the cutting feed operation can be changed by setting acceleration/ cutting feed deceleration/cutting feed jerk values in the cutting feed setting of the NC channel parameter.

	Upper speed limit of the cutting feed	10000 mm/m
	Lower speed limit of the cutting feed	1000 mm/m
	Acc./Dec. method of the interpolation	1: Acc./Dec. before Intp.
	Comer Speed Limit Mode	0: Unused
	Cutting Acceleration/Deceleration Type	0: Linear
	Blocks opr. for Acc./Dec. before Intp.	1: Buffered
	Cutting feed acceleration (Before-Intp.)	200 mm/s2
	Cutting feed deceleration (Before-Intp.)	200 mm/s2
Cutting Feed	Cutting feed jerk (Before-Intp.)	0 mm/s3
Settings	Allowable Angle (Angle mode)	0 deg
	Allowable Speed Difference(Speed Difference Mode)	0 mm/m
	Deceleration Speed Setting	0 mm/m
	The speed multiplier with respect to the Linear Axis of the Rotary Shaft (Speed Difference Mode)	0
	Number of correction for cutting feed deceleration (decrease after interpolation)	0 msec


(2) Acceleration and deceleration after interpolation

The acceleration/deceleration after interpolation mode performs the operation by calculating the form of acceleration and deceleration while the cutting feed operation is performed. When the acceleration/deceleration after interpolation mode performs the cutting feed operation, the position of each axis cannot reach a command position when the cutting feed ends because acceleration and deceleration profiles are calculated during operation. But the acceleration/deceleration after interpolation mode performs smoother operation in the operation of consecutive cutting feed commands than the acceleration/deceleration before interpolation mode.

1) The form of acceleration and deceleration in the acceleration/deceleration after interpolation mode The speed profile of acceleration and deceleration zones can be set by setting the form of acceleration and deceleration of the cutting feed in the cutting feed setting of the NC channel parameter. 0: Line-type 1: S-type, Two types can be set.

Cutting Feed Settings	Upper speed limit of the cutting feed	10000 mm/m
	Lower speed limit of the cutting feed	1000 mm/m
	Acc./Dec. method of the interpolation	1: Acc./Dec. before Intp.
	Comer Speed Limit Mode	0: Unused
	Cutting Acceleration/Deceleration Type	0: Linear
	Blocks opr. for Acc./Dec. before Intp.	1: Buffered
	Cutting feed acceleration (Before-Intp.)	200 mm/s2
	Cutting feed deceleration (Before-Intp.)	200 mm/s2
	Cutting feed jerk (Before-Intp.)	0 mm/s3
	Allowable Angle (Angle mode)	0 deg
	Allowable Speed Difference(Speed Difference Mode)	0 mm/m
	Deceleration Speed Setting	0 mm/m
	The speed multiplier with respect to the Linear Axis of the Rotary Shaft (Speed Difference Mode)	0
	Number of correction for cutting feed deceleration (decrease after interpolation)	0 msec

2) The time constant of acceleration and deceleration after interpolation Enter the time of acceleration and deceleration needed to reach the specified speed value after starting the cutting feed. The time constant of acceleration and deceleration after interpolation sets the time constant of cutting feed acceleration and deceleration in msec in the setting of the cutting feed of the NC channel parameter.

Cutting Feed Settings	Upper speed limit of the cutting feed	10000 mm/m
	Lower speed limit of the cutting feed	1000 mm/m
	Acc./Dec. method of the interpolation	1: Acc./Dec. before Intp.
	Comer Speed Limit Mode	0: Unused
	Cutting Acceleration/Deceleration Type	0: Linear
	Blocks opr. for Acc./Dec. before Intp.	1: Buffered
	Cutting feed acceleration (Before-Intp.)	200 mm/s2
	Cutting feed deceleration (Before-Intp.)	200 mm/s2
	Cutting feed jerk (Before-Intp.)	0 mm/s3
	Allowable Angle (Angle mode)	0 deg
	Allowable Speed Difference(Speed Difference Mode)	0 mm/m
	Deceleration Speed Setting	0 mm/m
	The speed multiplier with respect to the Linear Axis of the Rotary Shaft (Speed Difference Mode)	0
	Number of correction for cutting feed deceleration (decrease after interpolation)	0 msec

3) Corner speed limit function

The function is to improve the problem that curvature occurs in a corner when setting the time constant value bigger if using acceleration and deceleration after interpolation. It provides two modes such as an angle mode and a speed differential mode. Corner speed limit function in the cutting feed setting of the NC channel parameter 0: Disable 1: Angle mode 2: Speed differential mode can be set.

Cutting Feed Settings	Upper speed limit of the cutting feed	10000 mm/m
	Lower speed limit of the cutting feed	1000 mm/m
	Acc./Dec. method of the interpolation	1: Acc./Dec. before Intp
	Comer Speed Limit Mode	0: Unused
	Cutting Acceleration/Deceleration Type	0: Linear
	Blocks opr. for Acc./Dec. before Intp.	1: Buffered
	Cutting feed acceleration (Before-Intp.)	200 mm/s2
	Cutting feed deceleration (Before-Intp.)	200 mm/s2
	Cutting feed jerk (Before-Intp.)	0 mm/s3
	Allowable Angle (Angle mode)	0 deg
	Allowable Speed Difference(Speed Difference Mode)	0 mm/m
	Deceleration Speed Setting	0 mm/m
	The speed multiplier with respect to the Linear Axis of the Rotary Shaft (Speed Difference Mode)	0
	Number of correction for cutting feed deceleration (decrease after interpolation)	0 msec

4) Angle mode

If the angle of the specified block is less than the allowed angle, the next block starts to traverse after the speed in a corner is decelerated up to the setting value of the deceleration speed. In the result, you can get a sharp corner according the setting value of the deceleration speed.

	Upper speed limit of the cutting feed	10000 mm/m
	Lower speed limit of the cutting feed	1000 mm/m
	Acc./Dec. method of the interpolation	1: Acc./Dec. before Intp.
	Corner Speed Limit Mode	0: Unused
	Cutting Acceleration/Deceleration Type	0: Linear
	Blocks opr. for Acc./Dec. before Intp.	1: Buffered
	Cutting feed acceleration (Before-Intp.)	200 mm/s2
	Cutting feed deceleration (Before-Intp.)	200 mm/s2
Cutting Feed	Cutting feed jerk (Before-Intp.)	0 mm/s3
Settings	Allowable Angle (Angle mode)	0 deg
	Allowable Speed Difference(Speed Difference Mode)	0 mm/m
	Deceleration Speed Setting	0 mm/m
	The speed multiplier with respect to the Linear Axis of the Rotary Shaft (Speed Difference Mode)	0
	Number of correction for cutting feed deceleration (decrease after	0 msec

5) Speed differential mode

If the speed difference between the end point of the specified existing block and the starting point of a new block is greater than the setting value of the allowed speed difference, the next block starts to traverse after being decelerated up to the setting value of the deceleration speed. You can get a sharp corner according the setting value of the deceleration speed.

	Upper speed limit of the cutting feed	10000 mm/m
	Lower speed limit of the cutting feed	1000 mm/m
	Acc./Dec. method of the interpolation	1: Acc./Dec. before Intp.
	Corner Speed Limit Mode	0: Unused
	Cutting Acceleration/Deceleration Type	0: Linear
	Blocks opr. for Acc./Dec. before Intp.	1: Buffered
	Cutting feed acceleration (Before-Intp.)	200 mm/s2
	Cutting feed deceleration (Before-Intp.)	200 mm/s2
Cutting Feed	Cutting feed jerk (Before-Intp.)	0 mm/s3
Settings	Allowable Angle (Angle mode)	0 deg
	Allowable Speed Difference(Speed Difference Mode)	0 mm/m
	Deceleration Speed Setting	0 mm/m
	The speed multiplier with respect to the Linear Axis of the Rotary Shaft (Speed Difference Mode)	0
	Number of correction for cutting feed deceleration (decrease after	0 msec

9.2 Configuration of the Program

9.2.1 NC Program

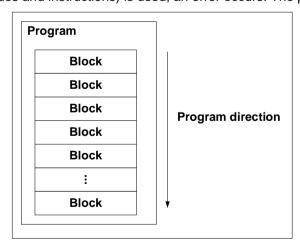
The NC program is a file consisting of the commands with control information about the axis. NC program can be added to 'Motion data - NC program' in XG5000. The NC program is used in the form of 'program name.extension' when saving the NC program as a file, and the file name extension of the NC program used is 'nc'. The NC program is divided into two types, "main program" and "sub program", depending on the nature of the file.

The name of the "main program" can be assigned by a user with any name. For example, such as "main.nc" or "main control .nc", any name can be applied in English or Korean. The "subprogram" can be named using the four-digit numbers. (Eg: 1234) The "subprogram" can be disabled as needed, and the nested call is allowed up to 9 levels.

(1) Main program

The main program is the program that controls the whole flow of the motion program. The name of the main program can be written in any name and in the case of the nested call, there are 10 levels based on the main.

(2) Subprogram


The subprogram is executed by the main program's call, and the only 4-digit numbers can be applied to the program file name. (0000 to 9999) The extension is the "nc" which is the same as the main program. The subprogram can be called directly from the main program so it must be written in numeric names only and distinguished by them.

9.2.2 Configuration of the NC Program

(1) Basic configuration of the program

The NC program is created with various instructions (G / M codes and instructions) that can be recognized by the motion controller and it consists of a set of blocks with the information for each operation command.

The NC program is written in the ST language. If the character that is not specified by the NC command (G / M codes and instructions) is used, an error occurs. The program starts with the first block one by one.

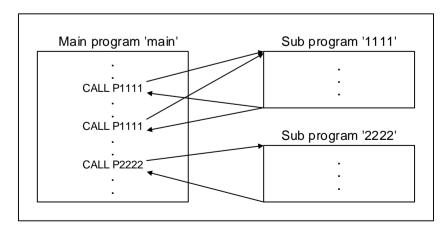
(2) Configuration of Blocks

It consists of the basic NC commands and command information for driving the machine.

One block corresponds to one line of the program. The maximum number of the characters that can be used in a block is 300, including the space characters. A maximum of 10 NC commands can be used per one block. When the number of characters available in one block or the limit of the NC command is exceeded, an error occurs.

N~~	G~~			X~.~	Y~.~	Z~.~		F~.~ (M	/S/T)	
Statement	Preparatory command			Command information			Auxiliary command			
Number	(G/M	codes	and	(Command	information	of	the	(G/M	codes	and
	commands)			coordinate)				comma	nds)	

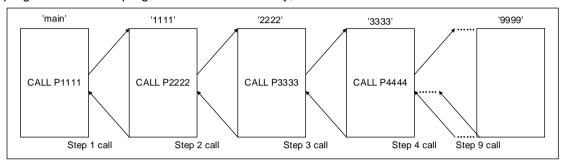
The blocks of the NC program are normally input as shown in the table above. Unless there is a particularly limited notation in the same block, the order of each motion command does not matter. However, it is executed in the order of command, and for the Modal command, it continues to run until another NC command is made.


At the head of each block, there is a Statement Number which contains the motion control's sequence information. The Statement Number is often referred in the GOTO and CALL instructions, and does not have to be used unless it is necessary. The Statement Number can also be written alone in a block.

The command information depends on the preparatory commands (G / M codes and instructions) used earlier. Although you do not use the command information, no error will occur. However, even if you need the command information, the preparatory commands that do not use the command information will be ignored.

The auxiliary commands (G / M codes and instructions) are used with the preparatory commands to further refine the operating information of the preparatory commands.

(3) The main program and the subprogram


Basically, you can configure and control the NC program with the main program only. However, if a series of identical commands or control intervals are repeated, you can make such parts into the subprogram and call it in case of necessity. When the subprogram is called, the details of the subprogram will run thereafter. When all commands of the subprogram have been executed, the details of the main program will run again.

(4) Call multiplicity of the subprogram

The main program can call a subprogram, and the subprogram can call another subprogram. If calling the subprogram for the first time is the Call Step 1, the NC program of the motion controller can be called up to 9 steps as shown below. If the subprogram call multiplicity goes beyond step 9, an error occurs.

The motion controller's NC program supports the multiple calls up to 9 steps but it does not allow "recursive calls of the subprogram" that call the subprogram itself or "recursive calls" that may lead to call deadlock between subprograms. If the subprogram is called in this way, an error will occur.

(5) Call and return of the subprogram

The subprogram is called by M98. The procedures for call and return of the subprogram are as follows.

M98 P_Q_R_L_ M99 P_

M98: Call of the subprogram

M99: End of the subprogram

P _: For M98, the name of the subprogram (_ is a 4-digit number.)

For M99, the statement Number of the block to return

Q _: Statement Number of the start block of the subprogram (if omitted, it starts from the first block).

R _: Statement Number of the end block of the subprogram (if omitted, it proceeds until M99.)

L _: Repeat count of the subprogram calls

In addition to M98, you can call the reserved sub program using the macro program calling M code set in NC channel parameter. This method can be used only in the main program, and when used in the subprogram, it operates with the general M code.

If there is no program to call, or if the syntax or argument is wrong, an error occurs. For alarms occurred, please refer to Appendix 2'Error Information & Solutions'.

(6) Repeat of the main program

When M99 is commanded in the main program, the details of the main program can be executed through the repeat mode. If P_ is not commanded, it is repetitively executed from the first block of the main program. If L_ is not commanded, it runs repeatedly and infinitely.

M99 P L

M99: Repeat of the main program

P _: Statement Number of the repeated start block

L _: Repeat count of calls

9.2.3 Data

(1) Data type used in the NC program

The NC program uses the numerical data for each axis command, feed rate command, DWELL command, macro variables, etc. When each operator is applied, the constant is used directly in the program.

At this time, the range of data type that can be used for the NC program of motion controller is as follows. If the wrong data range is applied, an alarm will occur. For the location of the alarm information, etc., please refer to Appendix 2, Errors Information & Solutions'.

Available range of the integer

-2,147,483,648 ~ 2,147,483,647

- Range of expressible real numbers

Can be expressed up to 12 digits including a decimal point and a sign.

(2) System of units

For the numbers used for the NC program, the system of units applied changes depending on whether or not to enter a decimal point ("."). This depends on how the decimal point check item is set among the NC channel parameters of the motion controller.

Group	Name	Channel 1
_	Target Machining Quantity	0
	Target machining quantity at M99 repetition	0
	Check of decimal point	1: Unused
•	Keep workpiece coordinate system	0: Keep
	Macro call on T-code command	0: Do not call
	DWELL Method	0: Time
	Block selection at NC reset	0: Keep the Current Block
Danie Causana	Statement number search	0: Search
Basic Settings	Minimum command unit	0 mm
	Whether to use G22 [No traveling area]	0: Used
	Inner/Outer side of G22 [No traveling area]	0: Inner side
	Whether to use the 3rd [No traveling area]	0: Used
	Rotary Axis of Cylindrical Interpolation	0: X Axis
	Linear axis for interpolating the polar coordi	0: None
	Rotary axis for interpolating the polar coordi	0: None
	Monitoring time for in-position completion	5000 ms

If the parameter is set to "0: Check", the value changes internally, as shown in the following example.

```
X100 \rightarrow 100 um = 100 / 1000.0 = 0.1mm

X100. \rightarrow 100.0 mm = 100 / 1.0 = 100.0 mm

Ex.)

X10.4 \rightarrow 10.4 mm = 10.4 / 1.0 = 10.4 mm

X104 \rightarrow 104 um = 104 / 1000.0 = 0.104 mm
```

The unit conversion specified above is effective only when it is entered directly into the axis's coordinate information.

If the decimal point check parameter is set to "0: Check", the system of units used for the G04 (TIME) command is as follows.

```
G04 X1 → 1 msec = 1 / 1000.0 = 0.001 sec

G04 X1.0 → 1.0 sec = 1 / 1.0 = 1 sec
```

9.3 NC Command

The NC command is basically described based on the three types of data: the type of motion to be moved, the target position and the target speed. The basic formats of the position command and speed command are as follows.

9.3.1 Basic Format of the NC Position Command

The motion controller supports two types of commands; the command method using "X, Y, Z, A, B, C, U, V, W, S", the command method using "I, J, K" type

(1) Absolute / relative positioning (X, Y, Z, A, B, C, U, V, W, S)

X_ Y_ Z_ A_ B_ C_ U_ V_ W_ S_

X_Y_Z_~S_: Commanding the positions of axes

The position command of the axis, "X_Y_Z_... "is mainly used to specify the position on the coordinate of the point where each axis should be finally moved at the time of interpolation or traverse command.

The position of the coordinate you want to move should be specified behind "X, Y, Z, ... S". The number of axes specified with the G code is limited to 10. The motion controller can control up to 32 axes by motion control but the maximum number of axes by the NC program is 10 axes and more axes can be controlled by the axis command of the motion control program.

In the case of the absolute command, specify the coordinate value (coordinate value of the end point of feed) of the feed target point. If it is the relative command, specify the increment value from the current position to the feed target point.

When you specify the position of the coordinate you want to move, the operating mode of the command differs depending on whether to use the value that includes "." or not ".". Please refer to the position formula in "9.2.3 System of units of data (2) "

G90

G01 X150. Y200

U300.

Z325.

M02

(2) Specifying the central point of an arc (I, J, K)

ΙJΚ

I_ J_ K_: Central point-position command of an arc for circular interpolation

The position command of axis, "I_ J_ K_" is used to command the position of each origin point on the coordinate to the individual axis when commanding the central point of the arc for circular interpolation.

You can specify the location of the central point of the arc behind "I_ J_ K_".

"I_ J_ K_" must specify the increment value from the current position to the origin.

When you specify the position of the coordinate, the operating mode of the command depends on whether to use the value that includes "." or not ".". Please refer to the position formula in "9.2.3 System of units of data (2) ".

G90

G02 X100. Y100. I50. J50. % clockwise circular interpolation, X-axis 100, Y-axis 100, Central point(X50, Y50)

M02

The above program shows the traverse target point, X-axis 100, Y-axis 100 and the coordinate of the origin direct the clockwise circular interpolation with X-axis 50, Y-axis 50.

(3) Speed command (F)

The speed command has the function to instruct the speed of the interpolation command.

If there is no separate speed command, it operates at the basic speed set at the lower limit of the cutting feed among NC channel parameters.

Group	Name	Channel 1
	Upper speed limit of the cutting feed	10000 mm/m
_	Lower speed limit of the cutting feed	1000 mm/m
C	Acc./Dec. method of the interpolation	1: Acc./Dec. before Intp.
Cutting Feed Settings	Blocks opr. for Acc./Dec. before Intp.	1: Buffered
ocui iga	Cutting feed acceleration (Before-Intp.)	200 mm/s2
	Cutting feed deceleration (Before-Intp.)	200 mm/s2
	Cutting feed jerk (Before-Intp.)	0 mm/s3

The speed command is valid for the interpolation command only and has no effect on the rapid traverse command.

F

F_: Speed command

The speed command specifies the operating speed of the interpolation command.

The speed command can be instructed with each interpolation command or instructed independently.

Since the speed command is the modal command, once it is instructed, it is valid for the operations of the interpolation command until another speed command is made.

In the case of the speed command for linear interpolation, the operating speed is calculated in the same manner as the speed formula of "9.2.3 System of units of data (2)".

In the case of circular interpolation command, the speed command is calculated as linear velocity in tangential direction.

G90

F5000

G02 X100. Y100. I50. J50.

% clockwise circular interpolation, speed: 5000

G01 X400. Y250. Z300. F3500

% linear interpolation, speed: 3500

M02

9.3.2 List of the NC Commands

The NC commands (G / M code and other commands) used for the motion controller are as follows.

Category	Program instruction	Function
	G00	Rapid positioning control
	G01	Linear interpolation feed control
	G02	Clockwise circular / helical interpolation
	G03	Counter clockwise circular / helical interpolation
	G04	DWELL function
	G09	Exact Stop
	G10	Data setting
	G17	Select the circular interpolation plane (XY plane)
G code	G18	Select the circular interpolation plane (ZX plane)
instruction	G19	Select the circular interpolation plane (YZ plane)
	G20	Inch input
	G21	Metric unit input
	G22	Stroke check function ON
	G23	Stroke check function OFF
	G27	Homing check
	G28	Automatic homing
	G29	Return at the auto-origin
	G30	Automatic 2 nd and 3 rd homing

Category	Program instruction	Function
	G31	Skip function 1
	G31.1	Skip function 1
	G31.2	Skip function 2
	G31.3	Skip function 3
	G31.4	Skip function 4
	G37	Automatic tool length measurement 1
	G37.1	Automatic tool length measurement 1
	G37.2	Automatic tool length measurement 2
	G37.3	Automatic tool length measurement 3
	G37.4	Automatic tool length measurement 4
	G40	Cancel compensation of tool diameter
	G41	Compensate the tool diameter to the left
	G42	Compensate the tool diameter to the right
	G43	Compensate the tool length in the direction of +
	G49	Cancel compensation of the tool length
	G50	Scaling/Mirror image cancel
	G51	Scaling/Mirror image setting
	G52	Set the local coordinate system
	G53	Select the machine coordinate system
	G54	Select the workpiece coordinate system 1
	G55	Select the workpiece coordinate system 2
	G56	Select the workpiece coordinate system 3
	G57	Selecting the workpiece coordinate system 4
G code instruction	G58	Selecting the workpiece coordinate system 5
	G59	Selecting the workpiece coordinate system 6
	G60	Single direction positioning
	G63	Tapping mode
	G65	Macro call
	G66	Macro modal call
	G67	Macro modal call cancel
	G68	Coordinate rotation
	G69	Coordinate rotation cancel
	G74	Counter tapping cycle
	G80	Fixed cycle cancellation
	G81	Drill cycle/Spot drill cycle
	G82	Drilling dwell cycle/Counter boring cycle

Category	Program instruction	Function
	G84	Tapping cycle
	G90	Absolute command
	G91	Incremental command
	G92	Set the workpiece coordinate system, the max. speed of the master axis
	G94	Feed mode command per minute
	G95	Feed mode command per revolution
	G98	Return to initial point at a canned cycle
	G99	Return to R-point at a canned cycle
	G107	Cylindrical interpolation mode setting
	G112	Interpolation mode of the polar coordinate ON
	G113	Interpolation mode of the polar coordinates OFF
	M00	Program stop
	M01	Optional stop
	M02	PROGRAM END
	M03	Forward rotation of the master axis
	M04	Reverse rotation of the master axis
Maada	M05	Master axis stop
M code	M06	Tool change
	M08	Coolant ON
	M09	Coolant OFF
	M30	End of the program
	M98	Auxiliary program call
	M99	End of the auxiliary program
Position	X, Y, Z, A, B, C, U, V, W, S	Specify the location of the axis
command	I, J, K	Rotating central point coordinate of each axis for circular interpolation
Speed command	F	Feed rate command
Dwell time	Х	Specify the dwelling time
	N	Specify the Statement Number
6.5	Р	Specify the call number of the subprogram
Other	IF	Conditional branch instruction and conditional operation
instruction	GOTO	Branch instruction
	WHILE, DO	Execute a certain program repetitively

Category	Program instruction	Function
	END	End of loop
	%, ;	Comment processing command
	LE, GE, EQ, LT, GT, NE	Compare instruction
	AND, OR, XOR, +, -, *, /	Operation instruction
	=	Assignment operator
	SIN, COS, TAN,	
	ATAN, SQRT, ABS,	Nath and disclored an audion from the
	ROUND, AND, OR,	Mathematical operation function
	FIX, FUP	

9.3.3 Description of the NC Command

(1) G code

The G code defines the types of the commands such as feed and machining method of each axis during machining, and it is the command to carry out mechanical drive and operation of the NC program, etc.

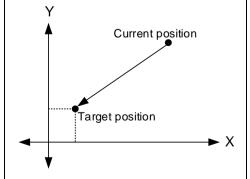
There are two types of G code as shown below.

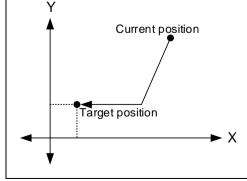
Category	Description	
One-shot G code instruction	G code instruction that is valid only in the block to which the G code is	
	commanded	
Modal G code instruction	G code instruction that is valid until it is released by another command from	
	the block to which the G code is commanded	

Modal command

G01 X10. F100 Y100. Z300. G00 X100

The G01 is a modal command as shown in the above program so the G01 command will be executed until the G00 command is made since the G01 is commanded even if G01 command is not separately specified.


1) Rapid traverse (G00)


(G90, G91) G00 X_Y_Z_A_B_C_U_V_W_S_

G90, G91: Absolute/Incremental command

G00: Rapid positioning control command

[Current position and the target point to traverse]

[Shape of the traverse section]

As shown in the left figure above, the Rapid Traverse (G00) transfers the specified axis quickly from the X, Y point of the coordinate given by the command information or the current position to the position incremented by the command information. Under the G00 command, the feed rate moves according to the G00 feed rate set for each axis.

G00 is traversed independently for each axis. Since the axis with short travel distance first reaches the target point, the shape of the travel section is not a straight line as above.

The Rapid Traverse command is a modal command so once it is instructed, it is valid for the axis traversing command until another traverse command is made.

G90 G00 X100 Y100 Z100

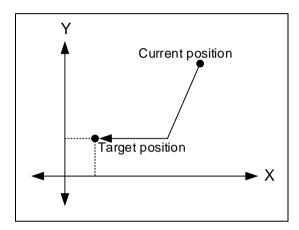
The above program is the example set to absolute command using G90. After that, it rapidly traverses the X and Y axis to (100,100) points and then, traverses the Z axis to 100 points again.

The parameters related to the Rapid Traverse are as follows.

NC parameter		Group	Parameter Name
NC	channel/axis	Rapid traverse	Rapid traverse acceleration
parameter			Rapid traverse deceleration
			Rapid traverse jerk
			Rapid traverse speed

NC parameter			Group and parameter nan	ne
		Group	Name	X Axis
NC	channel/axis		Rapid traverse acceleration	500 mm/s2
TIO CHAIITE//AXIS	Rapid Traverse	Rapid traverse deceleration	500 mm/s2	
parameter		Settings	Rapid traverse jerk	0 mm/s3
			Rapid traverse speed	10000 mm/m

Chapter9 NC Control Function


2) Linear interpolation (G01)

G90, G91: Absolute/Incremental command

G01: Interpolation feed control command

X_Y_Z_A_B_C_U_V_W_S_: Target position to traverse

F_: Feed rate

The linear interpolation (G01) is the function that simultaneously traverses each axis in a straight line to the commanded position at the speed set by the F command in order to perform the desired machining (eg. cutting) as shown in the figure above.

In the case of the incremental command (G91), it moves to the position incremented by the command information in a straight line from the current axis position.

Since the G01 command is a modal command, once it is instructed, it continues to be valid for the axis feed command until another feed command is made. The feed speed command can be instructed with the "F" code. There are two feed methods; feed per revolution and feed per minute. Normally, the feed per minute is applied.

Feed rate of the X axis: Dx

Feed rate of the Y axis: Dy

Feed rate of the Z axis: Dz

 $D=\sqrt{(Dx^2+Dy^2+Dz^2)}$

X axis's feed rate Fx=Dx/D xF

Y axis's feed rate Fy=Dy/D xF

Z axis's feed rate Fz =Dz/D xF

The feed rate of each axis differs depending on the distance of each axis as shown in the above formula.

G90	
G01 X50 Y35 F3000	% Interpolation feed control, target position to traverse(X=50, Y=35), speed
3000	
G91	
X100 Y55	% Interpolation feed control

The above program shows the example that executes the interpolation feed control at the speed 3000 to the points of the X axis 50 and the Y axis 35 under the absolute command and then, executes the interpolation feed control to the points incremented by 100 from the X axis and 55 from the Y axis under the incremental command.

For "X100 Y55" as mentioned above, the G01 and F code are modal commands so they operate under

For "X100. Y55.", as mentioned above, the G01 and F code are modal commands so they operate under interpolation feed control without a separate command.

3) Circular interpolation (G02/G03)

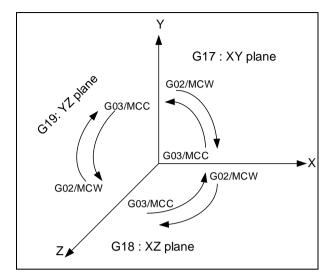
```
(G90, G91) G17 (G02, G03) X_ Y_ (I_ J_, R_) (F_)
(G90, G91) G18 (G02, G03) X_ Z_ (I_ K_, R_) (F_)
(G90, G91) G19 (G02, G03) Y_ Z_ (J_ K_, R_) (F_)
```

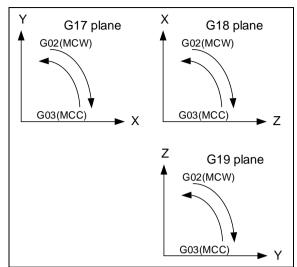
G90, G91: Absolute/Incremental command

G17, G18, G19: Specify the plane to execute circular interpolation

G02, G03: Clockwise, counter clockwise circular interpolation

X_ Y_ Z_: Target position to traverse


I_ J_ K_/R_: Reference point or radius of an arc


F_: Feed rate

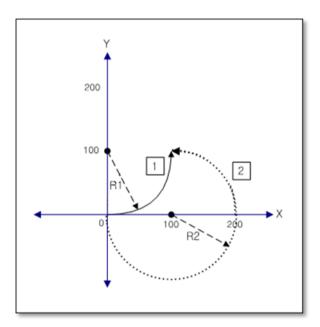
The circular interpolation (G02 / G03) is the command to execute the rotary feed at the speed specified by "F" based on the commanded or calculated central point to the target position to traverse. In the circular interpolation command, the speed means the linear velocity in tangential direction.

For the circular interpolation command, you should select the plant to execute circular interpolation before the command.

The NC program has the command for specifying each plane; G17 is defined as XY plane, G18 as ZX plane, and G19 as YZ plane as shown below. If you enter the command information beyond the selected plane, an error will occur.

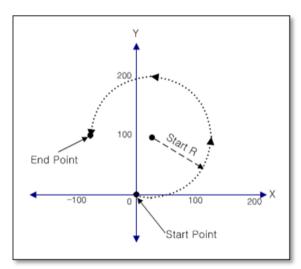
The circular interpolation can be executed by setting the central point of an arc as the command information or by setting the circular radius as the command information. In order to execute the circular interpolation, one of the above two methods must applied for commanding.

When applying the Reference Point Method using I, J, and K and the Radius Method using the "R" code simultaneously between the circular interpolation commands, I, J, and K commands will be ignored and then, the circular interpolation will be executed under the radius command using "R".


When instructing the circular interpolation with specifying the central point, the central point command information (I, J, K) of the circular interpolation command is always the position incremented from the start position to the central point regardless of the absolute / incremental command (G90 / G91). The central point command information, I, J, and K correspond to X, Y, and Z, respectively. If the value of I, J, K command information is "0", it can be omitted.

When the current position and the target position to traverse are the same, the circular interpolation with specifying the central point can command a 360-degree perfect circle.

The circular interpolation with specifying the R (radius) does not designate the central point to determine the arc section, but only the R(radius) which forms the arc from the current position to the target position to traverse.


When executing the circular interpolation using the R (radius) designation method, the central point of the arc can have two shapes. At this time, the motion controller performs the circular interpolation by selecting the central point with the shortest arc to the target point to traverse as shown below.

Unlike the circular interpolation with specifying the central point, the circular interpolation with the R (radius) designation cannot command a 360-degree perfect circle.

[Circular interpolation with specifying the radius(R)]

During the circular interpolation, if the start and end radii of the arc are different, an alarm occurs. If it is within the error radius, it traverses to the original trajectory and then reaches the final position with a straight line.

[Circular interpolation of sections with different radius of rotation]

Chapter9 NC Control Function

G90

G00 X0 Y0 Z0

% XY plane

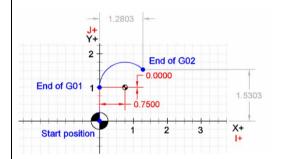
G90

G17

G03 X0 Y0 R50 % Counter clockwise circular interpolation, R(Radius)=50

G91 % Relative coordinate

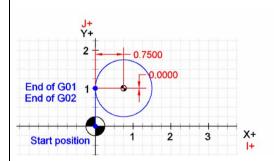
G03 X100 Y100 J100 % Counter clockwise circular interpolation, Central point(X=0, Y=Y+100)


G02 X-100 Y-100 R100 % Clockwise circular interpolation, R(Radius)=100

Example 1 - Circular interpolation clockwise

G01 Y1.0 F8.0; % Linear interpolation (Y=1.0), Speed 8

G02 X1.2803 Y1.5303 I0.75 % Circular interpolation clockwise, R (radius) = 0.75, Target position (X=1.2803,


Y1.5303)

Example 2 - Circle clockwise

G01 Y1.0 F8.0; % Linear interpolation (Y=1.0), Speed 8

G02 I0.75 % Circular interpolation clockwise, R (radius) = 0.75

% ZX plane

G90

G18

G03 Z0 X0 R50 % Counter clockwise circular interpolation, R(Radius)=50

G91

G03 Z100 X100. I100 % Counter clockwise circular interpolation, Central point(X=X+100, Z=Z+0) G02 Z-100 X-100 R100 % Clockwise circular interpolation, R(Radius)=100, % Target position to traverse(X=X-100, Z=Z-100) % YZ plane G90 G19 G02 Y50 Z50 J50 F300 % Clockwise circular interpolation, Central point(Y=Y+50, Z=Z+0), speed 300 G03 Y0 Z0 R50 % Counter clockwise circular interpolation, R(Radius)=50 G91 G03 Y100 Z100 K100 % Counter clockwise circular interpolation, Central point(Y=Y+0, Z=Z+100) G02 Y-100 Z-100 R100 % Clockwise circular interpolation, R(Radius)=100 % Perfect circle G17 G02 I50 % Clockwise circular interpolation(360-degree perfect circle), Central point(X=X+50, Y=Y+0) G03 J50 % Counter clockwise circular interpolation(360-degree perfect circle), Central point(X=X+50, Y=Y+0) G02 I50 J50 % Clockwise circular interpolation(360-degree perfect circle), Central point(X=X+50, Y=Y+50) % I Ignore R Apply G02 X-100 I30 R50

The parameters related to the circular interpolation are as follows.

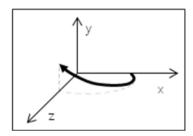
NC parameter	Group name and parameter name			
	Group	Name	Channel 1	
	Circular Machining Settings	Operation when the circular alarm occurs	0: Generate an alarm	
		Speed limitation for circular interpolation	0: Unused	
NC channel parameter		Tolerance of arc radius	0 mm	
		Circular radius with speed limitation	0 mm	
		Upper speed limit of circular interpolation	1000 mm/m	
		Lower speed limit of circular interpolation	100 mm/m	
		Circular interpolation acceleration	100 mm/s2	
		Circular interpolation deceleration	100 mm/s2	
		Circular interpolation jerk	0 mm/s3	

4) Helical interpolation (G02/G03)

(G90, G91) G17 (G02, G03) X_ Y_ (I_ J_, R_) Z_ F_ (G90, G91) G18 (G02, G03) X_ Z_ (I_ K_, R_) Y_ F_ (G90, G91) G19 (G02, G03) Y_ Z_ (J_ K_, R_) X_ F

G90, G91: Absolute/Incremental command

G17, G18, G19: Specify the plane to execute the circular interpolation


G02, G03: Clockwise, counter clockwise circular interpolation

X_Y_Z_: Target position to traverse

I_ J_ K_/R_: Reference point or radius of an arc

F_: Feed rate

The helical interpolation instructs another axis whose plane is not specified in the circular interpolation command, and the axis is synchronized in a straight line and traverses with the progress of the circular interpolation. That is, when XY plane G17 is commanded, the Z axis can be transferred.

G90

G00 X0 Y0 Z0

% XY plane

G90

G17

G02 X50 Y50 I50 Z10 F100 % Clockwise circular interpolation, Central point(X=X+50, Y=0), Z position 10, speed 100

G03 X0 Y0 Z 20 R50 % counter clockwise circular interpolation, R(Radius)=50,

Z position 20

5) DWELL function (G04)

G04 (X_, P_)

G04: DWELL command

X_, P_: DWELL time command information (sec, msec)

The DWELL command (G04) is the command to stop for the time specified following "X" or "P" and then, execute the next block.

X's unit is sec, P's unit is in msec.

G90

G00 X0. Y0. Z0.

G01 X100. Y100. F1500

G04 P100 % DWELL time: 100 msec

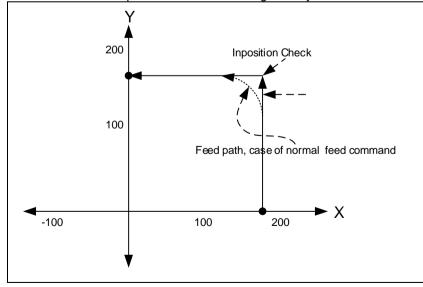
G00 X500. Y500.

G04 X1 % DWELL time: 1 sec

G91

G01 X100. Y100. F1500

The parameter related to the DWELL command is as follows.


NC parameter	Group name and parameter name			
	Group	Name	Channel 1	
		Target Machining Quantity	0	
		Target machining quantity at M99 repetition	0	
		Check of decimal point	1: Unused	
		Keep workpiece coordinate system	0: Keep	
		Macro call on T-code command	0: Do not call	
	Basic Settings	DWELL Method	0: Time	
NC channel parameter		Block selection at NC reset	0: Keep the Current Block	
		Statement number search	0: Search	
		Minimum command unit	0 mm	
		Whether to use G22 [No traveling area]	0: Used	
		Inner/Outer side of G22 [No traveling area]	0: Inner side	
		Whether to use the 3rd [No traveling area]	0: Used	
		Rotary Axis of Cylindrical Interpolation	0: X Axis	
		Linear axis for interpolating the polar coordi	0: None	
		Rotary axis for interpolating the polar coordi	0: None	
		Monitoring time for in-position completion	5000 ms	

6) Exact Stop (G09)

G09

G09: Exact Stop (Precision stop command)

In normal feed / cutting operations, the corner section decelerates the current block and accelerates the next block because it is affected by physical inertia when accelerating or decelerating the axis traverse. That is why 'Rounding' occurs. This function performs the 'Inposition Check' and proceeds to the next block as shown below to put the commanded block in the instructed position of feed / cutting exactly.

This function is a one-shot command so it is valid in the corresponding command only.

If the G09 command is used for the simple feed command like "G01", the 'Inposition Check' is performed at the target position to traverse.

If machining such as cutting is performed using this function, fine stopping phenomenon occurs at the connecting intersection point of the curved surfaces, resulting in some disadvantages; bad condition of the machined surface, significant wear of the tool, and long machining time.

G90

G00 X0. Y0. Z0

G09 G01 X100. Y100. F5000 % Linear feeding through the Exact Stop

X200. Y250. % Linear feeding

G10

The above program is the example of using the Exact Stop (G09) command for linear feeding. The G09 command in the above program is a one-shot command so "X200. Y250." command is not affected by the G09 command.

7) Date setting (G10)

```
(G90, G91) G10 (L10) (P_ R_)
(G90, G91) G10 (L12) (P_ R_)
```

G10: Data setting

L10: H Data setting (Tool diameter)

L12: D Data setting (Tool length)

P_: Offset number

R_: Compensation value of a tool

G90, G91: The compensation value is set and the value previously set is updated.

This command is used in the diameter of a tool, the compensation value of tool length and reference position offset of the coordinate system, and can be input by program. It can be used if the real-time compensation value changes.

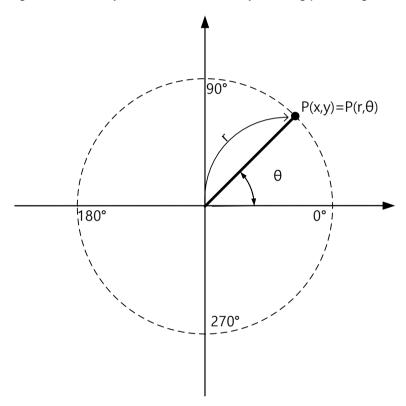
G10 G90 L10 P10 R5	%Set 5 to H10, compensation No. 5.
G10 G91 L12 P5 R10	%Set 10 to D5, compensation No. 10.

The parameter items related to data setting commands are as follows:

NC Parameter	Group and parameter names			
		How to apply the compensation value Compensation type of the tool diameter	0: Apply the diameter value 0: Bypass Traverse	
		Check the tool interference Tool diameter compensation amount 1	0: Do not check 0 mm	
	Tool Diameter	Tool diameter compensation amount 61 Tool diameter compensation amount 62 Tool diameter compensation amount 63	0 mm 0 mm 0 mm	
	Compensation	Tool diameter compensation amount 64 Tool diameter compensation amount 65	0 mm 0 mm	
NC Channel		Tool diameter compensation amount 127 Tool diameter compensation amount 128	0 mm 0 mm	
Parameter		Tool length compensation amount 1 Tool length compensation amount 2	0 mm 0 mm	
		Tool length compensation amount 24 Tool length compensation amount 25 Tool length compensation amount 26 Tool length compensation amount 27	0 mm 0 mm 0 mm 0 mm	
		Tool length compensation amount 28	0 mm	
		Tool length compensation amount 127 Tool length compensation amount 128	0 mm 0 mm	

8) Polar coordinate command (G15, G16)

G15 G16 X_ Y_


G15: Polar coordinate command cancel

G16: Polar coordinate command

X: Polar coordinate of circle radius

Y_: Angle commands for polar coordinates

A polar coordinate command is used if the current coordinate system works with the polar coordinate system, not the right-angle coordinate system. You can work by entering pivot, angle and radius.

If the polar coordinate system is used, the circular interpolation plane appears differently. For this part, see the circular interpolation plane (G17). The reference position is set the same with the reference position of the right-angle coordinate system. If it is an incremental command, the current position becomes the reference position of the polar coordinate.

Chapter9 NC Control Function

9) Selecting the plane for circular interpolation (G17, G18, G19)

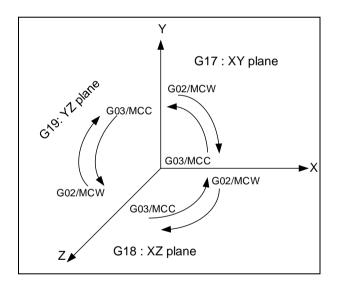
(G90, G91) G17 (G02, G03) X_Y_(I_ J_ / R_) F_ (G90, G91) G18 (G02, G03) X_Z_(I_ K_ / R_) F_ (G90, G91) G19 (G02, G03) Y_Z_(J_ K_ / R_) F

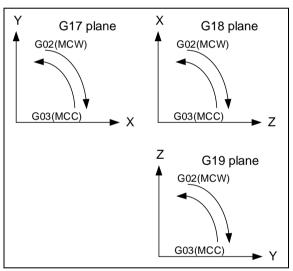
G90, G91: Absolute/Incremental command

G17: X-Y plane

G18: Z-X plane

G19: Y-Z plane


G02, G03: clockwise, counter clockwise circular interpolation


X_ Y_ Z_: Target position to traverse

I_ J_ K_/R_: Reference point or radius of an arc

F_: Feed rate

This command specifies two planes to perform the circular interpolation.

The parameters related to the command to select planes for circular interpolation are as follows.

NC parameter	Group name and parameter name			
NC channel parameter	Default Settings	Default modal G-code for TRAVERSE	0: G00	
		Default modal G-code for PLANE	0: G17	
		Default modal G-code for ABS/INC	0: G90	
		Default Modal Inch/Metric	0: G20	
		Default modal G-code for Limit check	0: G22	
		Default Modal Scale	0: G 50	

10) Inch/meter input (G20, G21)

G20	
G21	

G20: Inch input G21: Meter input

This command sets whether the position unit to be input is inch or meter. Even if this command is executed, the system of units including a position displayed on screen or an internal offset keeps the system of units set by parameters.

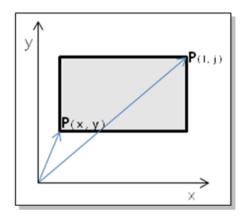
The command to shift this system of units should be used at the beginning of a program. When shifting to other system of units in the middle of a single program, unstable results can be caused. If the whole part of a plan is different from parameter units, use the command at the beginning of the program.

NC Parameter		Group and parameter names	
		Default modal G-code for TRAVERSE	0: G00
NC		Default modal G-code for PLANE	0: G17
Channel	Default Settings	Default modal G-code for ABS/INC	0: G90
Parameter		Default Modal Inch/Metric	0: G20
	'	Default modal G-code for Limit check	0: G22
		Default Modal Scale	0: G50

Chapter9 NC Control Function

11) Enable/Disable stroke function (G22, G23)

G22: Stroke check function On


G23: Stroke check function Off

X_Y_Z_: Enter the lower limit position based on the machine origin of each coordinate.

I_ J_ K_: Enter the upper limit position based on the machine origin of each coordinate.

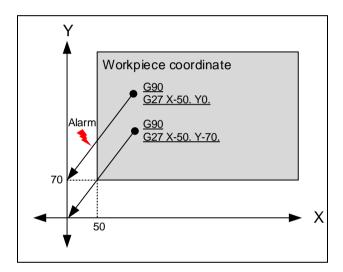
This command sets the Soft Limit of the coordinate system. You can input the lower limit coordinate (X, Y, Z) and upper limit coordinate (I, J, K) of each stroke. If it is out of this range, the error will be displayed. Then, in a manual mode, it can be entered into the working area or be driven after turning off the stroke check function. This is a modal command so it continues to be valid once it is commanded.

For A, B, C, U, V, W, S axes other than X, Y and Z axes, it should be set by the parameters. At this time, the parameter, 'Whether to use G22 No Travelling Area' should be set to 1 to use the G22 command.

The parameters related to Enable /Disable stroke are as follows.

NC parameters	Group name and parameter name			
	Group	Name	Channel 1	
		Target Machining Quantity	0	
		Target machining quantity at M99 repetition	0	
		Check of decimal point	1: Unused	
		Keep workpiece coordinate system	0: Keep	
	Basic Settings	Macro call on T-code command	0: Do not call	
		DWELL Method	0: Time	
NC channel parameters		Block selection at NC reset	0: Keep the Current Block	
		Statement number search	0: Search	
		Minimum command unit	0 mm	
		Whether to use G22 [No traveling area]	0: Used	
		Inner/Outer side of G22 [No traveling area]	0: Inner side	
		Whether to use the 3rd [No traveling area]	0: Used	
		Rotary Axis of Cylindrical Interpolation	0: X Axis	
		Linear axis for interpolating the polar coordi	0: None	
		Rotary axis for interpolating the polar coordi	0: None	
		Monitoring time for in-position completion	5000 ms	

Chapter9 NC Control Function


12) Homing check (G27)

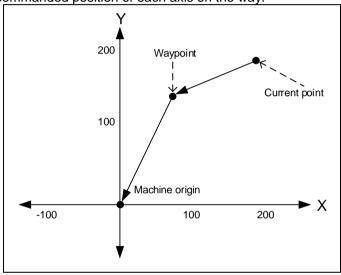
G90, G91: Absolute/Incremental command

G27: Homing check

X_Y_Z_A_B_C_U_V_W_S_: Target coordinates

Through this command, it traverses to the specified X, Y, Z coordinate. When the current position is the origin after the traverse is done, homing is completed. If it is not the origin, the alarm occurs. When this command is instructed, the compensations of tool diameter and tool length are canceled.

13) Auto-homing (G28)


(G90, G91) G28 X_ Y_ Z_ A_ B_ C_ U_ V_ W_ S_

G90, G91: Absolute/Incremental command

G28: Auto-homing command

X_Y_Z_A_B_C_U_V_W_S_: Coordinate of waypoint of each axis to be homed

It is the command to automatically return the axis to the machine reference point. When the G28 command is encountered during the program execution, each axis is moved to the machine origin at the rapid traverse rate. At this time, it stops by the commanded position of each axis on the way.

The axes without receiving the auto-homing command do not move.

The incremental commands are available for axis positioning.

If the axis position command is "0", it returns directly to the machine origin without dropping by waypoints.

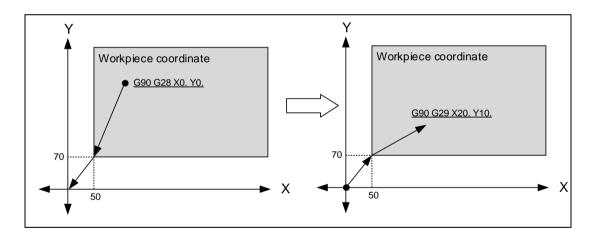
G90

G28 X40. Y55. Z32. % Auto-homing, waypoint(X=40, Y=55, Z=32)

G91 G01 X50. Y50. F550.

The above program is the example of moving the position of axes transferred to X, Y, Z axes linearly to the machine origin by using the G28 auto-homing command.

14) Return from the auto-origin (G29)


G90, G91: Absolute/Incremental command

G29: Return command from the origin

X_Y_Z_A_B_C_U_V_W_S_: Returning coordinate

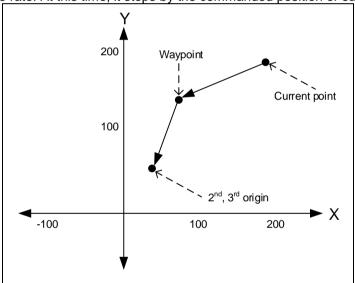
This command is used when the traverse is done after the auto-homing(G28), 2nd, 3rd, 4th homing(G30) is instructed. It traverses rapidly (G00) to the returning coordinate via the waypoint that was used for homing. If the homing command has not been previously executed, the machine origin becomes the midpoint and it traverses to the returning coordinate. In this command, tool diameter compensation and tool length compensation are not applied.

All the axes that have been commanded at the time of origin return have been traversed before the midpoint has been traversed, and only the coordinates that have been commanded at return coordinate are traversed thereafter. Up to the midpoint, all axes that were previously commanded during homing are transferred, and after that, only the coordinates instructed in the returning coordinates are traversed.

15) 2nd, 3rd, 4th homing (G30)

(G90, G91) G30 (P2, P3, P4) X_Y_Z_U_

G90, G91: Absolute/Incremental command


G30: Auto-homing command

P2: 2nd origin P3: 3rd origin

P4: 4th origin

X_Y_Z_A_B_C_U_V_W_S_: Coordinate of the waypoint of each axis to be homed

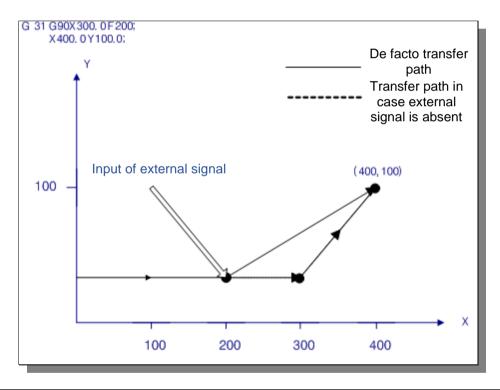
This command automatically returns each commanded axis to the preconfigured 2nd, 3rd, 4th origin. If the G30 instruction is encountered during the program execution, each axis is moved to the specified 2nd or 3rd or 4th origin at the rapid traverse rate. At this time, it stops by the commanded position of each axis on the way.

The 2nd, 3rd, 4th origin coordinate of each axis should be specified separately in the NC channel / axis parameters.

Through the P2, P3, and P4 commands, for the 2nd and 3rd homing to be instructed currently, you can specify which origin is selected between the 2nd, 3rd origin."P2" refers to the 2nd origin and "P3" refers to the 3rd origin.

The incremental commands are available for axis positioning.

NC parameters	Group name and parameter name			
	Group	Name	X Axis	
NC channel/axis parameters		Position of 2nd home	0 mm	
	Home Settings	Position of 3rd home	0 mm	
		Position of 4rd home	0 mm	


16) Skip function (G31/G31.1/G31.2/G31.3/G31.4)

G31 / G31.1 / G31.2 / G31.3 / G31.4: G-code by external signal

X_Y_Z_A_B_C_U_V_W_S_: Forwarding location

F_: Feed rate

The method of command and the type of axis feed are applied the same as those for linear interpolation (G01). Once the SKIP signal is input with the NC_BLOCKSKIP command, feed is stopped and it is progressed in the next block. This function is used for measuring a size of work-piece or for knowing a particular location during machining. At this time, the location of the machine at the point that it is stopped is saved in the flags by axis. For more information of the relevant flags, see "Appendix 1 Flag Alarm".

G90 G54 G00 X0. Y0. Z0.

G31 X300. F200.;

- Input of external signal SKIP 1

- Input of external signal SKIP 2

G31.3 X0.;

- Input of external signal SKIP 3

G31.4 Y0.;

- Input of external signal SKIP 4

M02;

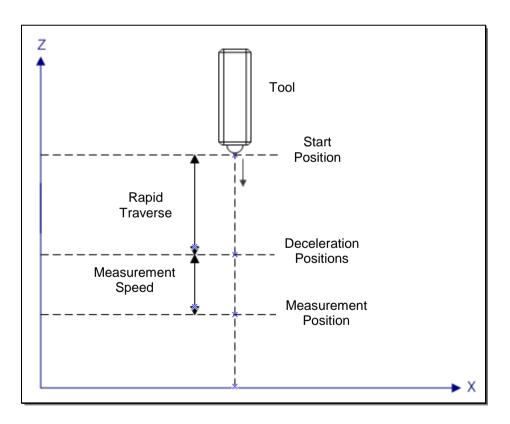
End of a program

17) Auto tool length measurement (G37 / G37.1 / G37.2 / G37.3 / G37.4)

{G37 / G37.1 / G37.2 / G37.3 / G37.4} X_Y_Z_

G37: Auto tool length measurement 1 G code

G37.1: Auto tool length measurement 1 G code

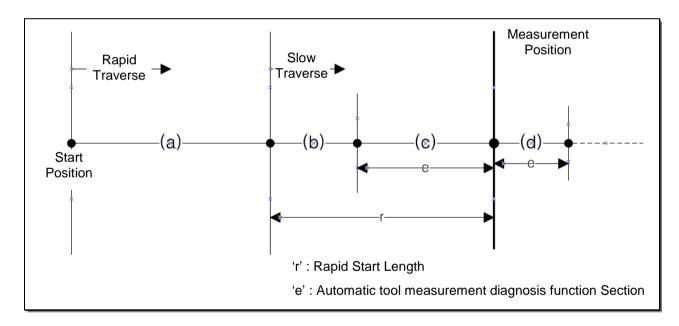

G37.2: Auto tool length measurement 2 G code

G37.3: Auto tool length measurement 3 G code

G37.4: Auto tool length measurement 4 G code

X_Y_Z_: Measuring location

It is used when tool measuring equipment is installed on a particular position of the machine. It automatically measures the compensation value of a tool and compensates. A tool moves to a measuring location during which it slows down and moves until a signal to reach the measuring location displays from measuring equipment. It calculates a new tool compensation value (tool length compensation value) from the difference between the actually nominated position and the position where the auto tool measure signal happens.


(1) Auto tool measurement signal (SKIP signal)

If a SKIP signal is input with the NC_BLOCKSKIP command, the feed command for the relevant block is closed and tool measurement is carried out. G code corresponding to each SKIP signal of the NC_BLOCKSKIP command is shown as follows, and following G code, one of X, Y, or Z is nominated.

SKIP signal	G code
SKIP1	G37.1(G37)
SKIP2	G37.2
SKIP3	G37.3
SKIP4	G37.4

(2) Type of axis feed during auto tool measurement

Once the command of auto tool measurement is given, it rapidly moves a tool at first ((a) section). If a tool comes into the section of speed reduction set by a parameter, the tool is moved at a low speed set by the parameter ((B) section). If the tool reaches the measuring point and the measuring signal (SKIP signal of the NC_BLOCKSKIP command) is ON, tool movement is stopped.

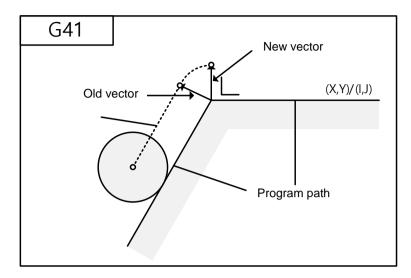
If the measuring signal is sensed in any other sections than (c), (d), an alarm of tool measuring happens. If the measuring signal is not sensed until it goes out of (d) section, an alarm of tool measuring happens.

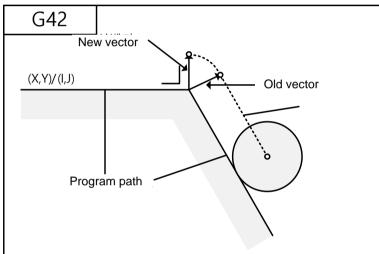
Parameter items related to auto tool length measurement are as follows:

1 aramete	Farameter items related to auto tool length measurement are as follows.			
NC Parameter	Group and parameter names			
		+ Measurement Reference X of Automatic Tool Offset	0	
		+ Measurement Reference Y of Automatic Tool Offset	0	
		+ Measurement Reference Z of Automatic Tool Offset	0	
NC		- Measurement Reference X of Automatic Tool Offset	0	
Channel	Automatic Tool Offset	- Measurement Reference Y of Automatic Tool Offset	0	
parameter		- Measurement Reference Z of Automatic Tool Offset	0	
		Automatic Tool Deceleration Start Length of Automatic Tool Offset	0	
		Automatic Tool Measurement of Automatic Tool Offset Detectable Section	0	
		Automatic Tool Deceleration Speed of Automatic Tool Offset	0	

(3) Calculation of auto tool compensation value

A new compensation value is produced out by adding the difference between the coordinate values of a tool at the time of reaching the measuring location and the nominated measuring location to the currently used compensation value.


Compensation value = Current compensation value + (Location where measuring signal becomes ON – Nominated measuring point)


18) Corner off circular interpolation (G39)

G39 : Handle corner offset with circular interpolation

 $X_Y_/I_J_:$ Command the vector for the next block

The corner off circular interpolation with the tool radius of the corner as the radius is carried out by the next command specified in the state of G01, G02 or G03. If specifying X and Y, the new vector that moves to the left (G41) or the right (G42) from a starting point of a right angle with X and Y is created. A tool moves according to a circular arc from the end of an old vector to the end of a new vector. X, Y and Z are displayed by the absolute value or the incremental value corresponding to G90 or G91. And I, J and K are always displayed by the incremental value at the end point.

The command of G39 can be given only during the offset mode (the state that G41 or G42 are commanded previously). Left and right rotation of a circular arc is decided by whether it is (G41) or (G42). This command carries out circular interpolation if there is the G function (G00/G01/G02/G03/G33).

19) Disable tool diameter compensation (G40)

G40: Disable tool diameter compensation

 $X_Y_Z_A_B_C_U_V_W_S$: Instruct the vector of the next command block

The G40 command is to cancel the tool diameter compensation. When G40 is commanded in the mode of G00 and G01, the mode will change from Enable Tool Diameter Compensation to Disable Tool Diameter Compensation. The offset in the G40 mode is always 0, and the center path of the tool matches the programmed path. The program should always be terminated in the G40 mode. If it ends in the G41 / G42 mode, the program will be terminated at a distance offset by the compensation amount. In addition, it is not

possible to cancel the tool diameter compensation in the circular interpolation (G02, G03).

G40 X_ Y_

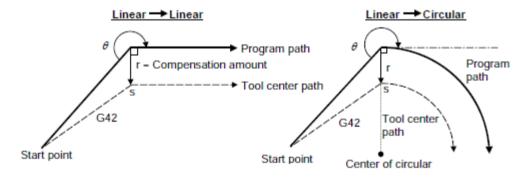
20) Tool diameter compensation (G41, G42)

$\{G41/G42\} [G00/G01] X_Y_Z_A_B_C_U_V_W_S_D_$

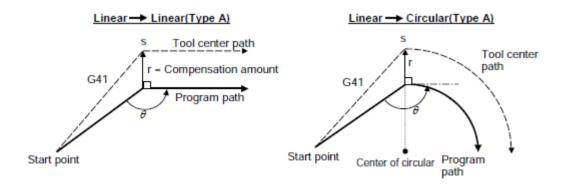
G41: Left compensation of the tool diameter

G42: Right compensation of the tool diameter

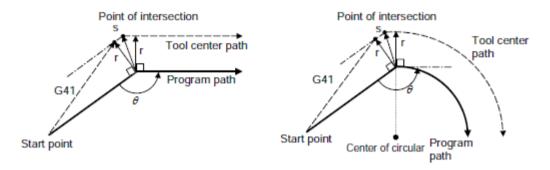
D_: The offset number that stores the tool diameter compensation value

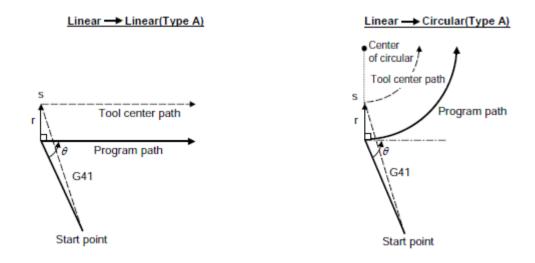

X_Y_Z_U_: Instruct the vector of the next command block

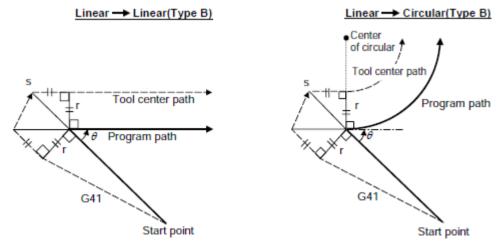
(1) Start - Up mode


When the tool diameter compensation is started by commanding G41 / G42 in the status of Disable Tool Diameter Compensation, it is called the Start-Up mode.

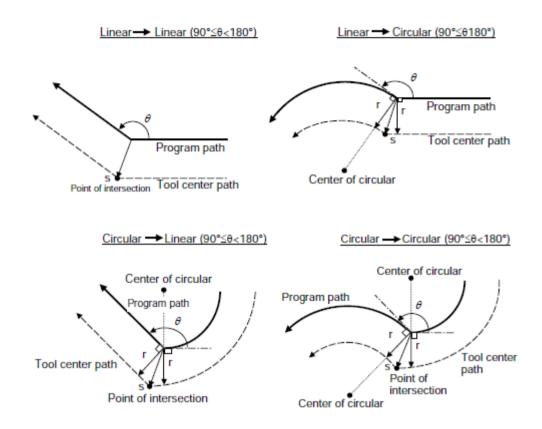
The case where G41 / G42 are commanded or the axis motion block is commanded for the first time after it is instructed, it is called the Start-Up mode.


In the Start-Up block, the axis motion command must be greater than the tool radius. In the start-up or cancellation mode, the arc command [G02 / G03] is not executed. When such commands are made, an alarm occurs.

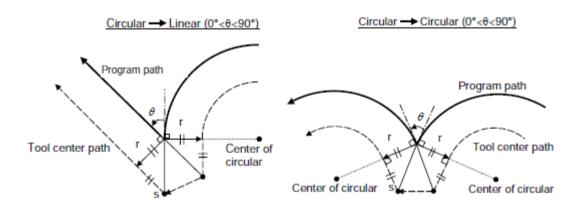

[Tool path of the inner corner]


[Tool path of the outer corner (obtuse angle)] (Type A)

[Tool path of the outer corner (obtuse angle)] (Type B)



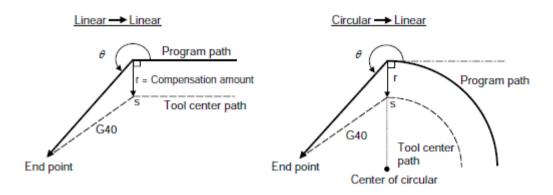
[Tool path of the outer corner (acute angle)] (Type A)



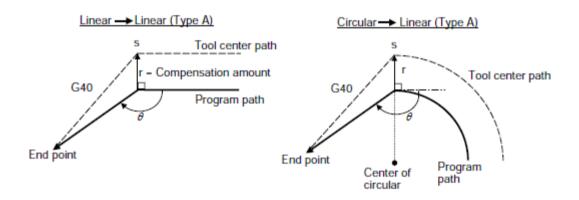
[Tool path of the outer corner (acute angle)] (Type B)

(2) Compensation mode

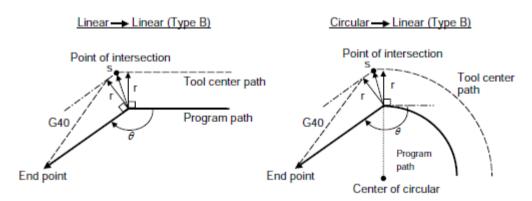
[Outer wall machining (obtuse angle)]

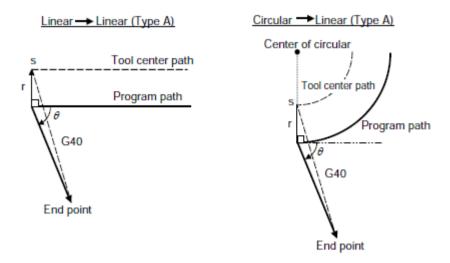

[Outer wall machining (acute angle)]

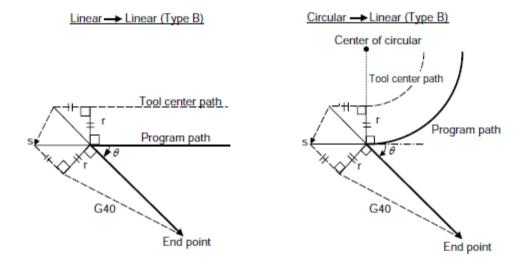
Linear → Linear (Acute angle) Linear → Linear (Obtuse angle) Program path Program path Tool center path Tool center path Point of intersection Linear → Circular (Obtuse angle) Linear → Circular (Acute angle) Program path Center of Program path circular Tool center path Tool center path Point of Point of intersection Center of circular Circular → Linear (Acute angle) Circular → Linear (Obtuse angle) Center of circular Program path Program path Tool center path Point of ntersection Tool center path intersection Center of circular Circular → Linear (Obtuse angle) Circular → Linear (Acute angle) Tool center Center of circular Point of intersection Center of Program path Tool center Center of Center of Point of path circular circular

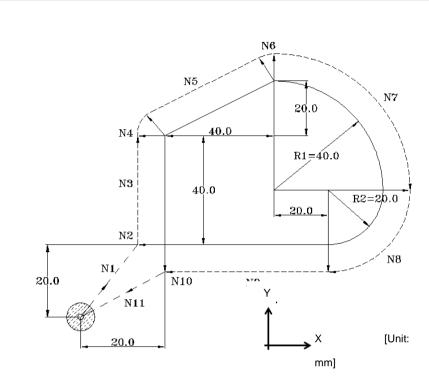

[Inner wall machining]

Program path


(3) Cancel mode


[Tool path of the inner corner]


[Tool path of the outer corner (obtuse angle)] (Type A)


[Tool path of the outer corner (obtuse angle)] (Type B)

[Tool path of the outer corner (acute angle)] (Type A)

[Tool path of the outer corner (acute angle)] (Type B)

N1 G91 G17 G00 G41 X20. Y20. D08

N2 G01 Z-25. F100

N3 Y40. F250

N4 G39 X40. Y20.

N5 X40 Y20.

N6 G39 X40.

N7 G02 X40. Y-40. R40.0

N8 X-20. Y-20. R20

N9 G01 X-60.

N10 G00 Z25.

N11 G40 X-20. Y-20.

N12 M30

(D08 tool offset number)

(The radius value of the tool is entered in the corresponding number)

(Compensation path of the arc type)

(Compensation path of the arc type)

The parameters related to tool diameter correction are as follows.

NC parameters	Group name and parameter name				
	Group	Name	Channel 1		
		How to Apply the Compensation Value of th	0: Apply the diameter value		
		Compensation Type of the Tool Diameter	0: Bypass Traverse		
		Whether to check the tool interference duri	0: Do not check		
		Compensation amount of the tool diameter	0 mm		
		Compensation amount of the tool diameter	0 mm		
		Compensation amount of the tool diameter	0 mm		
		Compensation amount of the tool diameter	0 mm		
		Compensation amount of the tool diameter	0 mm		
NC channel parameters		Compensation amount of the tool diameter	0 mm		
		Compensation amount of the tool diameter	0 mm		
		Compensation amount of the tool diameter	0 mm		
		Compensation amount of the tool diameter	0 mm		
		Compensation amount of the tool diameter	0 mm		
		Compensation amount of the tool diameter	0 mm		
		Compensation amount of the tool diameter	0 mm		
		Compensation amount of the tool diameter	0 mm		
* The parameter related to the tool diameter compensation amount is "to compensation amount 1 ~ tool diameter compensation amount 128".					

21) Tool length compensation (G43, G44, G49)

G43 Z_ H_ G49 Z_

G43: Tool length + length compensation

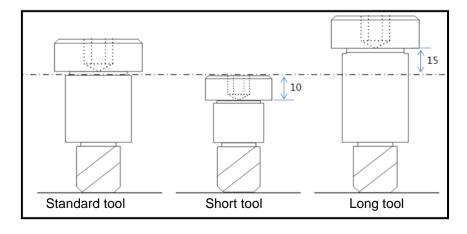
G44: Tool length - Length compensation

G49: Cancel the tool length compensation

Z_: Z-axis movement command (in the case of the G17 plane)

The absolute command and incremental command are available.

H_: Offset number storing the tool length compensation value


If the offset data that is designated by H code is added to the coordinate values of the terminal of the motion command for the Z axis that is programmed by Absolute Command or Incremental Command, G43 is added so the coordinate value becomes the terminal. A length value can have +, -.

If the motion command of Z is omitted, the length offset is applied in the + direction for G43 and the - direction for G44 in the next block that has the command of Z.

The following methods are applied to measure the tool length first.

- (1) Place the workpiece with a wide top surface on a table.
- (2) Bring the end of the reference tool into contact with the plane of the workpiece.
- (3) Compensate the Z-axis value.
- (4) Replace with the tool to be measured and bring the tip of the tool into contact with the plane.
- (5) The Z-axis value of the relative coordinate system in that state is stored in the memory as the tool compensation amount.

With the above settings, the correction amount is set to a - value for a short tool and a + value for a long tool with respect to the reference tool. Therefore, tool length compensation can always be specified only with the G43 during the program.

G43, G44 and G49 are a modal code, which are effective until another code appears. Therefore, the program

makes commands G43/G44 right after tool replacement. After finishing the tool work, if commanding G49 before tool replacement, tool length compensation is canceled.

- Caution 1. To cancel the offset compensation, command the G49 or H00.
- Caution 2. The offset number can be specified up to H00 H128, and the offset number 00, namely, the offset amount corresponding to H00 always means 0, and it is not possible to set the offset amount corresponding to H00.
- Caution 3. It is recommended to create the program like the Z axis movement command for the Enable/Disable Tool Length Compensation commands. The reason is that if it is commanded in the same way as G43 H01, it moves by the tool length (or length compensation amount) input in the length compensation address 01 and if the only G49 is commended, it moves in the opposite direction by the tool length compensation executed before G49, if the tool length compensation value is "+", it may move downward by the tool length from the current position and cause the tool collision.

Therefore, it is recommended to instruct Enable/Disable Tool Length Compensation commands like the Z-axis movement command, and to make it larger than the tool length value.

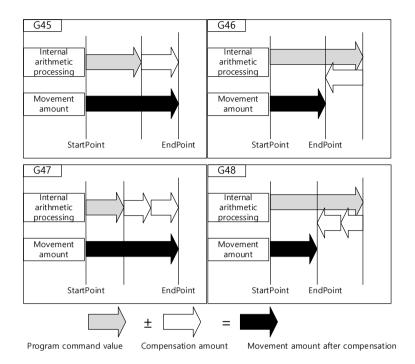
The parameters related to the tool length compensation are shown below.

NC parameters	Group name and parameter name				
	Group	Name	Channel 1]	
		Compensation amount of the tool length 62	0 mm		
NC channel parameters	Tool Length Compensation	Compensation amount of the tool length 63	0 mm		
		Compensation amount of the tool length 64	0 mm		
		Compensation amount of the tool length 65	0 mm		
		Compensation amount of the tool length 66	0 mm		
	* The parameter related to the tool length compensation amount is "tool length compensation amount 1 ~ length compensation amount 128".				

22) Tool Offset (G45~G48)

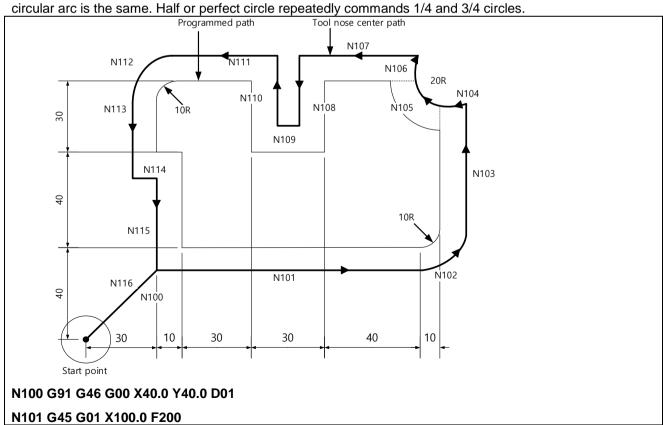
```
G45 {G01 / G02 / G03} X_Y_D_
G46 {G02 / G03} X_Y_D_
G47 {G02 / G03} X_Y_D_
G48 {G02 / G03} X_Y_D_
```

G45 : Tool offset increase
G46 : Tool offset decrease


G47 : Tool offset double increase
G48 : Tool offset double decrease

D_ : Tool diameter compensation number

X_Y_Z_ : Coordinate value of the target location to move through circular interpolation


During machining the distance between tools can be increased or decreased as much as the tool diameter rather than the width of the work-piece. The tool position compensation function (G45~G48) is the function to increase and decrease the distance to go as much as the tool diameter. The G codes are not modal commands. Therefore, they are valid only for the commanded block. However, the increased or decreased compensation value is continuously valid for the commanded axis. To avoid confusion about H code when designating the compensation value, D code is used. The compensation number is a modal command so that it is continuously valid until another value (compensation number) is commanded or reset. Therefore, it is not needed to command each block.

The compensation number, 0, means that the compensation value is always 0. Increase and decrease are conducted toward the move command. In the case of the absolute command, it increases and decreases toward the commanded position.

Generally the compensation value sets tool radius or tool length with the value of an amount. If the compensation value is set by a negative value, increase and decrease is conducted the other way. It is like setting G45 and G46, G47 and G48 conversely.

For circular arc interpolation, only 1/4 circle and 3/4 circle can be done. In other words, move toward the circular arc that radius is increased or decreased as much as the compensation value and the center of circular arc in the same. Helf or perfect circle reportedly compensed 1/4 and 3/4 circles.

N102 G45 G03 X10.0 Y10.0 J10.0

N103 G45 G01 Y40.0

N104 G46 X0

N105 G46 G02 X-20.0 Y20.0 J20.0

N106 G45 G01 Y0

N107 G47 X-30.0

N108 Y-30.0

N109 G48 X-30.0

N110 Y30.0

N111 G45 X-30.0

N112 G45 G03 X-10.0 Y-10.0 J-10.0

N113 G45 G01 Y-20.0

N114 X10.0

N105 Y-40.0

23) Scaling Function (G50, G51)

Scaling function is to reduce or enlarge the size of the programmed shape and then, to program. It can be applied variously by designating the whole magnifications or different magnifications of each axis. The tool offset data is excluded from the subject for scaling.

(1) Increase/decrease by same magnification

```
G50
G51 X_ Y_ Z_ P_
```

G50: Scaling Cancel

G51: Scaling Setting

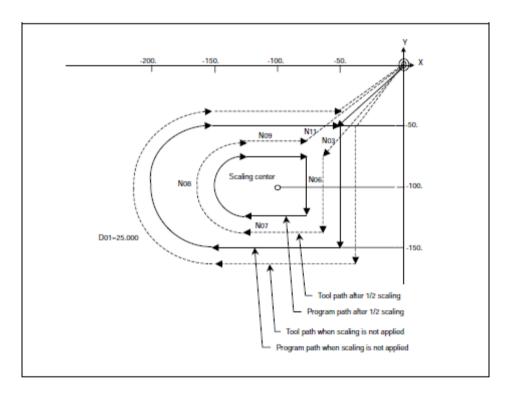
X_ Y_ Z_: The center coordinate value for the scaling command should be absolute G90. If X_Y_Z_ are omitted, the current location where G51 is commanded becomes the center of scaling.

P_: It is possible to give a command in the form of a real number to an address that designates magnification of scaling. The unit of magnification is always 1/1000.

For the motion command after this command, scaling is performed by magnification of P that is designated based on the center of scaling. The scaling mode can be canceled by G50.

The plane selection of circular interpolation can be independently used and should be used with the same block as a circular interpolation command.

(2) Increase/decrease by independent magnification


G50 G51 X_ Y_ Z_ I_ J_ K_

G50: Scaling Cancel

G51: Scaling Setting

X_ Y_ Z_: The center coordinate value for scaling command should be absolute G590. If X_Y_Z_ are omitted, the location where G51 is commanded becomes the center of scaling.

 $I_J_K_:$ Scaling magnification for each axis is designated in the relation of I = X axis, J = Y axis, K = Z axis. It is always 1/1000.

N01 G92 X0 Y0 Z0

N02 G90 G51 X-100. Y-100. P0.5

N03 G00 G43 Z-200. H02

N04 G41 X-50. Y-50. D01

N05 G01 Z-250. F1000

N06 Y-150. F200

N07 X-150

N08 G02 Y-50. J50.

N09 G01 X-50.

N10 G00 G49 Z0

N11 G40 G50 X0 Y0

N12 M02

24) Mirror Image (G50, G51)

```
G50
G51 X_ Y_ Z_ I_ - J_ - K_-
```

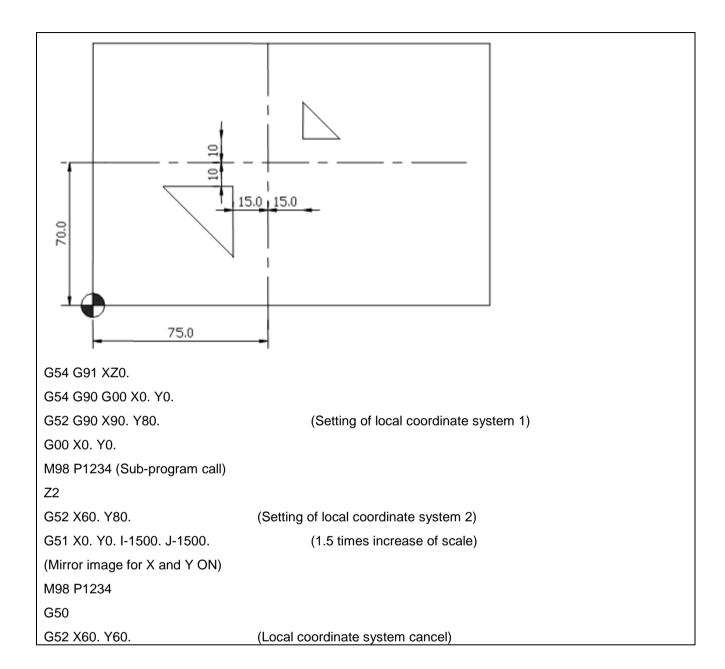
G50: Mirror image cancel

G51: Mirror image setting

X_Y_Z_: The center coordinate value of mirror image should be absolute G90. If X_Y_Z_ are omitted, the location where G51 is commanded becomes the center of the mirror image.

I-_ J-_ K-_: You should designate in negative number by the use of '-'. The mirror image magnification for each axis should be designated in the relation of I = X axis, J = Y axis, and K = Z axis. It is always 1/1000.

Ex) I-1000: Mirror image of X (1 time)

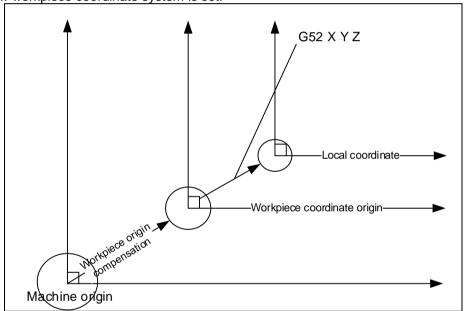

J-1500: Mirror image of Y (1.5 times)

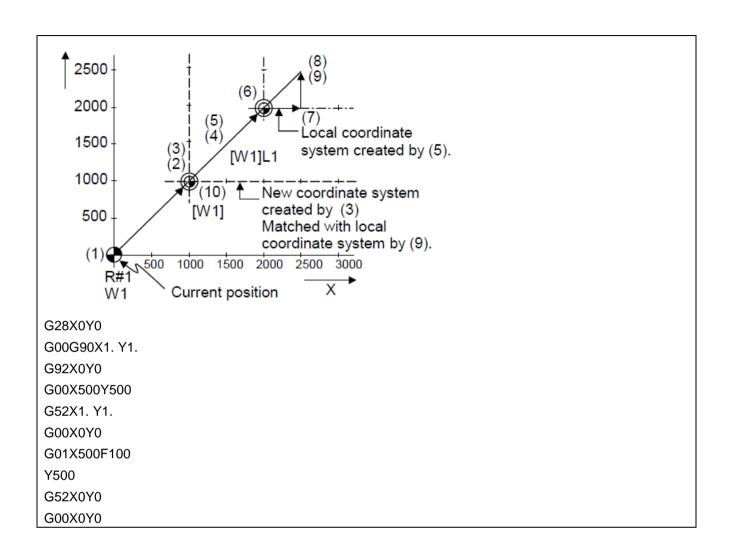
K-2000: Mirror image of Z (2 times)

If the mirror image magnification for each axis is same, you should use P_ command instead of I_ J_ K_ like a scaling command. You should designate in a negative number by the use of '-'.

(2 times increase of mirror image = P-2000, 1/2 decrease of mirror image = P-500)

The mirror image function is made by adding the mirror function to the scaling function. Therefore, it is possible to reduce/enlarge the programmed forms and at the same time, it is possible to symmetrically move. If you designate I_ J_ K_ (or P_) in positive numbers when using mirror image G51, the scaling function works. If you designate in negative numbers, the mirror image function works.




25) Local coordinate system setting (G52)

G52 X_ Y_ Z_

G52: Local coordinate system setting

The local coordinate system is the coordinate system that sets and uses the reference point at an arbitrary point based on the set workpiece coordinate system when creating the program by the workpiece coordinate system. With the local coordinate system command, the new coordinate system, namely, the local coordinate system can be set in all workpieces coordinate systems (G54 to G59). The origin of each local coordinate system is the X_Y_Z_ locations specified by each workpiece coordinate system. The local coordinate system is cleared to 0 when a new workpiece coordinate system is set.

26) Selecting the machine coordinate system (G53)

G90 G53 X_ Y_ Z_

G90: Absolute command

G53: Select the machine coordinate system

X_ Y_ Z_: Feed position

G53 is the command to use the machine coordinate system and the tool moves rapidly to the X_Y_Z_ position above in the machine coordinate system. G53 is the stand-alone G code so it is valid in the commanded block only. It is still valid in the absolute command (G90) but becomes ineffective in the incremental command (G91). If you want to move the tool to the machine-specific position such as a tool change position, you should program it in the machine coordinate system with G53. The tool diameter compensation, tool length compensation, and tool position compensation must be canceled before the G53 command, otherwise, it will be moved to the compensated state. In addition, since the machine coordinate system must be set before the G53 is commanded, manual homing or homing with G28 should be executed after turning on the power.

G40 G80

G53 G90 X-140 Y-120 Z0 (Moving to the X-140 Y-120 Z0 position of the machine coordinate system)

G92 X0 Y0 Z150 (Rest by changing the workpiece coordinate system)

G30 G91 Z0

G54 G00 G90 X0 Y0

M30

27) Selecting the workpiece coordinate system 1~6 (G54, G55, G56, G57, G58, G59)

```
G54 X_ Y_ Z_
G55 X_ Y_ Z_
G56 X_ Y_ Z_
G57 X_ Y_ Z_
G58 X_ Y_ Z_
G59 X_ Y_ Z_
```

G54: Select the workpiece coordinate system 1

G55: Select the workpiece coordinate system 2

G56: Select the workpiece coordinate system 3

G57: Select the workpiece coordinate system 4

G58: Select the workpiece coordinate system 5

G59: Select the workpiece coordinate system 6

X_Y_Z_: Position of the workpiece coordinate system

The coordinate system used for workpiece machining is called the workpiece coordinate system. This is the coordinate system that allows the operator to create a program conveniently on the basis of drawings, and to set any point of the workpiece to be machined as the origin by applying the NC program as it is. After turning on the power, it is necessary to executing homing for proper application of the coordinate system. When using $G54 \sim G59$, it is not necessary to set the coordinate system with G92.

G40 G80	
G28 G91 X0 Y0 Z0	(Returning to machine origin where the waypoint is the current position value [G91mode])
G54 G00 G90 X0 Y0 Z0	% Use the 54 workpiece coordinate system and traverse it to the origin rapidly. That is, G54
	% Traverse to the origin of the coordinate system rapidly
M30	

28) Single direction positioning (G60)

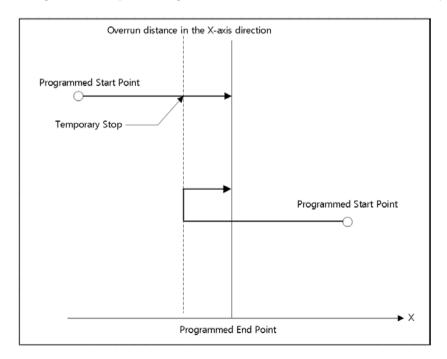
G90 G60 X_ Y_ Z_ U_

G60: Single Direction Positioning command

G00: Positioning command

X_Y_Z_U_: Target position to traverse

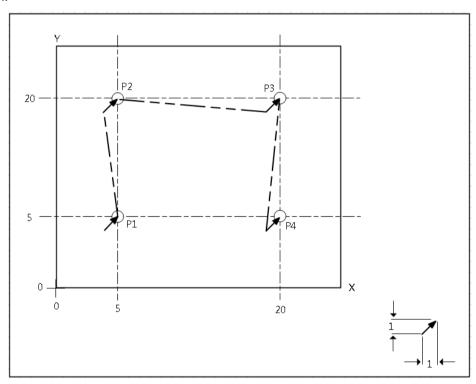
Single Direction Positioning (G60) is the function used for tool traversing, which replaces the Rapid Traverse or runs last. After stopping at the position separated by the overrun stroke set for the commanded positioning direction, it moves to the end position and obtains the effect of backlash compensation.


Therefore, the G60 command is applied, it always moves from the same direction to the target position.

The overrun amount is stored in the parameters.

Please refer to the overrun feed amount of the single direction positioning of NC channel / axis parameters.

NC parameters	Group name and parameter name			
NO sharmal/avia manamatana	Group	Name	X Axis	
NC channel/axis parameters	Auxiliary Function	Overrun distance in single dir. positioning	0 mm	'

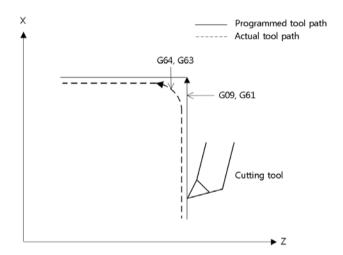

Note that the single direction positioning command does not eliminate the backlash physically.

If the positioning direction is specified for the X + direction as shown in the figure, it will always move from the same direction to the target position.

If the overrun amount is not set or the feed amount is 0, the single direction positioning command is not applied.

In addition, it does not apply to the Z axis in the drill cycle, and it is not affected by the mirror image for the set direction.

G21
G17 G40 G80 T01
M06
G90 G54 G60 X5.0 Y5.0
S1200 M03 T02
G43 Z2.5 H01 M08
G99 G82 R2.5 Z-2.0 P200
F150.0
G60 Y20.0
G60 X20.0
G60 X20.0
G80 Z2.5 M09
G28 Z2.5 M05
M01


29) Exact Stop Mode (G61)

G61

G61: Exact Stop Mode command

The Exact Stop mode (G61) command is used to avoid not exactly reaching the location designated in the previous block due to NC's continuous execution between continuous blocks in the cutting feed.

If exact stop mode is commanded, motion speed is reduced to 0 in the end point of motion of a block. After confirming if reaching the command position, execute the next block. Exact Stop mode (G61) is a modal command while G09 is a one-shot command. G61 is continuously applied to the cutting feed until G62 (automatic corner override mode), G63 (tapping mode) and G64 (cutting mode) are commanded.

[Figure] Tool Path between Continuous Blocks

G54 G00 X0 Y0
G61 G01 X10 F50
Y100
G64 X0
Y0

Chapter9 NC Control Function

31) Tapping Mode (G63)

G63

G63: Tapping Mode Command

Tapping mode (G63) command carries out the cutting feed the same as cutting mode. A tool is not decelerated at the end point of a block and executes the next block.

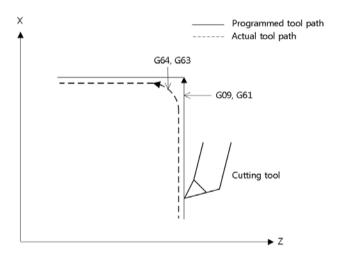
Cutting feedrate override is fixed at 100% and the function of Feed Hold is not applied.

This function, as a modal command (group 15), is continuously applied to the cutting feed until G61 (Exact Command Mode), G62 (Automatic Corner Override Mode) and G64 (Cutting Mode) are commanded.

G54 G00 X0. Y0. Z0. G63 G01 X50. F100.

Y100.

M30


32) Cutting Mode (G64)

G64

G64: Cutting Mode command

The Cutting mode (G64) command is the feed mode that is set as the default of the cutting feed mode. A tool is not decelerated at the end point of a block and executes the next block.

But as in the real feed, the current block is previously decelerated and the next block is previously accelerated, a phenomenon of rounding happens at the corner. This function, a modal command (group 15), is valid until G61 (Exact Command Mode), G62 (Automatic Corner Override Mode) and G63 (Tapping Mode) are commanded.

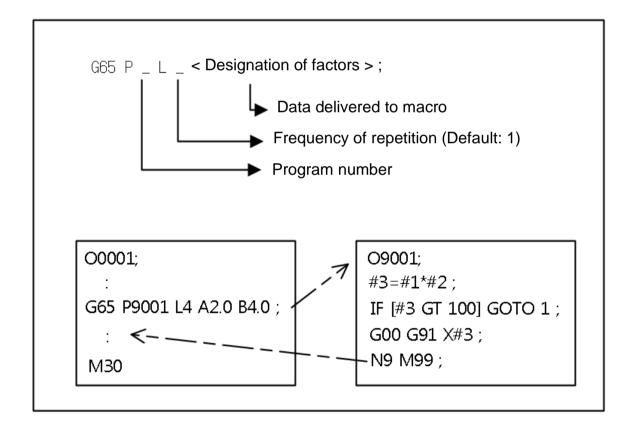
[Figure] Tool Path between Continuous Blocks

G54 G00 X0 Y0
G64 G01 X50 F100
Y100
G61 X0
Y0

33) Macro Call (G65)

G65 P_ L_ < Designation of factors>

G65: Macro Call


P_: Program Number

L_: Frequency of repetition

A custom macro can be called with the macro call (G65) command.

A custom macro has several features different from a Sub Program.

- ✓ Factors (Data) can be designated and operation among factors is possible.
- ✓ Factors are classified into local variables, common variables and system variables.
- ✓ Variables always have the values in the form of a real number.
- ✓ The program number should be 4-digits.

Custom macro that is designated as program addresses can be called with macro call (G65) command.

And data variables can be delivered by designating factors.

If it is needed to designate frequency of repetition, set the range value of 1~9999 after L.

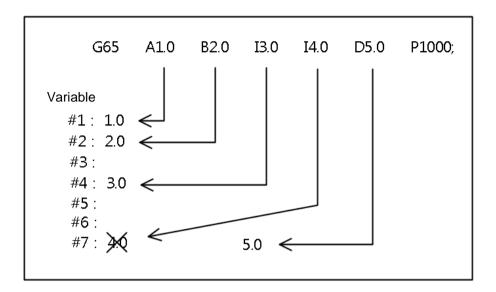
If input of repetition frequency is omitted, 1 is set as default.

Designation of factors have 3 methods as follows:

Designation of factors 1

- Use one alphabet from A to Z except G, L, O, N and P.
- I, J and K should be designated in alphabetic order but other variables should not be in alphabetic order.

Address	Variable	Address	Variable	Address	Variable
	number on		number on		number on
	macro		macro		macro
Α	#L1	1	#L4	Т	#L20
В	#L2	J	#L5	U	#L21
С	#L3	K	#L6	V	#L22
D	#L7	М	#L13	W	#L23
E	#L8	Q	#L17	Х	#L24
F	#L9	R	#L18	Υ	#L25
Н	#L11	S	#L19	Z	#L26


Designation of factors 2

- It is possible to designate factors with address A, B, C. It is possible to designate the factor consisting of a set of addresses I, K, J up to a maximum of 10 sets.
- The number in () means the order of designating factors is not used when it is actually commanded.

Address	Variable	Address	Variable	Address	Variable
	number on		number on		number on
	macro		macro		macro
Α	#L1	K(3)	#L12	J(7)	#L23
В	#L2	I(4)	#L13	K(7)	#L24
С	#L3	J(4)	#L14	I(8)	#L25
I(1)	#L4	K(4)	#L15	J(8)	#L26
J(1)	#L5	I(5)	#L16	K(8)	#L27
K(1)	#L6	J(5)	#L17	I(9)	#L28
I(2)	#L7	K(5)	#L18	J(9)	#L29
J(2)	#L8	I(6)	#L19	K(9)	#L30
K(2)	#L9	J(6)	#L20	I(10)	#L31
I(3)	#L10	K(6)	#L21	J(10)	#L32
J(3)	#L11	I(7)	#L22	K(10)	#L33

Combination designations

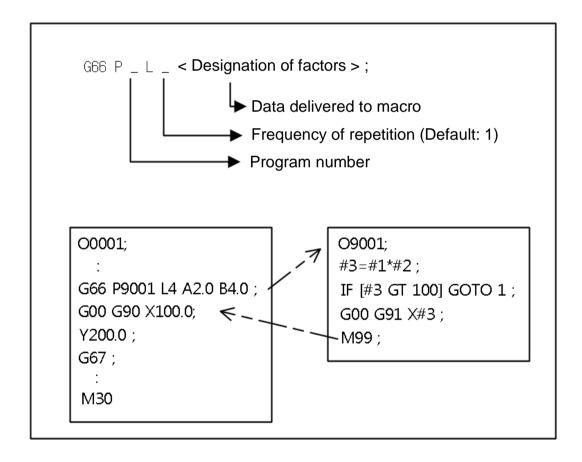
- Even if factors are designated by combining designation of factors 1 and 2, alarms do not occur.
- In this case, factor address follow designation 1.

As in the figure, in case of a combination designation, the address according to the designation of factors 1 is valid. Therefore, D5.0, not I(2)4.0, is valid in #L7 address.

34) Modal modal call/cancel (G66/G67)

```
G66 P_ L_ < Designation of factors>
```

G67


G66: Macro modal call

G67: Macro modal call cancel

P_: Program Number

L_: Frequency of repetition

Factor designation of the macro modal call (G66)/cancel (G67) command is the same as macro all (G65).

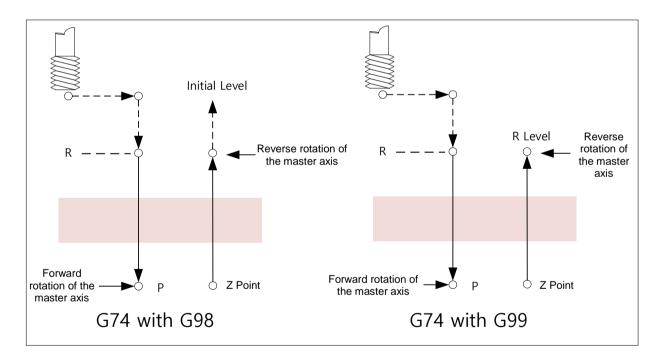
After executing the block that motion is commanded during a macro call, the macro call is carried out. If G66 is commanded again during a macro modal call (G66), the next modal call can be carried out.

If G67 is commanded, the macro call is not carried out from the next block. G66 and G67 always exist in the same program.

36) Counter Tapping Cycle (G74)

G74 [G90/G91] [G98/G99] X_Y_Z_R_P_F_K_

G74 : Counter Tapping Cycle


X_Y_ : Position of the holeZ_ : Depth of the hole

R_ : Coordinate for R point

F_ : Cutting feed rate

K_ : Frequency of repetition

The Counter Tapping Cycle (G74) command is the function that is useful in creating counter screws. After it rapidly moves to R point after positioning, execute tapping up to the Z point. Dwell is carried out when tapping ends. It is the cycle function that the master axis directly revolves (M3) and moves to the R point after stopping.

M4 S100	%Start of the master axis
G90 G98 G74 X300. Y-250. Z-150. R-120. F120.	%After positioning, Screw hole 1 cutting,
Return to initial point	
Y-550.	%After positioning, Screw hole 2 cutting,
Return to initial point	
Y-750.	%After positioning, Screw hole 3 cutting,
Return to initial point	

X1000.	%After positioning, Screw hole 4 cutting,
Return to initial point	
Y-550.	%After positioning, Screw hole 5 cutting,
Return to initial point	
Y-750.	%After positioning, Screw hole 6 cutting,
Return to initial point	
G80 G28 G91 X0 Y0 Z0	%Return to reference
M5	%Stop of the master axis

Chapter9 NC Control Function

37) Canned Cycle Cancel (G80)

G80

G80 : Canned Cycle Cancel

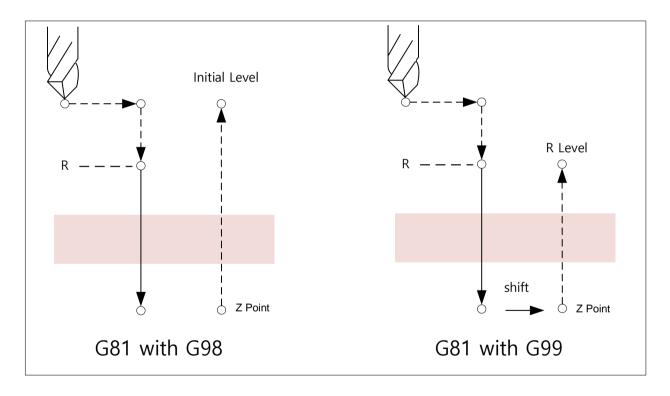
The Canned Cycle Cancel (G80) command is the function that releases all drilling data and aborts the canned cycle function. As it aborts canned cycle data such as R point and Z point, R point and Z point become 0 through incremental command.

M3 S100	%Start of the master axis
G90 G99 G88 X300. Y-250. Z-150. R-120	. F120. %After positioning, Screw hole 1 cutting, Return to R
point level	
Y-550	%After positioning, Screw hole 2 cutting, Return to R point level
Y-750.	%After positioning, Screw hole 3 cutting, Return to R point level
X1000.	%After positioning, Screw hole 4 cutting, Return to R point level
Y-550.	%After positioning, Screw hole 5 cutting, Return to R point level
G98Y-750.	%After positioning, Screw hole 6 cutting, Return to initial level
G80 G28 G91 X0 Y0 Z0	%Return to reference
M5	%Stop of the master axis

38) Drilling Cycle/Spot Drilling Cycle (G81)

G81 [G90/G91] [G98/G99] X_Y_Z_R_F_K_

G81 : Drilling Cycle/Spot Drilling Cycle


X_Y_ : Position of the holeZ_ : Depth of the hole

R_ : Coordinate for R point

F_ : Cutting feed rate

K_ : Frequency of repetition

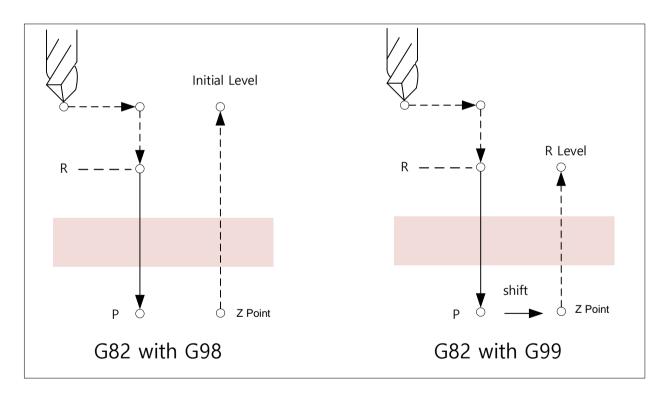
The Drilling Cycle/Spot Drilling Cycle (G80) commands are used for general drilling, reaming and spot boring. The tool does cutting feed to the bottom of a hole and then goes out of it at a rapid traverse.

39) Drilling Dwell Cycle / Counter Boring Cycle (G82)

G82 [G90/G91] [G98/G99] X_Y_Z_R_P_F_K_

G81 : Drilling Cycle/Spot Drilling Cycle

X_Y_ : Position of the holeZ_ : Depth of the hole


R_ : Coordinate for R point

P_ : Dwell time at the bottom of a hole

F_ : Cutting feed rate

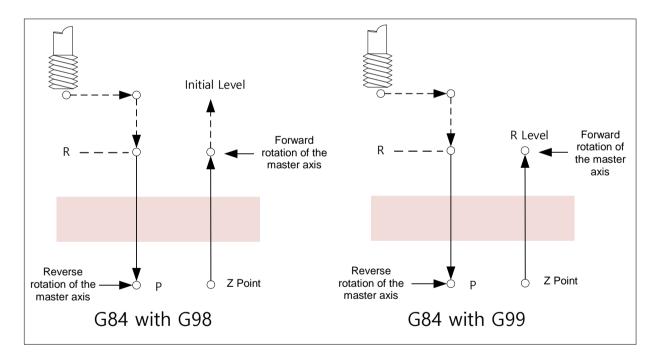
K_ : Frequency of repetition

The Drilling Dwell Cycle / Counter Boring Cycle (G82) commands are used for general drilling. After cutting feed to the bottom of a hole, perform the set dwell. If dwell is omitted, it is same as G81.

40) Tapping Cycle (G84)

G84 [G90/G91] [G98/G99] X_Y_Z_R_P_F_K_

G84 : Tapping Cycle


X_Y_ : Position of the holeZ_ : Depth of the hole

R_ : Coordinate for R point

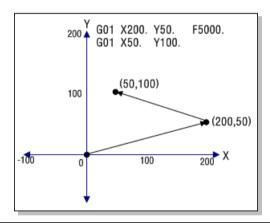
F_ : Cutting feed rate

K_ : Frequency of repetition

The Tapping Cycle (G84) command is used for creating screws. This tapping cycle makes a screw by directly revolving (M3) the master axis with a right screw tap spindle and counterclockwise revolving (M4) at the bottom of a hole to escape.

41) Absolute command (G90)

G90 G01 X_ Y_ Z_ A_ B_ C_ U_ V_ W_


G90: Absolute command

G01/G00: Linear interpolation /Positioning

X_Y_Z_A_B_C_U_V_W_: Target position to traverse

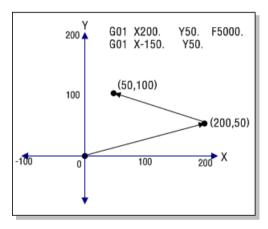
The absolute command (G90) is the method of commanding the feed position based on the currently set coordinate system.

The feed end point uses the value calculated from the origin of the currently specified coordinate system, regardless of where the current position is on the coordinate. The absolute command (G90) is a modal command, and once it is commanded, it still acts as a valid command unless another position command for the feed target is set.

G90	% Absolute command
G01 X200 Y50 F5000	% Linear interpolation, target position to traverse(X=200, Y=50), speed 5000
X50 Y100	% Linear interpolation, target position to traverse(X=50, Y=100), speed 5000.

The above program represents the movement of the above figure with the G code.

42) Incremental command (G91)


G91: Incremental command

G01/G00: Linear interpolation /Positioning

X_Y_Z_A_B_C_U_V_W_: Target position to traverse

The incremental command (G91) is the method to instruct the movement amount to the target point to traverse for the current position based on the currently set coordinate system.

The incremental command (G91) is a modal command, and once it is commanded, it still acts as a valid command unless another position command for the feed target is set.

G91			% Incremental command
G01 X200	Y50	F5000.	% Linear interpolation, target position to traverse(X=200, Y=50), Speed 5000
X-150 Y50			% Linear interpolation, target position to traverse(X=50, Y=100), Speed 5000

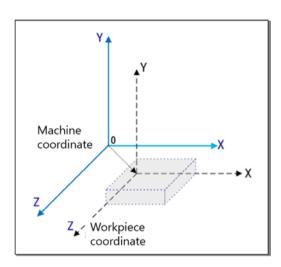
The above program represents the movement of the above figure with the G code.

43) Work-piece Coordinate System Setting, Maximum Spindle Speed (G92)

When setting the Work-piece Coordinate System

G92 X_ Y_ Z_ A_ B_ C_ U_ V_ W_

G92: Work-piece Coordinate System command


X_Y_Z_A_B_C_U_V_W_: Input of offset value by axis

The work-piece coordinate system setting is a command to shift the coordinate system in current use as much as the input offset.

It is used when resetting the coordinate system based on the reference point of the workpiece. It operates based on the coordinate system shifted (G54 ~G59)

before selecting the work-piece coordinate system after the relevant command.

* Note: It should be used after reference position return.

%Use after reference position return	
G90 X10 Y10	% work-piece coordinate system moves to X=10 Y=10
G92 X100 Y100	% work-piece coordinate system shifts X=10, Y10 to
X=100, Y=100	
G90 X10 Y10	% work-piece coordinate system moves to -80, -80

When setting the maximum spindle speed

G92 S_

G92: The command to set the maximum spindle speed

S_: The maximum revolution speed of the spindle in rpm

Set the upper limit for input speed when controlling constant surface speed (G96). When controlling constant surface speed, if the input value of speed is greater than the command value of G92, the spindle revolves at the set speed of G92.

G92 S100	% When controlling constant surface speed, the maximum
	revolution speed of the spindle is designated at 100 rpm
G96 S1000	% When controlling constant surface speed, cutting speed is
	1000 m/min

44) Feed mode command per minute (G94)

G94 G01 X_F_

G94: Feed mode command per minute

G01: Linear interpolation feed command

X_: Coordinate value of the target position to move through the linear interpolation feed

F_: Speed command

It is the command to set the input unit to the user input unit (mm, degree) per minute. Under the command, for the F input unit, the unit / min (mm / min, deg / min) is applied.

G94 G01 X10 F10 % If the unit is mm, the feed rate is commanded in 10mm / min.

45) Feed mode command per revolution (G95)

G95 G01 X_F_

G95: Feed rate per revolution of the master axis

G01: Linear interpolation feed command

X_: Coordinate value of the target position to move through the linear interpolation feed

F_: Speed command

It is the command to set the input unit to the feed rate per revolution of the master axis.

Under the command, for the F input unit, the unit /rev(mm/rev) is applied.

G95 G01 X10 F10 % If the unit is mm, set the speed to 10mm / rev.

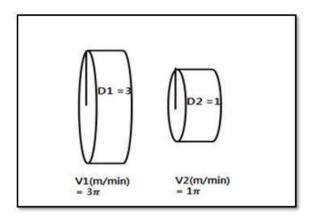
46) Constant surface speed control (G96)

G96 S_

G96: Constant surface speed (= circumferential speed) control command

S_: Cutting speed command (m/min)

It is the function used when machining materials with an inconstant diameter.


Keep the cutting speed constant and revolve the spindle by calculating the rotation number of the spindle according to change in material diameters.

As the cutting amount is constantly kept when using the relevant command, improve uniformity of the surface roughness of a work-piece. The relevant setting is kept before G97 (Constant surface speed control cancel command) is commanded.

$$N = \frac{1000V(Velocity)}{\pi D(Diameter)}$$

* Note: As a diameter becomes 0 and the N value reaches infinity when machining the center of a material, if you want to execute G96, designate the maximum rotation number by setting G92 (the maximum spindle speed) to a code before executing G96 for safety.

If selecting G96 first, the speed of constant surface speed control, S, should be input. If you have selected G96 previously, you don't need to input it.

[Figure] Comparison of Radius and Speed of Work-piece

G96 S1000 % Command Cutting speed by 1000m/min

The parameter items related to constant surface speed control are as follows:

NC Parameter		Group and parameter names		
		Reference Axis for Constant Speed Contr	0: None	
NC Channel	Spindle Setting	Max. Speed of Spindle at Constant Speed Control	0	
Parameter		Min. Speed of Spindle at Constant Speed Control	0	
	B.		*	

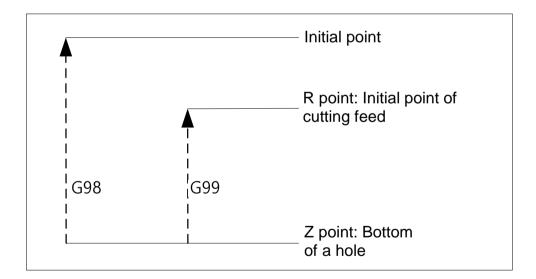
47) Constant surface speed control cancel (G97)

G97 S_

G96: Constant surface speed control cancel = Constant rotation number control

S_: Set the rotation speed of the spindle in rpm

The modal code operates before G96 (constant surface speed control) is commanded. The code is used when rotating the spindle at the constant speed.

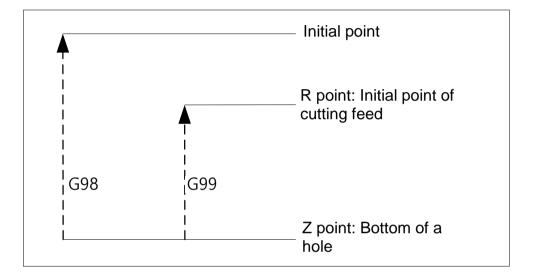

G97 S100 % Command Cutting speed by 100rpm

48) Return to Initial Point at a Canned Cycle (G98)

G98

G98 : Return to Initial Point at a Canned Cycle

Rapidly return to the initial point (the height of Z axis when the canned cycle mode setting is commanded) after completing boring.



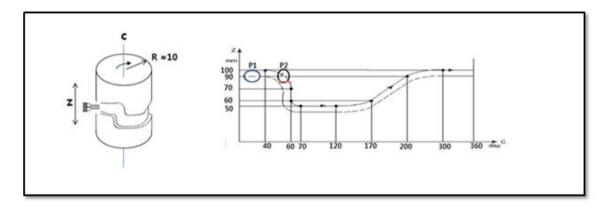
49) Return to R-point at a canned cycle (G99)

G99

G99 : Return to Initial Point, R point (initial point of cutting feed) at a Canned Cycle

Rapidly return to R point after completing boring.

50) Cylindrical interpolation mode setting (G107)


G107 C

G107: Cylindrical interpolation command

C: Set the rotation axis and radius of a cylinder (If the value is 0, the cylindrical interpolation is canceled.)

The cylindrical interpolation is a type of contour control, which is the control mode for machining a cylindrical surface. It can be easily created when grooving the cylindrical CAM.

It performs the circular (G02, G03) and linear interpolation (G01) with other axes by converting the movement amount of the rotation axis specified by the angle into the linear axis distance of the circumference.

G107 C10

G90 G01 G18 Z0 C0 % Select the circular interpolation plane (ZX) Z0 C10 linear interpolation command

C40 % P1: Linear interpolation

Circular arc's radius (3)

G107 C0 % Cancel the cylindrical interpolation

Caution

In the cylindrical interpolation mode, the circular arc radius command can be done with R only.

In the cylindrical interpolation mode, the positioning command (G00) is not available.

In the cylindrical interpolation mode, the coordinate system command is not available.

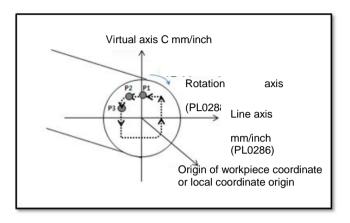
51) Polar coordinate interpolation mode ON/OFF (G112, G113)

G112 G01/G02/G03 G113

G112: Set the polar coordinate interpolation mode, it is maintained until the G113 is commanded.

G01/G02/G03: Command to the rectangular coordinate system of the linear and rotary axis.

G113: Disable the polar coordinate interpolation mode


The polar coordinate interpolation converts the command entered into the rectangular coordinate system into the movement of the linear axes (X, Y, Z: tool movement) and the rotary axes (A, B, C: workpiece). This is executed on the polar coordinate interpolation plane created by the linear axis and the imaginary axis that is orthogonal to the linear axis.

The linear and the rotation axes should set in the parameters before the polar coordinate interpolation.

NC parameters	Group name and parameter name		
	Group	Name	Channel 1
		Target Machining Quantity	0
		Target machining quantity at M99 repetition	0
		Check of decimal point	1: Unused
		Keep workpiece coordinate system	0: Keep
		Macro call on T-code command	0: Do not call
		DWELL Method	0: Time
	Basic Settings	Block selection at NC reset	0: Keep the Current Block
NC channel parameters		Statement number search	0: Search
		Minimum command unit	0 mm
		Whether to use G22 [No traveling area]	0: Used
		Inner/Outer side of G22 [No traveling area]	0: Inner side
		Whether to use the 3rd [No traveling area]	0: Used
		Rotary Axis of Cylindrical Interpolation	0: X Axis
		Linear axis for interpolating the polar coordi	0: None
		Rotary axis for interpolating the polar coordi	0: None
		Monitoring time for in-position completion	5000 ms

In this mode, the tool diameter can be compensated and the polar coordinate interpolation is performed for the compensation path of the tool diameter.

It is mainly used for grinding of the CAM shaft, etc.

G112	% Polar coordinate interpolation mode On
G01 C10 F100	% P1: C10 feed
G01 X-8	% P2: X -8 position feed
G03 X-10. C8. R2.	% P3: X -10 Y 8
G113	% Cancel the polar coordinate interpolation mode

Caution

- In the polar coordinate interpolation, only the straight line (G01) and circular interpolation (G02 / G03) can be used.
- The command unit of a virtual axis is the same as a linear axis. The coordinate of the virtual axis becomes 0 under the G112 command.
- The F command in the polar coordinate interpolation is the linear velocity (the relative velocity of the workpiece and the tool).
- The circular interpolation imagines the X and Y planes so the distance from the starting point to the central point is commanded by I and J only.

(2) M code

Operating the machine through the motion control requires the functions for various mechanical operations in addition to the functions such as feed and interpolation using the G codes. In order to control the machine using the functions other than those supported by the G codes, the motion controller supports the M codes.

The M codes of the motion controller support the Pause, the function indicating the end of the NC program and the functions to interface with each motion control flag.

M codes can be commanded again only after all operations of the codes that have been already commanded are completed.

Mxx

Mxx: Auxiliary command

The machine sequence function corresponding to the "Mxx" code is activated.

G90

G01 X100. Y100.

G01 X150. Y200

M00 % Pause command

G01 X10. Y10. G01 Y30. Z30.

M02

Actual operations may differ because the machine manufacturer determines which function of the machine is to be given to the M code. However, the general code table that is commonly used is as follows.

M code	Function	Description
		Automatic operation stops when M00 is commanded during the automatic
M00	Program Stop	operation. The modal information is valid up to the present like the single block
		stop, and the automatic operation is continued by pressing the cycle start button.
		This function that is the same as the M00 function is valid when the Optional
M01	Optional Stop	Stop Switch is On. This command is ignored if the switch is not turned on.
		This is the command indicating the end of the program. After the operation of the
		block is completed, the master axis and Coolant stop.
M02	End of Program	Then, the cursor returns to the beginning of the program. All commands are
		RESET by the same operation as M30.
	Forward rotation of the	Forward rotation of the master axis
M03		Before this command, you must adjust the gear shift and the number of
	master axis [CW]	revolutions of the master axis in advance.
	Reverse rotation of the	Reverse rotation of the master axis.
M04	master axis [CCW]	Before this command, you must adjust the gear shift and the number of
		revolutions of the master axis in advance.
M05	Master axis stop	Master axis stop.
1000	Widotor axio stop	It is used to change the direction of rotation or to shift gears.
		Tool change
M06	Tool change	Depending on the type of automatic tool changer (ATC), it is also used as the
		specific macro program call function.
		A coolant motor is operated.
M08	Coolant On	Before this command, the auto switch of the coolant on the machine's control
		panel must be set to On. If the switch is off, the program will not proceed.
M09	Coolant Off	A coolant motor is stopped.
M30	End of Tap	At the end of the program, the program returns to its beginning again and all
		commands are RESET.
M98	Auxiliary program call	The function to call an auxiliary program while the automatic program runs
MOO	End of the auxiliary	The function to terminate the auxiliary program.
M99	program	[Used even if the main program is executed repeatedly]

(3) Other Operation instructions of the NC program

Other instructions of the motion controller are the commands that control the progress of the program that is not supported by G code, M code, or logical / numerical operation function. Using the variables and instructions, it can program flexible and complicated forms of operations synchronized with the G / M code.

These operation functions used in the NC program are similar to those used in the motion program but since they are operated directly in the NC program, it is possible to develop programs that can operate the machine more flexibly. In terms of the difference from the operation processed in the motion program, the motion program operates in the fixed cycle mode, while the operation of the NC program is executed through one flow only except that it is specified as the iteration statement.

The motion controller supports the variables available in the NC program as the macro variables. The macro variable replaces the part where the variable is used with its own value. By using the macro variable, you can give flexibility to the machine control through a controller.

1) Variable (#)

```
1-1) Local variable
```

```
#Ni (N = X, D, W, L; i= 1, 2, 3, ...)
#N[Expression]
```

For the variables, # followed by a variable type and a number. Multiple variables are separated by a number after the #. The constraints on using variables are as follows.

- It is possible to use the variable instead of the value following the address.

; Expressed using brackets.

```
Ex.) F[#L103] \rightarrow F100 (when, #L103 = 100) 
Z-[#L110] \rightarrow Z-250 (when, #L110 = 250).
```

- When the variable number is used as the variable

```
Ex.) \#L100 = 105
\#L105 = -500
\#\#L100 ; False expression
```

#[#L100]

- A value exceeding the maximum command value set for each address cannot be specified.

G[#L140]

; Maximum command value OVER.

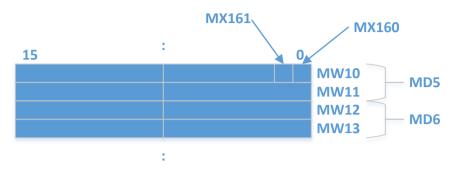
- The value of the variable that is not yet defined is 0

1-2) Global variable

For the global variables, # followed by a device type, M with a variable type and a number. The range of input values available for each variable type is different. The constraints on using variables are the same as the local variable.

1-3) System variable

For the system variables, # followed by a device type, M with a variable type and a number. The range of input values available for each variable type is different. The constraints on using variables are as follows.


- For the system variable, read only.
- 2) Usage according to the range of variables

The range of the variable is limited by the variable's number. It is divided into the local variable, global variable, and system variable according to the range, and the details are as follows.

2-1) Size of each variable

Туре	Size	Remarks
Local variable	4KB	Size per program (10 program)
Global variable(M)	2MB	
System flag(F)	128KB	

2-2) Addressing method according to each data type

Data type	Addressing method
Bit (X)	Addressing the leaner bitwise value from bit 0 after the 'X' indicator
16bit (W)	Addressing the value in word units (16bit) after the 'W' indicator
32bit (D)	Addressing the value in double word units(32bit) after the 'D' indicator
64bit (L)	Addressing the value in long word units(64bit) after the 'L' indicator

2-3) Performing the address range check for each data type

Туре	Local variable	Global variable	System flag
Bit	#X0 ~ #X32767	#MX0 ~ #MX16777215	#FX0 ~ #FX1048575
16bit	#W0 ~ #W2047	#MW0 ~ #MW1048575	#FW0 ~ #FW65535
32bit	#D0 ~ #D1024	#MD0 ~ #MD524287	#FD0 ~ #FD32767
64bit	#L0 ~ #L511	#ML0 ~ #ML262143	#FL0 ~ #FL16383

3) Specifying the Statement Number(N)

N_

N_: Specify the Statement Number

"N" for specifying the Statement Number is the command used in instructions such as IF, GOTO, etc., and displays the corresponding block so that other commands can recognize it. Since the NC program of the motion controller does not memorize the block's line number of each program separately, the "N" command is used for the block to be displayed.

The "N" command can be used with other commands in the block or it can be used alone in one block.

However, the number used for the "N" command must be unique for each program's motion file (.nc file). If there is a duplicated Statement Number, an Error will occur.

The Statement Numbers that can be specified with the "N" command range from 0 to 2147483647. If you use a number exceeding this range, an error is generated. In addition, the number of Statement Numbers that can be specified in one motion program is up to 1000. If the total number of specified Statement Numbers exceeds 1000, an error occurs.

The statement numbers ordered commanded with the "N" do not have to be used in numerical order on the program. That is, the Statement Numbers can be used in random order.

4) Conditional statement (IF)

IF [.....] GOTO N

IF: IF statement

[.....]: IF statement's conditions

GOTO N: Specify the Statement Number to be branched

When the condition following "IF" is met, the conditional statement branches to the block with the Statement Number "N_" specified immediately after it. If the condition is not met, it starts sequentially from the block immediately below.

For the conditions following "IF"in the conditional statement, you can create them by comparing local variables with constants, comparing between local variables, and comparing between constants.

In the condition after the "IF" in the conditional statement, variables and constants used in the condition can be applied up to 2 including variables and constants.

It cannot branch to another motion file (.nc file) or another motion program.

5) Branch instruction (GOTO)

GOTO N_

GOTO: Unconditional branch to the block designated as "N_"

N_: Specify the Statement Number to Jump

The branch instruction is the function to branch unconditionally to the block marked with the Statement Number "N_" that is specified after "GOTO".

It cannot branch to another motion file (.nc file) or to another motion program.

6) Repetitive statement (DO, WHILE)

WHILE [<Conditional expression>] DO n (n = 1, 2, 3, ...)END_n

WHILE: Conditional repetitive statement

DO n: Repeat until n declaration statement

[.....]: Conditional statement

END n: End of the block to be repeated

When the <conditional expression> is met, it repeats from the block following DO n to the END n block. If the <conditional expression> is not satisfied, it jumps to the block following the END n. WHILE [<conditional expression>] can be omitted and If omitted, it repeats infinitely from DO n to END n.

WHILE [<conditional expression>] Do n and END n are always used as a pair, and by the identification number n, the pair is identified. If another loop is selected in the Iteration loop, it is distinguished by the pair of identification factors.

7) Operation command

There are substitution of variables and integers, the four fundamental arithmetic operations, Mathematical operation, etc. for available operations. The types of commands are shown in the table below. When using multiple operations in combination, the priority is given in order of variable, multiplication / division, addition / subtraction. The brackets "[]" are used to set the priority.

Category	Syntax	Remarks
Substitution	#Li = #Lj	
Addition	#Li = #Lj + #Lk	
Subtraction	#Li = #Lj - #Lk	
OR	#Li = #Lj OR #Lk	
XOR	#Li = #Lj XOR #Lk	
Multiplication	#Li = #Lj * #Lk	
Division	#Li = #Lj / #Lk	
AND	#Li = #Lj AND #Lk	
Sin	#Li = SIN[#Lj]	
Cos	#Li = COS[#Lj]	
Tan	#Li = TAN[#Lj]	
Atan	#Li = ATAN[#Lj]	

Category	Syntax	Remarks
Sqrt	#Li = SQRT[#Lj]	
Abs	#Li = ABS[#Lj]	
Round	#Li = ROUND[#Lj]	Round-off operation
And	#Li = AND[#Lj]	
Or	#Li = OR[#Lj]	
Fix	#Li = FIX[#Lj]	Round-down operation
Fup	#Li = FUP[#Lj]	Round-up operation

8) Comment (;, %, ())

%, ;, ()

% : Comment statement : Comment statement () : Comment statement

Description of commands

All characters, expressions and numbers following "%" or ";" are commented out and ignored during the program execution.

"%" is valid in one line only.

The statement between the parentheses "(" and ")" is also treated as a comment.

G90 G00 X100. Y100. Z100. U100. % From here, the whole line is commented out. M02

9) Optional Block Skip

This is used as the command of / at the head of a block. It selects whether to perform the current block through an external signal. / The command should be located in the forefront of the block and can be separated by using a number at the end of the block. For example, you make it with 2 and can set all the blocks set by 2 not to execute later / with the NC_BlockOptionalSkip function block.

Numbers from 1 to 9 can be set later. In other words, you can set with /1 ~ /9. / means /1. The block that is set not to execute remains until skip is released by setting SkipNum to 0 in the NC_BlockOptionalSkip command.

10) Example of using program operation instructions

G90

% % symbol comment description

; Comment description after a colon

#L100=1 % Substitute a constant 1 in the local variable # L100 #L102=3 % Substitute a constant 3 in the local variable # L102

IF [#L100 EQ 1] GOTO N3 % Comparison of conditions using local variables in IF STATEMENT

#L101 = #L100 + #L102% Numerical operation using the local variables

N3 % Specify the Statement Number

G02 X100. Y100. I50. J50.

G01 X[#L102] % Same operation as G01 X3 (since 3 is substituted in # L102)

N150 WHILE [#L100 LE [360.-#L102]] DO 210 % Repeat up to N210 until the condition is met

N200 WHILE [#L101 GE 10.] DO 220 % Repeat up to N220 until the condition is met

G0 Z10.

#L101 = #L101 + 10. (INCREASE) % Equation

% Iteration end for the DO 220 statement **END 220**

#L100 = #L100 + #L102

#L101 = 50.

END 210 % Iteration end for the DO 210 statement

M02

9.4 **NC Parameter**

NC parameter is channel parameter and axis parameter. The each parameter is as follows.

Parameters	Group	No.	Item	Description
1. Channel	1. Basic	1	Target machining quantity	Set the target machining quantity.
parameters	setting			(0 ~ 2,147,483,647)
		2	Target machining quantity	Set the target machining quantity for repeated
			at M99 repeated	machining with M99. If the set value matches the
			machining	current machining quantity, the cycle automatically
				stops.
				(0 ~ 2,147,483,647)
		3	Check of decimal point	Set whether to check decimal point of the NC
				program.
				0: Decimal point check
				(Mm if there is a decimal point, um if there is no
				decimal point)
				1: No decimal point check (mm)
		4	Keep workpiece	Set whether to keep the workpiece coordinate
			coordinate system	system when resetting.
				0: Keep
				1: Do not keep
		5	Whether to call the macro	Set whether to call the macro program (9000.nc ~
			when the T code is	9009.nc) when the T code is commanded.
			commanded	0: Do not call
				1: Call
		6	Dwell method	Set the dwell function (G04) to use the data
				corresponding to X, P as time or the number of
				revolutions of the spindle.
				If the data is set to the number of revolutions of the
				spindle, it is applied in the status of feed per
				revolution (G95).
				0: Time
				1: Number of revolutions

Parameters	Group	No.	Item	Description
1. Channel parameters	Group 1. Basic setting	No. 7	Select a progress block at reset Whether or not to search the Statement Number	Description Set whether to initialize to the start block of the program at reset. If you want to set to 0 (keep the current block), the parameters of "Keep workpiece coordinate system" should be set to 0 (keep). It initialize to the current block Initialize to the start block of the main program In the number of buffers that can store the program's Statement Number (N) is limited to 1,000 in the system. This buffer is needed if the program changes the sequence using a GOTO statement. If more than 1,000 blocks have the N command, an alarm will occur. This parameter is used to input whether or not to execute such Statement Number search.
				Because high- capacity CAM programs do not have GOTO using the Statement Number and in the majority of cases, there are more than 1,000 Statement Numbers, you should set this parameter as 1. 0: Search 1: Do not search
		12	Minimum command unit	When decimal point check is applied, set the minimum unit of the commanded value. (0 ~ 0.999mm)
		18	Whether to use G22 No Travelling Area	0: 'No Travelling Area' is valid. 1: 'No Travelling Area' is invalid.
		19	Set the inner/outer side of G22 No Travelling Area	0: Inner side 1: Outer side

Parameters	Group	No.	Item	Description
1. Channel	1. Basic	20	Whether to use the 3rd	0: 'No Travelling Area' is valid.
parameters	setting		'No Travelling Area'	1: 'No Travelling Area' is invalid.
		22	Rotary axis of Cylindrical	In the cylindrical interpolation mode, the axis maps
			interpolation	the axis of rotation during the circular
				interpolation. The axes are X, Y, Z and perform the
				circular interpolation by mapping the axis of rotation
				to the selected axis.
				For example, if the axis of rotation is mapped to the
				X axis under the state of the XY plane (G17), the
				width becomes the axis of rotation and the height
				becomes Y axis. When ZX (G18) is selected as the
				plane, the width becomes the Z axis and the height
				becomes the axis of rotation. However, if you set the
				plane to YZ (G19), you cannot perform the circular
				interpolation on the commanded axis of rotation.
				0: X-axis,
				1: Y-axis,
				2: Z-axis
		23	Linear axis for	0: Unused
			interpolating the polar	1: X, 2: Y, 3: Z, 4: A, 5: B, 6: C, 7: U, 8: V, 9: W
			coordinate	
		24	Rotary axis for	0: Unused
			interpolating the polar	1: X, 2: Y, 3: Z, 4: A, 5: B, 6: C, 7: U, 8: V, 9: W
			coordinate	
		25	Main spindle axis number	Set the number of an axis to be used as the main
				spindle axis in the NC channel. Set the system that
				does not use the spindle axis to 0. To automatically
				execute spindle commands in the NC function
				module, set it exactly the same as the axis number
				connected to the NC S axis.
				0: Disable
				1 ~ 36: Axis 1 ~ Axis 36
		33	Monitoring time for in-	0 ~ 65,535ms
			position completion	

Parameters	Group	No.	Item	Description
		34	Spindle operation of the	If automatically controlling spindle commands in the
			spindle axis	NC function module, set the methods to handle M/S-
			Methods to handle M/S-	codes related to the spindle operation. When
			codes	executing M/S-code commands, conduct automatic
				control of the spindle axis without M/S-code
				operation completion commands. To execute the
				next block, select '0: Continue automatic operation'.
				If a user wants to automatically control the spindle
				axis after completing to use M/S-code operation
				completion commands, select '1: Operation
				continues after completing commands'.
				0: Automatic operation continues
				1: Operation continues after completing commands
1. Channel	2. Circular	1	Regenerate the circular	Set whether to recreate the central point of the arc
parameters	milling		center when the circular	without generating an arc alarm when the distance
	setting		alarm occurs	between the start point and the end point exceeds
				the tolerance of the difference between the two radii
				under the I, J, K circular commands.
				0: An alarm occurs.
		-	On a different configuration	1: The central point of the arc is regenerated.
		2	Speed-limiting function for	0: Unused
			the circular milling	1: Used
		3	ON/OFF Tolerance of arc radius	Set the tolerance of the difference between the two
		Ü	relevance of are radius	radii at the start point and the end point under the
				circular arc command. If this value is large, the
				accuracy of the end part of the arc may be degraded.
				When set to 0, it is recognized as 0.001.
				(0~ 1 unit, real number)
		5	Circular radius with the	(0 ~ 10,000 unit, real number)
			speed-limiting function for	
			the arc machining	
		6	Upper cutting speed limit	The maximum speed is limited to the set value for
			of the circular milling	the circular arc below "Circular radius with the
				speed-limiting function for the circular milling " .
				(0 ~ 10,000 unit/min, real number)
		7	Lower cutting speed limit	If "Speed-limiting function for the circular milling

Parameters	Group	No.	Item	Description
			of the circular milling	ON/OFF" is set to ON, the cutting speed is limited to
				the set value or more.
				(0 ~ 10,000 unit/min, real number)
		9	Circular milling	Set the acceleration at the circular milling.
			acceleration	
		10	Circular milling deceleration	Set the deceleration at the circular milling.
		11	Circular milling jerk	Set the jerk at the circular milling.
1. Channel parameters	3. Cutting feed setting	1	Set the upper speed limit of the cutting feed	If the cutting speed exceeding the set value is commanded, the cutting speed is limited to the set value and an alarm occurs. (0 ~ 100,000 unit/min, real number)
		2	Set the lower speed limit of the cutting feed	It is applied only when the cutting speed is not commanded in the feed mode per minute.
			A 1 .: /	(0 ~ 100,000 unit/min, real number)
		4	Acceleration /	1: Acceleration / deceleration before interpolation
			deceleration method of	
		7	the interpolation operation Operating method of the	When executing the consecutive blocks, it creates
		,	continuous blocks for	the connecting trajectory that draws an arc on the
			acceleration /	corner of the connecting trajectory with the speed set
			deceleration before	with the next block. 1: When it is set to Buffered, the
			interpolation	circular arc is not inserted.
				1: Buffered
				2: Blending Low
				3: Blending Previous
				4: Blending Next
				5: Blending High
		9	Acceleration at the time of cutting feed (before interpolation)	Acceleration at the time of cutting feed
		10	Deceleration at the time of cutting feed (before interpolation)	Deceleration at the time of cutting feed
		11	Jerk at the time of cutting feed (before interpolation)	Jerk at the time of cutting feed

Parameters	Group	No.	Item	Description
1. Channel	8.Tool	129	How to apply the	Set the method of applying the compensation
parameters	diameter		compensation value of	amount of the tool diameter when compensating
	compensation		the tool diameter	the tool diameter.
				0: Apply the diameter value
				1: Apply the radius value
		130	Compensation type of the	Tool diameter Sets the type of traversing method
			tool diameter	at the beginning and end of the calibration.
				Fype 1 Type 2
				0: Type 1(Bypass traverse)
				1: Type 2(Direct traverse)
		131	Whether to check the tool	Set whether to check the tool interference during
			interference during tool	tool diameter compensation
			diameter compensation	0: Do not check
				1: Check
		1	Compensation amount of	Compensation amount 1 to be used to
			the tool diameter 1	compensate the tool diameter
		128	Compensation amount of	Compensation amount 128 to be used to
			the tool diameter 128	compensate the tool diameter
	9. Tool length	1	Compensation amount 1	Compensation amount 1 to be used to
	compensation		of the tool length	compensate the tool length
		128	Compensation amount	Compensation amount 128 to be used to
			128 of the tool length	compensate the tool length

Parameters	Group	No.	Item	Description
1. Channel	10.	1	Whether to use the	Set whether to use the workpiece coordinate
parameters	Workpiece		workpiece coordinate	system shift amount.
	coordinate		system shift amount.	0: Unused
	system			1: Used
		11	Workpiece coordinate	Set the workpiece coordinate system shift amount
			system shift amount 1	for the X axis.
				Set the workpiece coordinate system shift amount
				for the 7 axes; Y, Z, A, B, C, U, V.
		19	Workpiece coordinate	Set the workpiece coordinate system shift amount
			system shift amount 9	for the W axis.
		41	G54 workpiece coordinate	Set the workpiece coordinate system value for the
			system value 1	X axis.
				Set the G54 workpiece coordinate system values
				for the 7 axes; Y, Z, A, B, C, U, V.
		49	G54 workpiece coordinate	Set the G54 workpiece coordinate system value
			system value 9	for the W axis.
		51	G55 workpiece coordinate	Set the G55workpiece coordinate system value for
			system value 1	the X axis.
				Set the G55 workpiece coordinate system values
				for the 7 axes; Y, Z, A, B, C, U, V.
		59	G55 workpiece coordinate	Set the G55 workpiece coordinate system values
			system value 9	for the W axis.
		61	G56 workpiece coordinate	Sets the G56 workpiece coordinate system values
			system value 1	for the X axis.
				Set the G56 workpiece coordinate system values
				for the 7 axes; Y, Z, A, B, C, U, V
		69	G56 workpiece coordinate	Set the G56 workpiece coordinate system values
			system value 9	for the W axis.
		71	G57 workpiece coordinate	Set the G57 workpiece coordinate system values
			system value 1	for the X axis.
				Sets the G57 workpiece coordinate system values
				for the 7 axes; Y, Z, A, B, C, U, V

Parameters	Group	No.	Item	Description
1. Channel	10.	79	G57 workpiece coordinate	Set the G57 workpiece coordinate system values
parameters	Workpiece		system value 9	for the W axis.
	coordinate	81	G58 workpiece coordinate	Set the G58 workpiece coordinate system values
	system		system value 1	for the X axis.
				Set the G58 workpiece coordinate system values for the 7 axes; Y, Z, A, B, C, U, V
		89	G58 workpiece coordinate	Set the G58 workpiece coordinate system values
		09	system value 9	for the W axis.
		91		
		91	G59 workpiece coordinate	Set the G59 workpiece coordinate system values
			system value 1	for the X axis.
				Set the G59 workpiece coordinate system values
				for the 7 axes; Y, Z, A, B, C, U, V
		99	G59 workpiece coordinate	Set the G59 workpiece coordinate system values
			system value 9	for the W axis.
	11. Macro	1	Whether to apply the single	Set whether to apply the single block stop function
	program		block stop function to the	to the macro program(9000.nc ~ 9999.nc)
			macro program	0: Stop
		_		1: Do not stop
		2	Display the macro program	Set whether to display the progress status of the
			block	block on the screen when operating the macro
				program (9000.nc ~ 9999.nc).
				0: Do not display
				1: Display
		9	T code call Macro program	Enter the number of the macro program (9000.nc
			number	~ 9009.nc) to be called when the T code is
				commanded.
				(9000 ~ 9009, integer)
		10	Macro program call G code	Set the G code number to call the macro program
			(9010.nc)	(9010.nc ~ 9019.nc) that can be called by the G
				code.
				X The setting values 0, 1, 2, 3 are ignored.
				(0~255.9, real number)

Parameters	Group	No.	Item	Description
1. Channel	11. Macro	19	Macro program call G	Set the G code number to call the macro program
parameters	program		code (9019.nc)	(9010.nc ~ 9019.nc) that can be called by the G code.
				* The setting values 0, 1, 2, 3 are ignored.
				(0~255.9, real number)
		20	Macro program call M	Assign the M code number to call the macro program
			code (9020.nc)	(9020.nc ~ (9020.nc ~ 9029.nc) with the M code.
				※ 0, 30 of the input values are ignored.
				(0~255, integer)
				It can be used only in the main program, and when
				used in the subprogram, it operates with the general M
				code.
		29	Macro program call M	Assign the M code number to call the macro program
			code (9029.nc)	(9020.nc ~ (9020.nc ~ 9029.nc) with the M code.
				※ 0, 30 of the input values are ignored.
				(0~255, integer)
				It can be used only in the main program, and when
				used in the subprogram, it operates with the general M
				code.
	14. Default	1	Modal traverse of	If there is no G00 or G01, select the G code to be
	setting		default settings	applied as the default modal.
				0: Rapid Traverse(G00)
				1: Cutting Feed(G01)
		2	Modal plane of default	If there is no G code instruction for G17, G18, G19
			settings	group, select the G code to be applied as the default
				modal.
				0: XY plane(G17)
				1: XZ plane(G18)
				2: YZ plane(G19)
		3	Modal absolute /	If there is no G code instruction for G90, G91 group,
			increment with default	select the G code to be applied as the default modal.
			settings	0: Absolute command (G90)
				1: Incremental command (G91)
		5	Check the modal	If there is no G code instruction for G22, G23 group,
			prohibited area with	select the G code to be applied as the default modal.
			default settings	0: Stroke On(G22)
				1: Stroke Off(G23)

Parameters	Group	No.	Item	Description
1. Channel	15. Spindle	4	A reference axis when	Set the reference axis that operates in
parameters	setting		controlling constant	connection with a spindle when controlling
			surface speed	constant surface speed.
				0: Disable
				1: X, 2: Y, 3: Z, 4: A, 5: B, 6: C, 7: U, 8: V, 9: W
		5	The maximum number of	Set the maximum number of spindle rotation
			spindle rotation when	when controlling constant surface speed.
			controlling constant	When being commanded by the S code of G92
			surface speed	(set the maximum speed of the master axis),
				the S code data is saved as this parameter
				value.
				(0 ~ 100,000, real number)
		6	The minimum number of	Set the minimum number of spindle rotation
			spindle rotation when	when controlling constant surface speed.
			controlling constant	(0 ~ 100,000, real number)
			surface speed	
	16. Relative	1	Relative coordinate's	Set the relative coordinate's offset value for the
	coordinate		offset value #1	X axis.
	setting	2	Relative coordinate's	Set the relative coordinate's offset value for the
			offset value #2	Y axis.
		3	Relative coordinate's	Set the relative coordinate's offset value for the
			offset value #3	Z axis.
		4	Relative coordinate's	Set the relative coordinate's offset value for the
			offset value #4	A axis.
		5	Relative coordinate's	Set the relative coordinate's offset value for the
			offset value #5	B axis.
		6	Relative coordinate's	Set the relative coordinate's offset value for the
			offset value #6	C axis.
		7	Relative coordinate's	Set the relative coordinate's offset value for the
			offset value #7	U axis.
		8	Relative coordinate's	Set the relative coordinate's offset value for the
			offset value #8	V axis.
		9	Relative coordinate's	Set the relative coordinate's offset value for the
			offset value #9	W axis.

Parameters	Group	No.	Item	Description
2.Channel/Axis	1. Axis	2	Setting the direction for	Set the traverse command for the axis set as
parameters	setting		the modular axis	the modular axis.
				0: Unidirectional
				1: Bidirectional
	2. Origin	1	Coordinates of the 2nd	Set the coordinates of the 2nd origin.
			origin	
		2	Coordinates of the 3rd	Set the coordinates of the 3rd origin.
			origin	
		3	Coordinates of the 4th	Set the coordinates of the 4th origin.
			origin	
	3. Rapid	2	Rapid traverse	The set value is used as the acceleration of the
	traverse		acceleration	G00 block.
		3	Rapid traverse	The set value is used as the deceleration of the
			deceleration	G00 block.
		4	Rapid traverse jerk	The set value is used as the jerk of the G00
				block.
	3. Rapid	5	Rapid traverse speed	The set value is used as the traverse speed of
	traverse			the G00 block.
				(0~100000 unit/min, real number)
	4. Traverse	1	Minimum value of the	Set the minimum value of the G22 Traverse-
	area		G22 Traverse-Prohibited	Prohibited Area range for the X, Y, and Z axis.
			Area range for the X, Y,	(-100,000~100,000 unit, real number)
			and Z axis.	
		2	Maximum value of the	Set the maximum value of the G22 Traverse-
			G22 Traverse-Prohibited	Prohibited Area range for the X, Y, and Z axis.
			Area range for the X, Y,	(-100,000~100,000 unit, real number)
			and Z axis.	
		3	Minimum value of the 3 rd	Set the minimum value of the 3 rd Traverse-
			Traverse-Prohibited	Prohibited Area range for the X, Y, and Z axis.
			Area range for the X, Y,	(-100,000~100,000 unit, real number)
			and Z axis.	
		4	Maximum value of the	Set the maximum value of the 3 rd Traverse-
			3 rd Traverse-Prohibited	Prohibited Area range for the X, Y, and Z axis.
			Area range for the X, Y,	(-100,000~100,000 unit, real number)
			and Z axis.	
	5. Sub setting	2	Overrun feed rare of	Set the overrun feed rate of the 9 axes; X, Y, Z,
			single direction	A, B, C, U, V, W when using the single direction

Parameters	Group	No.	Item	Description
			positioning	positioning function (G60).
				After stopping at the position separated by the
				set value for the G60 command block's axis, it
				moves to the command position to eliminate
				the effect of backlash.
				+0
				-0
				(-100 ~ 100 unit, real number)

9.5 Spindle Function

A spindle is a rotating axis that is used to equip a work-piece or a cutting tool in machine tools. The NC control of a motion controller provides methods to control the spindle axis and various operation functions.

9.5.1 Spindle Device

This part explains basic settings to use the spindle axis and spindle devices supported to control the spindle axis in the NC control of a motion controller.

(1) Supported Devices

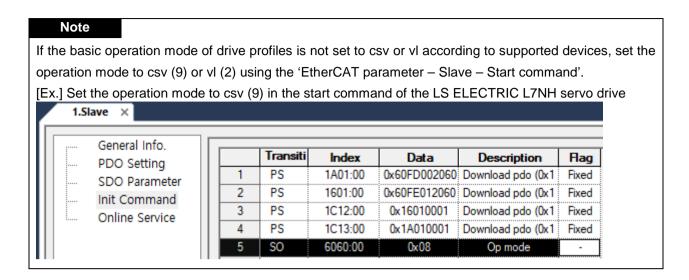
The spindle axis in the NC control of a motion controller can set only by the slave connected by EtherCAT. Kinds of EtherCAT slaves that can be connected by the spindle axis are as follows:

1) EtherCAT servo drive

To connect with the NC spindle axis, the EtherCAT servo drive should support the csv (cyclic synchronous position) mode among operation modes of the CiA402 drive profile.

To operate the csv operation mode, the following objects should be registered with the EtherCAT PDO setting.

Туре	Index	Parameter name
TDD0	0x6041:0	Status word
TxPDO	0x606C:0	Torque actual value
D DD0	0x6040:0	Control word
RxPDO	0x60FF:0	Target velocity

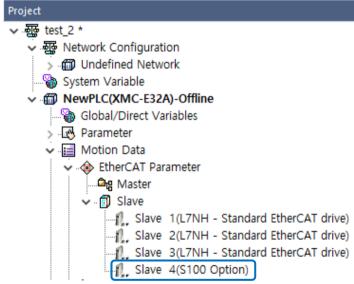

^{**} The position actual value (0x6064:0) object can be used instead of the velocity actual value (0x606C:0) object.

2) EtherCAT inverter

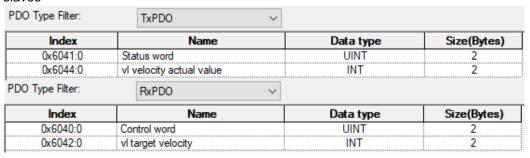
To connect with the NC spindle axis, the EtherCAT inverter should support the vI (velocity, frequency converter) mode among operation modes of the CiA402 drive profile.

To operate the vI operation mode, the following objects should be registered with the EtherCAT PDO setting.

Туре	Index	Parameter name
T. DDO	0x6041:0	Status word
TxPDO	0x6044:0	vl velocity actual value
D DD0	0x6040:0	Control word
RxPDO	0x6042:0	vl target velocity

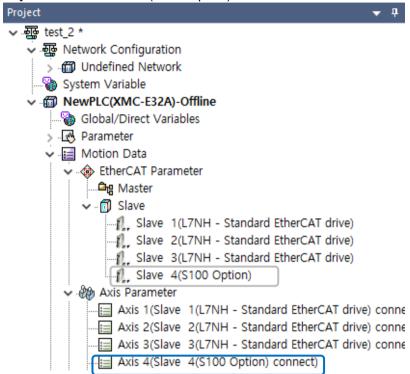


(2) How to set the spindle axis


To use the spindle axis in the NC control, set motion data in the following order:

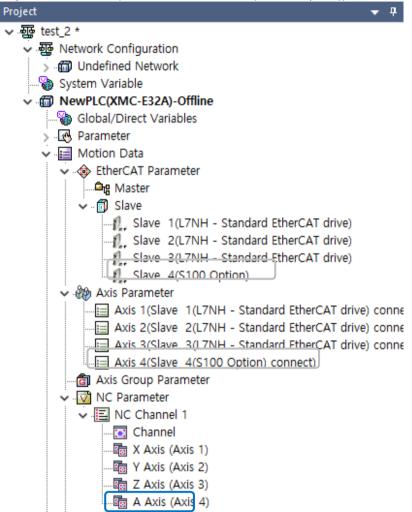
[Ex.] Register the LS ELECTRIC S100 inverter as the EtherCAT 'slave 4'

1) EtherCAT parameter - Slave registration Register the EtherCAT device to be used as the spindle axis with 'EtherCAT parameter - Slave'.


Confirm if essential objects for the vI operation mode is registered by confirming the PDO setting of slaves

2) Axis - Connect the EtherCAT slave

Connect the EtherCAT device to be used as the spindle axis to the axis of the axis parameter.


[Ex.] Connect the slave 4 (S100 Option) to 'Axis 4'

3) NC channel/Axis - Connection of an axis

Connect the axis to be used as the spindle axis among axes registered with the axis parameter to NC channel 1/S axis, or spindle axis.

[Ex.] Connect Axis 4 (connection of Slave 4 (S1000 Option)) to the NC S axis

4) NC channel parameter - Set how to operate the spindle axis Set how to handle the spindle M/S-code of the spindle axis and the main spindle axis number according to how to operate the spindle axis.

[Ex.] Set 'Axis 4' connected to the NC channel 1 / S axis to the 'main spindle axis number'

Group	Name	Channel 1
	Spindle Operation of Spindle Axis M/S-code	0: Automatic 1: After Command Execution
Basic Settings	Minimum command unit	0 mm
Dasic Settings	Whether to use G22 [No traveling area]	0: Used
	Inner/Outer side of G22 [No traveling area]	0: Inner side
	Whether to use the 3rd [No traveling area]	0: Used
	Reverse driving buffer size	0
	Rotary axis of cylindrical interpolation	0: X Axis
	Linear axis for interpolating the polar coordinate	0: None
	Rotary axis for interpolating the polar coordinate	0: None
	Main spindle axis number	0:Disabled
	Monitoring time for in-position completion	5000 ms

9.5.2 How to Operate the Spindle Axis

Users can set how to operate the spindle axis in the NC control of a motion controller. The spindle axis that is set to the main spindle axis number according to values of the M-code and S-code can be automatically operated or users can control the spindle axis directly using motion commands after the NC function module confirms the values of the M-code and S-code in a task program.

(1) Automatic operation in the NC function module

1) Operation

If the block where the spindle-related M-code (M03, M04, M05, M19) and S-code are used in the NC program is executed, the spindle axis set to the main spindle axis number is automatically operated in the NC function module. Users do not need to control the spindle axis by separately confirming the values of the M-code or S-code in a task program.

They can select how to continue operation when the block where the spindle-related M-code (M03, M04, M05, M19) and S-code are used is executed according to 'How to handle the spindle operation M/S-code of the spindle axis' of the NC channel parameter.

(a) 0: Automatic operation continues

- a) If the block where the spindle-related M-code (M03, M04, M05, M19) and S-code are used is executed, the relevant spindle operation is automatically executed.
- b) The 'NC Channel 01 M Code Output Strobe Signal' (_NC01_McodeStrobe) is not generated.
- c) Users can confirm the M-code data with the 'NC Channel 01 M Code Data Output' (NC01 McodeData).
- d) The 'NC channel 01 S Output Strobe Signal' (_NC01_ScodeStrobe) is not generated.
- e) Users can confirm the S-code data with the 'NC Channel 01 S Code Data Output' (_NC01_ScodeData).

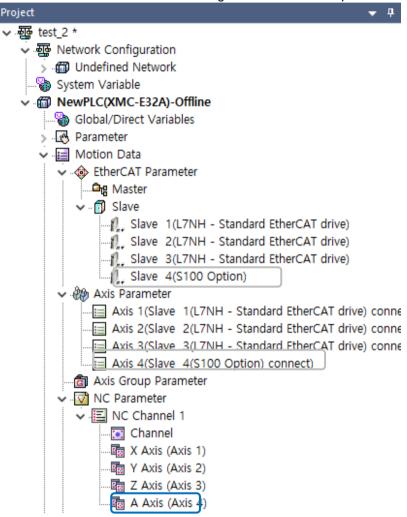
(b) 1: Operation continues after completion'

- a) If the block where the spindle-related M-code (M03, M04, M05, M19) is used is executed, the relevant block stops automatic operation of the NC program until the 'M Code Operation Completion' (NC_McodeComplete) command is executed.
- b) If the 'M Code Operation Completion' (NC McodeComplete) command is executed, the spindle operation corresponding to the spindle-related M-code is automatically executed in the NC function module and the program of the next block conducts automatic operation.
- c) If the block where the S-code is used is executed, the relevant block stops automatic operation of the NC program until the 'S Code Operation Completion' (NC_ScodeComplete) command is executed.
- d) If the 'S Code Operation Completion' (NC_ScodeComplete) command is executed, the spindle operation corresponding to the S-code is automatically executed in the NC function module and the program of the next block is automatically operated.
- e) Users can confirm that the M-code is executed with the 'NC Channel 01 M Code Output Strobe Signal' (_NC01_McodeStrobe). They also can confirm the M-code data with the 'NC Channel 01 M Code Data Output' (_NC01_McodeData).
- Users can confirm that the M-code is executed with the 'NC Channel 01 S Code Output Strobe Signal' (_NC01_ScodeStrobe). They also can confirm the S-code data with the 'NC Channel 01 S Code Data Output' (NC01 ScodeData).

Chapter9 NC Control Function

(c) Flag

Program	Variable/Device	Туре	Device/Variable	Comment
<global></global>	%FW32840	WORD	_NC01_MainSpindle	Check NC channel 01 main spindle axis number
<global></global>	%FX526080	BOOL	_NC01_McodeStrobe	NC Ch. 01 M code output strobe signal
<global></global>	%FD16441	DWORD	_NC01_McodeData	NC Ch. 01 M code data output
<global></global>	%FX526144	BOOL	_NC01_ScodeStrobe	NC Ch. 01 S code output strobe signal
<global></global>	%FD16443	DWORD	_NC01_ScodeData	NC Ch. 01 S code data output


^{*} If the NC spindle axis conducts automatic operation in the NC function module, users can confirm the number of the axis set as the main spindle axis in the NC Channel 01 Main Spindle Axis' (_NC01_MainSpindle) flag.

2) Parameter setting

To conduct automatic operation of the spindle axis in the NC function module, parameters should be set as follows:

(a) NC parameter

The NC channel / S axis should be registered with the NC parameter.

(b) NC channel parameter - Main spindle axis number

The number of axes connected to the NC channel / S axis should be set identically to the 'main spindle axis number'.

Group	Name	Channel 1
	Spindle Operation of Spindle Axis M/S-code	0: Automatic 1: After Command Execution
Basic Settings	Minimum command unit	0 mm
Dasic Settings	Whether to use G22 [No traveling area]	0: Used
	Inner/Outer side of G22 [No traveling area]	0: Inner side
	Whether to use the 3rd [No traveling area]	0: Used
	Reverse driving buffer size	0
	Rotary axis of cylindrical interpolation	0: X Axis
	Linear axis for interpolating the polar coordinate	0: None
	Rotary axis for interpolating the polar coordinate	0: None
	Main spindle axis number	0:Disabled
	Monitoring time for in-position completion	5000 ms

(2) User operation in a task program

1) Operation

If the block where the spindle-related M-code (M03, M04, M05, M19) and S-code are used in the NC program, users can control the spindle axis by separately confirming the values of the M-code or S-code in a task program.

(a) Treatment order

- a) If the block where the M-code (M03, M04, M05, M19) and S-code are used in the NC program, the relevant block stops automatic operation of the NC program.
- b) Users can confirm that the M-code is executed with the 'NC Channel 01 M Code Output Strobe Signal' (_NC01_McodeStrobe) in a task program. They also can learn what spindle operation is executed by confirming the M-code data with the 'NC Channel 01 M Code Data Output' (NC01 McodeData).
- c) Conduct the spindle axis operation corresponding to the M-code value by confirming the 'NC Channel 01 M Code Data Output' (_NC01_McodeData) value.
 - [Ex.] When executing the 'M03 S3000' block in the NC program
 - As 3 is saved in the 'NC Channel 01 M Code Data Output' (_NC01_McodeData) and 3000 is saved in the 'NC Channel 01 S Code Data Output' (_NC01_ScodeData), write a program to operate the spindle axis at 3000 rpm by using the LS_SyncMoveVelocity command after confirming the values.
 - [Ex.] When executing the 'M05' block in the NC program
 - As 5 is saved in the 'NC Channel 01 M Code Data Output' (_NC01_McodeData), write a program to stop the spindle axis by using the MC_Halt or MC_Stop commands after confirming the values.
- d) After executing operation of the spindle axis corresponding to the M-code or S-code, execute the 'S Code Operation Completion' (NC_McodeComplete) command to automatically operate the next block program.

(b) Flag

Variable/Device	Туре	Device/Variable	Comment
%FW32840	WORD	_NC01_MainSpindle	Check NC channel 01 main spindle axis number
%FX526080	BOOL	_NC01_McodeStrobe	NC Ch. 01 M code output strobe signal
%FD16441	DWORD	_NC01_McodeData	NC Ch. 01 M code data output
%FX526144	BOOL	_NC01_ScodeStrobe	NC Ch. 01 S code output strobe signal
%FD16443	DWORD	_NC01_ScodeData	NC Ch. 01 S code data output

^{*} The value of the 'NC Channel 01 Confirm the Main spindle axis number' (_NC01_MainSpindle) flag becomes 0.

2) Parameter setting

In order that users directly control the spindle axis in a task program, not to conduct its automatic operation in the NC function module, parameters should be set as follows:

(a) NC channel parameter - Main spindle axis number Set the 'main spindle axis number' to '0: Disable'.

NC Channel parameter ×				
Group	Name	Channel 1		
Basic Settings	Minimum command unit	0 mm		
Dasic octtings	Whether to use G22 [No traveling area]	0: Used		
	Inner/Outer side of G22 [No traveling a	0: Inner side		
	Whether to use the 3rd [No traveling ar	0: Used		
	Reverse driving buffer size	0		
	Rotary axis of cylindrical interpolation	0: X Axis		
	Linear axis for interpolating the polar coordinate	0: None		
	Rotary axis for interpolating the polar coordinate	0: None		
	Main spindle axis number	0:Disabled		
	Monitoring time for in-position completi	5000 ms		

9.5.3 **Spindle-related Parameters**

If controlling the spindle axis in the NC control of a motion controller, explain the relevant parameter.

(1) Axis parameter

Item	Description	Setting range	Initial value
Backlash compensation value	Set the value to compensate backlash of machine.	0 or Long real (LREAL)	0 [Unit]
Select the Spindle Encoder	Set the method that an encoder attached to a motor of the spindle axis is connected.	positive number 0: Disable 1: Motor ENC 2: Built-in ENC1 3: Built-in ENC2 4: EtherCAT ENC	0
Number of pulses per rotation of the spindle EtherCAT encoder	If the 'spindle encoder selection' parameter setting value is '4: EtherCAT ENC', set number of pulses per rotation of an encoder.	1 ~ 4294967295	8192 pls
Spindle EtherCAT encoder position variable/address	If the 'spindle encoder selection' parameter setting value is '4: EtherCAT ENC', set the device where the current position of the encoder is saved.	%ID0 ~ %ID4095 %MD0 ~ %MD524287	%ID0
The P Gain of the Spindle Positioning Mode	Set the P gain value that the spindle axis uses when controlling position.	1~ 500 Hz	30 Hz
The Feed Forward Gain of the Spindle Positioning Mode	Set the feed forward gain value that the spindle axis uses when controlling position.	0~ 100 %	0 %
How to conduct the homing operation	Set the homing operation method when executing the NC_Home command to the spindle axis.	0: Servo drive supported 33: Reverse direction, Z phase 34: Forward direction, Z phase 35: Set the homing of the current position	0
Switch navigation speed of the homing operation	Set the operated speed to detect switch signals after starting the homing operation.	Long real (LREAL)	60 rpm
Zero navigation speed of the homing operation	Set the operated speed to detect zero signals after starting the homing operation.	positive number	12 rpm
Acceleration/deceleration of the homing operation	Set acceleration/deceleration to accelerate and decelerate to the target speed after starting the homing operation.	0 or Long real (LREAL) positive number	1000
Z phase variable/address	Set the device where the Z phase signal used as the Zero signal of the homing operation is saved.	%IX0 ~ %IX131072 %MX0 ~ %MX16777215	%IX0
Orientation velocity	When the M19 Orientation command is	Long real (LREAL)	60 rpm

	executed on the NC program, set the	positive number	
Orientation direction	Orientation position (offset) and velocity, and	0: Forward direction, 1:	0: Forward
	the traveling direction.	Reverse direction	direction
Orientation offset		0 ~ 360	0
The tolerance range to reach the spindle rotation command speed	Determine whether to reach the command speed of the spindle axis by the set value.	0~ 100 %	95 %
The tolerance RPM to reach the spindle rotation zero speed	Determine whether to reach the zero speed of the spindle axis by the set value.	0~ 100 rpm	5 rpm

(2) Channel parameter

(2) Channel param	Number	Item		Description
Group				Description
Basic setting	25	Main spindle a	axis	Set the number of an axis to be used as the main spindle
		number		axis in the NC channel. Set the system that does not use
				the spindle axis to 0. To automatically control spindle
				commands in the NC function module, set it exactly the
				same as the axis number connected to the NC S axis.
				0: Disable
				1 ~ 36: Axis 1 ~ Axis 36
	34	The spindle operation	n of	If automatically controlling spindle commands in the NC
		the spindle axis. How	w to	function module, set the methods to handle M/S-codes
		treat M/S-code		related to the spindle operation. When executing M/S-code
				commands, conduct automatic control of the spindle axis
				without M/S-code operation completion commands. To
				execute the next block, select '0: Continue automatic
				operation'. If a user wants to automatically control the
				spindle axis after completing to use M/S-code operation
				completion commands, select '1: Operation continues after
				completing commands'.
				0: Automatic operation continues
				1: Operation continues after completing commands

Chapter9 NC Control Function

(3) Channel / S axis parameter

Group	Number	Item	Description
3. Rapid traverse	2	Rapid traverse	When the block where the spindle-related M-code (M03,
		acceleration	M04, M05, M19) and S-code used in the NC program is
	3	Rapid traverse	executed, it is used as acceleration, deceleration and jerk
		deceleration	values.
	4	Rapid traverse jerk	

9.5.4 Spindle Operation Function

Users can set how to operate the spindle axis in the NC control of a motion controller. If the spindle axis that is set to the main spindle axis number according to values of the M-code and S-code is automatically operated in the NC function module, explain the spindle operation function.

(1) Forward operation

1) Operation

When executing the M03 block in the NC program, the spindle axis is operated forward at the speed set in the S-code.

Conduct operation up to the target speed using 'rapid traverse acceleration/deceleration/jerk' of channels / S axis parameters.

After starting the M03 forward operation, the program of the next block is automatically operated.

2) Status

After starting the M03 forward operation, the flag value is set as follows:

Variable	Description	Value
_NC01_TVelOfSpindle	NC channel 01 target speed of the spindle (S command value)	Designated values of S-code in a program
_NC01_CVelOfSpindle	NC channel 01 Spindle Command Velocity	Values of the current command velocity of the spindle
_NC01_SpindleStop	NC channel 01 Signal to confirm spindle stop status	Off
_NC01_SpindleCW	NC channel 01 Signal to confirm CW status	On
_NC01_SpindleCCW	NC channel 01 Signal to confirm spindle CCW status	Off
_NC01_SpindleCVelAgr	NC channel 01 Signal to confirm the status of reaching Spindle Command Velocity	After reaching the target velocity, turn On
_NC01_SpindleZeroVel	NC channel 01 Signal to confirm the status of reaching zero velocity of the spindle	Off
_NC01S_ForwardRun	NC channel 01 Traversing axes toward the axis S +	On
_NC01S_ReverseRun	NC channel 01 Traversing axes toward the axis S -	Off
_NC01S_SpindleRun	NC channel 01 Axis S spindle operation	On

(2) Reverse operation

1) Operation

When executing the M04 block in the NC program, the spindle axis is operated in reverse at the speed set in the S-code.

Conduct operation up to the target speed using 'rapid traverse acceleration/deceleration/jerk' of channels / S axis parameters.

After starting the M04 reverse operation, the program of the next block is automatically operated.

2) Status

After starting the M04 reverse operation, the flag value changes as follows:

Variable	Description	Value	
NC01 TVolOfSpindle	NC channel 01 target speed of the spindle (S	Designated values of S-code	
_NC01_TVelOfSpindle	command value)	in a program	
		Values of the current	
_NC01_CVelOfSpindle	NC channel 01 Spindle Command Velocity	command velocity of the	
		spindle	
NOO4 October	NC channel 01 Signal to confirm spindle stop	0"	
_NC01_SpindleStop	status	Off	
_NC01_SpindleCW	NC channel 01 Signal to confirm CW status	Off	
NICO4 Cmimalla COM	NC channel 01 Signal to confirm spindle CCW	0	
_NC01_SpindleCCW	status	On	
NCO1 CrindleCValAgr	NC channel 01 Signal to confirm the status of	After reaching the target	
_NC01_SpindleCVelAgr	reaching spindle command velocity	velocity, turn On	
_NC01_SpindleZeroVel	NC channel 01 Signal to confirm the status of	Off	
_NC01_SpirialeZerover	reaching zero velocity of the spindle	Oll	
_NC01S_ForwardRun	NC channel 01 Traversing axes toward the axis	Off	
_NC015_1 of wardixuff	S+	Oll	
NC01S PayersaPus	NC channel 01 Traversing axes toward the axis	On	
_NC01S_ReverseRun	S-	OII	
_NC01S_SpindleRun	NC channel 01 Axis S spindle operation	On	

(3) Stop

1) Operation

If executing the M05 block in the NC program, when operating the spindle axis, stop the spindle axis. Conduct operation using 'rapid traverse acceleration/deceleration/jerk' of channels / S axis parameters to stop the spindle axis.

After starting the M05 stop operation, the program of the next block is automatically operated.

After starting the M05 stop operation, the flag value changes as follows:

Variable	Description	Value
NC01 TVolOfSpindle	NC channel 01 target speed of the spindle (S	Designated values of S-code
_NC01_TVelOfSpindle	command value)	in a program
		Values of the current
_NC01_CVelOfSpindle	NC channel 01 Spindle Command Velocity	command velocity of the
		spindle
NC01 SpindleStep	NC channel 01 Signal to confirm spindle stop	Turn On when stopping
_NC01_SpindleStop	status	Turn On when stopping
NC01 SpindloCW	NC shannel 01 Signal to confirm CW status	Turn Off when stopping after
_NC01_SpindleCW	NC channel 01 Signal to confirm CW status	keeping the previous status
NCO1 SpindleCOW	NC channel 01 Signal to confirm spindle CCW	Turn Off when stopping after
_NC01_SpindleCCW	status	keeping the previous status
NCO4 Crindle CValAgr	NC channel 01 Signal to confirm the status of	0#
_NC01_SpindleCVelAgr	reaching spindle command velocity	Off
NC01 Chindle Zero Vol	NC channel 01 Signal to confirm the status of	Turn On when stepping
_NC01_SpindleZeroVel	reaching zero velocity of the spindle	Turn On when stopping
NC018 ForwardBire	NC channel 01 Traversing axes toward the axis	Turn Off when stopping after
_NC01S_ForwardRun	S+	keeping the previous status
NC04C Dayaraa Daya	NC channel 01 Traversing axes toward the axis	Turn Off when stopping after
_NC01S_ReverseRun	S-	keeping the previous status

(4) Speed change

1) Operation

When executing the S-code block during execution of M03 or M04 in the NC program, the current operating speed changes to the value of velocity set to S.

Conduct operation using 'rapid traverse acceleration/deceleration/jerk' of channels / S axis parameters to change velocity of the spindle axis.

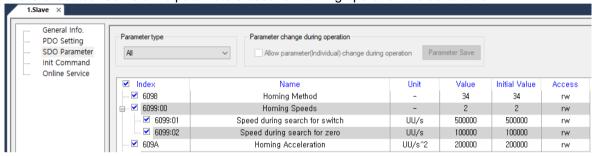
After starting the S-code velocity change operation, the program of the next block is automatically operated.

2) Status

After starting the M05 stop operation, the flag value changes as follows:

Variable	Description	Value
NC01 TVolOfSpindle	NC channel 01 target speed of the spindle (S	Designated values of S-code
_NC01_TVelOfSpindle	command value)	in a program
_NC01_CVelOfSpindle	NC channel 01 Spindle Command Velocity	Values of the current command velocity of the spindle
_NC01_ScodeData	NC channel 01 S Code Data output	Designated values of S-code in a program
_NC01_SpindleCW	NC channel 01 Signal to confirm CW status	Keep the previous status
_NC01_SpindleCCW	NC channel 01 Signal to confirm spindle CCW status	Keep the previous status
_NC01_SpindleCVelAgr	NC channel 01 Signal to confirm the status of reaching spindle command velocity	After reaching the target velocity, turn On
_NC01_SpindleZeroVel	NC channel 01 Signal to confirm the status of reaching zero velocity of the spindle	Off
_NC01S_ForwardRun	NC channel 01 Traversing axes toward the axis S+	Keep the previous status
_NC01S_ReverseRun	NC channel 01 Traversing axes toward the axis S -	Keep the previous status

(5) Homing operation


1) Operation

When executing commands by setting the NcAxis input of the NC_Home command to 10 (S axis) and the ReferenceNum input to '1: The 1st homing', execute the homing operation of the spindle axis according to the method set in the 'method for homing operation' of the axis parameter when executing commands.

Axis parameter - Operation according to the 'method for homing operation' is as follows:

(a) 0: Servo drive supported

If the axis connected to the spindle axis is a servo drive, the homing operation supported by the servo drive is executed. Servo drive parameters used for homing operation are as follows:

(b) 33: Reverse direction, Z phase

Set the Z phase position as the homing after executing the homing operation on the NC function module of a motion controller and starting reverse operation.

Operation after executing the NC_Home command is as follows:

- a) The 'NC Channel 01 Axis S Homing Completion' (_NC01S_HomeCmpl) flag turns Off.
- b) Start reverse operation at the 'Zero navigation speed of the homing operation' and 'Acceleration/deceleration of the homing operation'.
- c) Stop acceleration if detecting the Z phase (the device set to 'Z phase variable/address' turns On).
- d) Start forward operation at the 'Zero navigation speed of the homing operation' and 'Acceleration/deceleration of the homing operation'.
- e) Stop at the location where the Z phase is detected.
- f) The 'NC Channel 01 Axis S Homing Completion' (_NC01S_HomeCmpl) flag turns On.
- g) The value of the 'NC channel 01 Axis S Command position in the Work-piece Coordinate system' (_NC01S_CmdPosInWC) is set to 0.

(c) 34: Forward direction, Z phase

Set the Z phase position as the homing after executing the homing operation on the NC function module of a motion controller and starting forward operation.

Operation after executing the NC_Home command is as follows:

- a) The 'NC Channel 01 Axis S Homing Completion' (NC01S HomeCmpl) flag turns Off.
- b) Start forward operation at the 'Zero navigation speed of the homing operation' and 'Acceleration/deceleration of the homing operation'.
- c) Stop acceleration if detecting the Z phase (the device set to 'Z phase variable/address' turns On).
- d) Start reverse operation at the 'Zero navigation speed of the homing operation' and 'Acceleration/deceleration of the homing operation'.
- e) Stop at the location where the Z phase is detected.
- f) The 'NC Channel 01 Axis S Homing Completion' (_NC01S_HomeCmpl) flag turns On.

- g) The value of the 'NC channel 01 Axis S Command position in Work-piece Coordinate system' (_NC01S_CmdPosInWC) is set to 0.
- (d) 35: Set the homing of the current position

The current position of the spindle axis becomes a reference position.

After executing the NC_Home command, the 'NC channel 01 Axis S Homing completion' (_NC01S_HomeCmpl) flag turns On and the value of the 'NC channel 01 Axis S Command position in the Work-piece Coordinate system' (_NC01S_CmdPosInWC) is set to 0.

2) Parameter setting

Parameters related to homing operation of the spindle axis are as follows:

Item	Description	Setting range
		1: Motor ENC
Soloot the Spindle Encoder	Set the method that an encoder attached to a	2: Built-in ENC1
Select the Spindle Encoder	motor of the spindle axis is connected.	3: Built-in ENC2
		4: EtherCAT ENC
Number of pulses per rotation	If the 'spindle encoder selection' parameter	
of the spindle EtherCAT	setting value is '4: EtherCAT ENC', set	1 ~ 4294967295
encoder	number of pulses per rotation of an encoder.	
	If the 'spindle encoder selection' parameter	
Spindle EtherCAT encoder	setting value is '4: EtherCAT ENC', set the	%ID0 ~ %ID4095
position variable/address	device where the current position of the	%MD0 ~ %MD524287
	encoder is saved.	
		0: Servo drive supported
		33: Reverse direction, Z
How to conduct the homing	Set the homing operation method when	phase
operation	executing the NC_Home command to the	34: Forward direction, Z
operation	spindle axis.	phase
		35: Set the homing of the
		current position
Switch navigation speed of	Set the operated speed to detect switch	
the homing operation	signals after starting the homing operation.	Long real (LREAL)
Zero navigation speed of the	Set the operated speed to detect zero signals	positive number
homing operation	after starting the homing operation.	
Acceleration/deceleration of	Set acceleration/deceleration to accelerate	0 or
	and decelerate to the target speed after	Long real (LREAL)
the homing operation	starting the homing operation.	positive number
	Set the device where Z phase signal used as	%IX0 ~ %IX131072
Z phase variable/address	the Zero signal of the homing operation is	%MX0 ~ %MX16777215
	saved.	701VIAU ~ 701VIA 10777213

If the 'spindle encoder selection' parameter is '0: Disable', the homing operation cannot be executed. If satisfying the following conditions according to the 'spindle encoder selection' parameter, homing operation can be normally executed.

(a) '1: Motor ENC'

The position actual value (0x6064:0) object should be set in the setting of the EtherCAT Slave TxPDO.

- (b) '2: Built-in ENC1'
 - a) Unit of Encoder 1 = 0: pulse
 - b) Max. value of Encoder 1 = 2147483647 pls
 - c) Min. value of Encoder 1 = -2147483648 pls
- (c) '3: Built-in ENC2'
 - a) Unit of Encoder 2 = 0: pulse
 - b) Max. value of Encoder 2 = 2147483647 pls
 - c) Min. value of Encoder 2 = -2147483648 pls
- (d) '4: EtherCAT ENC'

The 'Number of pulses per rotation of the spindle EtherCAT encoder' and the 'Spindle EtherCAT encoder position variable/address' parameters should be set.

3) Status

After starting homing operation, the status flag value changes as follows:

Variable Description		Value	
NO040 II	NC channel 01 Axis S reference position	On when executing a command,	
_NC01S_Homing	return operation	Off after completing it	
_NC01S_HomeCmpl	NC channel 01 Axis S homing completion	On after completing normally	
_NC01S_CmdPosInWC	NC channel 01 Axis S Command position		
	of Work-piece Coordinate system	0 after completing normally	
_NC01S_CmdPosInMC	NC channel 01 Axis S Command position	O often a completion of a compally	
	(Machine Coordinate system)	0 after completing normally	

As the spindle axis changes into the speed control operation and the command position of the spindle axis is updated to the current position after completing the homing operation, the position cannot be exactly 0 due to motor vibration, etc.

4) Exclusive conditions

As the homing operation of the spindle axis cannot be executed under the following conditions, errors occur when executing the NC_Home command.

- (a) If the 'spindle encoder selection' parameter is '0: Disable', (Error code 0x3637)
- (b) If the 'spindle encoder selection' parameter is '1: Moter ENC' and there is not the Position actual value (0x6064:0) object in the EtherCAT slave TxPDO setting, (Error code - 0x3638)
- (c) If the 'spindle encoder selection' parameter is '2: Built-in ENC1' and the encoder 1 parameter setting does not satisfy the following, (Error code - 0x3639)
 - a) Unit of Encoder 1 = 0: pulse
 - b) Max. value of Encoder 1 = 2147483647 pls
 - c) Min. value of Encoder 1 = -2147483648 pls
- (d) If the 'spindle encoder selection' parameter is '3: Built-in ENC2' and the encoder 2 parameter setting does not satisfy the following, (Error code - 0x363A)
 - a) Unit of Encoder 2 = 0: pulse
 - b) Max. value of Encoder 2 = 2147483647 pls
 - c) Min. value of Encoder 2 = -2147483648 pls

(6) Orientation

1) Operation

When executing the M19 block in the NC program, move the spindle axis to the 'Spindle Orientation Offset' position of the spindle axis.

Start operation at the 'Orientation speed' of the axis parameter and toward the 'Orientation direction'. Conduct operation up to the target speed using 'rapid traverse acceleration/deceleration/jerk' of channels / S axis parameters. Stop at the 'Orientation Offset' position after starting the M19 Orientation operation and then, a program of the next block is automatically operated.

When executing the M19 Orientation operation, the detailed operation is as follows:

- (a) If the spindle axis is operated by M03 or M04 commands, decelerate and stop.
- (b) Start operation with 'Orientation velocity', NC axis S's rapid traverse acceleration/deceleration/jerk'. Orientation direction is operated toward the direction set to the 'Orientation direction' parameter.
- (c) After starting operation, decelerate and stop at the 'Orientation Offset' position.
- (d) Wait until the 'NC channel 01 Axis S In-position Detection' (_NC01S_INPOSITION) signal turns On.
- (e) After detecting in-position, the 'NC channel 01 Confirm Spindle Orientation Status signal' (NC01 SpindleOrient) flag turns On.

2) Parameter setting

Parameters related to Orientation operation of the spindle axis are as follows:

Item	Description	Setting range
		1: Motor ENC
Colort the Chindle Freeder	Set the method that an encoder attached to a	2: Built-in ENC1
Select the Spindle Encoder	motor of the spindle axis is connected.	3: Built-in ENC2
		4: EtherCAT ENC
Number of pulses per rotation	If the 'spindle encoder selection' parameter	
of the spindle EtherCAT	setting value is '4: EtherCAT ENC', set	1 ~ 4294967295
encoder	number of pulses per rotation of an encoder.	
	If the 'spindle encoder selection' parameter	
Spindle EtherCAT encoder	setting value is '4: EtherCAT ENC', set the	%ID0 ~ %ID4095
position variable/address	device where the current position of the	%MD0 ~ %MD524287
	encoder is saved.	
Orientation valuaity	When the MAC Orientation command is	Long real (LREAL)
Orientation velocity	When the M19 Orientation command is	positive number
Orientation discretion	executed on the NC program, set the	0: Forward direction, 1:
Orientation direction	Orientation position (offset) and velocity, and	Reverse direction
Orientation offset	the traveling direction.	0 ~ 360

If the 'spindle encoder selection' parameter is '0: Disable', the Orientation operation cannot be executed. If satisfying the following conditions according to the 'spindle encoder selection' parameter, Orientation operation can be normally executed.

(a) '1: Motor ENC'

The position actual value (0x6064:0) object should be set in the setting of the EtherCAT Slave TxPDO.

(b) '2: Built-in ENC1'

- d) Unit of Encoder 1 = 0: pulse
- e) Max. value of Encoder 1 = 2147483647 pls
- f) Min. value of Encoder 1 = -2147483648 pls
- (c) '3: Built-in ENC2'
 - d) Unit of Encoder 2 = 0: pulse
 - e) Max. value of Encoder 2 = 2147483647 pls
 - f) Min. value of Encoder 2 = -2147483648 pls
- (d) '4: EtherCAT ENC'

The 'Number of pulses per rotation of the spindle EtherCAT encoder' and the 'Spindle EtherCAT encoder position variable/address' parameters should be set.

Status

After starting Orientation operation, the status flag value changes as follows:

Variable	Description	Value	
NC01 ChindleOrient	NC channel 01 Spindle Signal to confirm	On when executing a command,	
_NC01_SpindleOrient	Orientation status	Off after completing it	
N0040 0 ID I W0	NC channel 01 Axis S Command position	Orientation offset after	
_NC01S_CmdPosInWC	of the Work-piece Coordinate system	completing normally	
NCO4C CondDadaMO	NC channel 01 Axis S Command position	Orientation offset after	
_NC01S_CmdPosInMC	(Machine Coordinate system)	completing normally	

^{*} As the spindle axis changes into the speed control operation and the command position of the spindle axis is updated to the current position after completing the Orientation operation, the position cannot be exactly 0 due to motor vibration, etc.

4) Exclusive conditions

As the Orientation operation of the spindle axis cannot be executed under the following conditions, errors occur when executing the M19 command.

- (a) If the spindle axis is not the decision status of a reference position (Error code 0x3872)
- (b) If the 'spindle encoder selection' parameter is '0: Disable', (Error code 0x3873)
- (c) If the 'spindle encoder selection' parameter is '1: Motor ENC' and there is not the Position actual value (0x6064:0) object in the EtherCAT slave TxPDO setting, (Error code - 0x3874)
- (d) If the 'spindle encoder selection' parameter is '2: Built-in ENC1' and the encoder 1 parameter setting does not satisfy the following, (Error code - 0x3875)
 - d) Unit of Encoder 1 = 0: pulse
 - e) Max. value of Encoder 1 = 2147483647 pls
 - f) Min. value of Encoder 1 = -2147483648 pls
- (e) If the 'spindle encoder selection' parameter is '3: Built-in ENC2' and the encoder 2 parameter setting does not satisfy the following, (Error code - 0x3876)
 - d) Unit of Encoder 2 = 0: pulse
 - e) Max. value of Encoder 2 = 2147483647 pls
 - f) Min. value of Encoder 2 = -2147483648 pls

Chapter9 NC Control Function

(7) Constant surface speed control

1) Operation

The function is used when machining a material with an inconstant diameter. When executing the G96 (constant surface speed control) command in the NC program, the NC spindle axis controls constant surface speed.

Keep the cutting speed constant and revolve the spindle axis by calculating the rotation number of the spindle according change in material diameters.

For more information, see 9.3.3 Explanation of NC Commands (1) G code 35) Surface speed control (G96).

(8) Spindle overdrive

1) Operation

Users can set an overdrive ratio over the spindle speed command, acceleration/deceleration and jerk by using the spindle overdrive command in a task program. The spindle overdrive can be executed during or before automatic operation of the NC program. It does not apply when controlling constant surface speed or conducting the homing operation.

For more information, see '6.8.10 Spindle overdrive (NC_SpindleOverride)'.

9.5.5 Spindle Operation State

The NC control of a motion controller provides a flag that can confirm the operation status of the spindle axis.

(1) NC channel flag

Variable	Memory	Description
_NC01_ConstSurfSpeed	%FX524738	NC channel 01 Signal controlling constant surface
NCO1_Constantispeed	701 X324730	speed
_NC01_TVelOfSpindle	%FL8203	NC channel 01 target speed of the spindle (S
	/0FL0203	command value)
_NC01_CVelOfSpindle	%FL8204	NC channel 01 Spindle Command Velocity
_NC01_SpindleOverride	%FL8208	NC channel 01 Spindle Overdrive
_NC01_SpindleStop	%FX525376	NC channel 01 Signal to confirm spindle stop status
_NC01_SpindleCW	%FX525377	NC channel 01 Signal to confirm CW status
_NC01_SpindleCCW	%FX525378	NC channel 01 Signal to confirm spindle CCW status
_NC01_SpindleOrient	%FX525379	NC channel 01 Spindle Signal to confirm Orientation
_NOO1_SpindleOnent	%FX525379	status
_NC01_SpindleCVelAgr	%FX525380	NC channel 01 Signal to confirm the status of reaching
	701 A323300	spindle command velocity
_NC01_SpindleZeroVel	%FX525381	NC channel 01 Signal to confirm the status of reaching
NCO1_SpindleZelovei	761 X323361	zero velocity of the spindle
_NC01_MainSpindle	%FW32840	NC channel 01 Confirm the main spindle axis number
_NC01_McodeStrobe	%FX526080	NC channel 01 M code output Strobe signal
_NC01_McodeData	%FD16441	NC channel 01 M Code Data output
_NC01_ScodeStrobe	%FX526144	NC channel 01 S code output Strobe signal
_NC01_ScodeData	%FD16443	NC channel 01 S Code Data output

(2) NC S axis flag

Variable	Memory	Description
_NC01S_Ready	%FX569344	NC channel 01 Axis S axis Ready
_NC01S_Warning	%FX569345	NC channel 01 Axis S Warning occurrence status
_NC01S_Alarm	%FX569346	NC channel 01 Axis S Alarm occurrence status
_NC01S_ServoOn	%FX569347	NC channel 01 Axis S Servo On/Off Status
_NC01S_ServoReady	%FX569348	NC channel 01 Axis S Servo Ready Status
_NC01S_ServoAlarm	%FX569349	NC channel 01 Axis S Servo Alarm Status
_NC01S_OprRdy	%FX569408	NC channel 01 Axis S Axis Operation Ready Status
_NC01S_LinkedAxNum	%FW35589	NC channel 01 Axis S Actual Axis Number of IPR Axis
_NC01S_Busy	%FX569472	NC channel 01 Axis Signal during Axis S traverse
_NC01S_Direction	%FX569473	NC channel 01 Axis S operation direction
_NC01S_ForwardRun	%FX569474	NC channel 01 Traversing axes toward the axis S +
_NC01S_ReverseRun	%FX569475	NC channel 01 Traversing axes toward the axis S -
_NC01S_SpindleRun	%FX569478	NC channel 01 Axis S spindle operation
_NC01S_HomeCmpl	%FX569539	NC channel 01 Axis S homing completion
_NC01S_CmdPosInWC	%FL8901	NC channel 01 Axis S Command position of Work- piece Coordinate system
_NC01S_ActualVel	%FL8903	NC channel 01 Axis S Actual Velocity of Traverse
_NC01S_CmdPosInMC	%FL8915	NC channel 01 Axis S Command position (Machine Coordinate system)
_NC01S_ActualPosInMC	%FL8917	NC channel 01 Axis S Current position (Machine Coordinate system)
_NC01S_AxErr	%FW35676	NC channel 01 Axis S Error Code Number
_NC01S_DrvErr	%FW35677	NC channel 01 Axis S Drive Error code Number

9.5.6 Spindle-related Commands

The NC control of a motion controller sets information of the current speed of the NC channel spindle axis and provides individual commands that support spindle operations such as gear conversion of the spindle axis.

- (1) Spindle operation control (NC_SpindleControl)
 - 1) Operation

If the current speed of the spindle cannot be confirmed in the NC function module because there is no encoder in the spindle axis or the speed information of the spindle axis is not registered, users use the function to transmit the speed status of the spindle axis to the NC function module.

- (a) Input of 'Reaching Spindle Command Velocity (TgtVelReached)'

 If the spindle axis is automatically operated in the NC function module, the 'Signal to Confirm the Status of Reaching Spindle Command Velocity' (_NC01_SpindleCVelAgr) turns On if the relevant input is On after the spindle axis starts operation at the target speed with M03 or M04.
- (b) Input of 'Reaching the Zero Velocity of the Spindle (ZeroVelReached)' If the spindle axis is automatically operated in the NC function module, the 'Signal to Confirm the Status of Reaching the Zero Velocity of the Spindle' (_NC01_SpindleZeroVel) turns On if the relevant input is On after M03 or M04 block with the target speed of 0 is executed or M05 block is executed.
- 2) Function Block

The spindle operation control (NC_SpindleControl) function block is as follows:

тно оринаю	operation control (116	_SpiritileControl) furiction block is as follows.	
Motion Fu	Motion Function Block type		
		NO Caindle Control	
	POC	NC_SpindleControl DL — Enable Enable Enable	
		T - NcChannel NcChannel UINT	
		DL TgtVelReached Busy BOOL	
		DL — ZeroVelReached Error — BOOL	
	BOC	DL — SS_Control ErrorID — WORD	
Input-Outp	out		
UINT	NcChannel	Designate the NC channel to give commands (1: Channel 1)	
Input	,		
BOOL	Enable	While an input is enabled, conduct the specified operation on the main	
		spindle in the relevant channel.	
		Conduct an operation.	
BOOL	TgtVelReached	Convey whether the main spindle reaches the target speed to the NC	
		control.	
		0: The target speed is not reached	
		1: The target speed is reached	
BOOL	ZeroVelReached	Convey whether the main spindle reaches the zero speed to the NC	
		control.	
		0: The zero speed is not reached	
		1: The zero speed is reached	

BOOL	SS_Control	Start the SS control mode of the main spindle. (support later) 0: Start SS controls
		1: End SS controls
Output		
BOOL	Enabled	Indicate that the function block is performed.
BOOL	Busy	Indicate that execution of the function block is not completed.
BOOL	Error	Indicate whether an error occurs.
WORD	ErrorID	Output the error number that occurred while the function block is
		running.

^{*} For function block operation, see '6.8.22 Spindle Operation Control (NC_SpindleControl)'.

- (2) Spindle gear change (NC_ChangeSpindleGear)
 - 1) Operation

The function is used to change parameter values related to gear conversion and to change the velocity of the spindle axis at the speed that gear conversion can be conducted in order to change gears connected to the NC channel spindle axis.

- (a) 'Setting of Velocity Values to Change' (ChangeVelocity) Input
 - If the spindle gear conversion command is executed, the speed of the spindle axis is changed to the value set in ChangeVelocity and the GearChangeEnable output turns On.
 - Users operate sequence programs to conduct gear conversion by confirming the GearChangeEnable output.
- (b) 'Signal to Complete Gear Conversion' (GearChangeCmpl) Input
 - After the speed of the spindle axis is changed to the ChangeVelocity speed, users confirm if the GearChangeEnable output is On and input On in 'Signal to Complete Gear Conversion' (GearChangeCmpl) after executing gear conversion.

If the 'Signal to Complete Gear Conversion' (GearChangeCmpl) is On, set values of the following items set in the function block input to parameters and operate the spindle with the changed setting.

- a) Speed limit values (MaxVelocity)
- b) Gear ratio of a motor (GearOfMotor)
- c) Gear ratio of machine (GearOfMachine)
- d) Backlash compensation amount (Backlash)
- e) P gain in a position mode (P_Gain)
- f) Feed Forward gain in a position mode (FF_Gain)

2) Function Block

The spindle gear conversion (NC_ChangeSpindleGear) function block is as follows:

Motion Function Block type				
NC_ChgSpindleGear				
	BOOL -			
		NcChannelNcChannel - UINT ChangeVelocity Busy - BOOL		
		GearChangeCmpl Error BOOL		
		MaxVelocity ErrorID — WORD		
	UINT —	GearOfMotor GearChangeEnable BOOL		
	UINT -	GearOfMachine		
	LREAL —			
	LREAL -			
	LREAL -	Analog10Vrpm		
	LREAL —	Analog Tovipin		
Input-Outp	out			
UINT	NcChannel	Designate the NC channel to give commands (1: Channel 1)		
Input	I			
BOOL	Execute	Give the spindle gear conversion command in the rising Edge of		
		input.		
LREAL	ChangeVelocity	Set the speed value to change		
BOOL	GearChangeCmpl	The signal that gear changes have been completed.		
		Each input value is set to the relevant parameter after this input		
		turns On		
LREAL	MaxVelocity	The maximum setting value for velocity parameters		
UINT	GearOfMotor	The gear ratio parameter of a motor		
UINT	GearOfMachine	The gear ratio parameter of machine		
LREAL	Backlash	Backlash compensation value		
LREAL	P_Gain	Setting value for the P gain		
LREAL	FF_Gain	Feed forward gain setting value		
LREAL	Analog10Vrpm	Not applied		
Output	I			
BOOL	Done	Indicate that the function block is successfully applied.		
BOOL	Busy	Indicate that execution of the function block is not completed.		
BOOL	Error	Indicate whether an error occurs.		
WORD	ErrorID	Output the error number that occurred while the function block is		
		running.		
BOOL	GearChangeEnable	Indicate whether to change gears		

^{*} For function block operation, see '6.8.24 NC Spindle Operation Control (NC_ChgSpindleGear)'.

Chapter 10 CPU Function

10.1 Task Design

10.1.1 Task Overview

There are 3 types of motion control tasks: main task, periodic task and initialization task,

Types of	Number of	itror tasks. main task, periodic task and initialization task.	
Tasks	Programs	Motions	
Main task		 It performs I/O refresh, processing of programs assigned to main task and motion control. It performs the above tasks at a time for each of the established control period (main task cycle). It has higher priority than periodic task. It uses programs that require synchronized control and high-speed operation processing through allocation since it is possible to process program fast. Period possible to be set: 1ms, 2ms, 4ms 	
Periodic task	Up to 256	 It performs processing of programs assigned to main task. It is performed for the remaining time after implementation of main task operation within the control period, and can be performed over multiple cycles. Since it has lower priority than main task in the execution of motion control commands within main task program, the motion control commands executed in the main task program are processed first. It uses programs of processing other monitoring data and control of device that doesn't require high-speed processing through allocation. Period possible to be set: 1ms ~ 100ms (Set to a multiple of the main task cycle) 	
Initialization task		 It performs processing of programs assigned to the initialization task after implementing I/O refresh. It is performed only once at the time of entering the RUN mode. It is executed first when entering RUN mode. If the initial task completion (_INIT_DONE) flag is set by the initialization task program, the task is completed, and the execution of the main task and periodic task program starts. 	

(1) Main task and periodic task

Both the main task and the periodic task are executed at fixed intervals. The interval at which the main task and periodic task are executed is called the 'task cycle'. The main task can be set in cycles of 500μ s, 1ms, 2ms and 4ms, and the periodic task can be set in multiple of the main task cycle. However, the periodic task cycle can be set in ms unit.

In the task, 1 to 256 programs can be used. The programs are executed in the order in which they are assigned.

I/O refresh refers to the exchange of data between the digital I/O module and the analog module. The I/O refresh is performed at the beginning of the main task execution per cycle.

(2) Task partitioning

All programs should be assigned to one task. Users are required to assign the task according to the characteristics of the created program by referring to the table below.

Tasks	Appropriate programs
	The execution cycle of I/O refresh should be strictly observed.
Main task	Highest execution priority
	High-priority motion control is included.
	Program that can be operated regardless of I/O refresh
Periodic task	Program that has lower execution priority than the main task and requires
	periodic execution
	Execution is required prior to the main task program execution during the
Initialization task	RUN operation
	•Device initialization and initial value setting program

10.1.2 Task Specification

The specifications of the tasks are as follows.

Items	Specifications	
	Main task	
Types of tasks	Periodic task	
	Initialization task	
Number of task programs	• Up to 256	
Main task cycle	• 500 μ s, 1 ms, 2 ms, 4 ms	
Periodic task cycle	 Can be set to a multiple of the main task from 1 to 100 ms 	
Initialization task cycle	Same as the main task cycle	

Periodic task cycle that can be set depending on the main task cycle

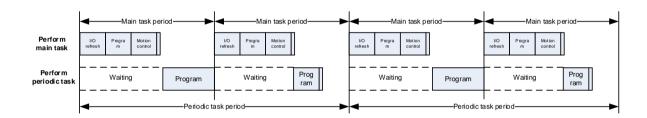
Main task cycle	Periodic task cycle that can be set		
500 µs	1ms, 2ms, 3ms, 4ms, 5ms, 95ms, 96ms, 97ms, 98ms, 99ms, 100ms		
1 ms	1ms, 2ms, 3ms, 4ms, 5ms, 95ms, 96ms, 97ms, 98ms, 99ms, 100ms		
2 ms	2ms, 4ms, 6ms, 8ms, 10ms, 92ms, 94ms, 96ms, 98ms, 100ms		
4 ms	4ms, 8ms, 12ms, 16ms, 20ms, 84ms, 88ms, 92ms, 96ms, 100ms		

10.1.3 Basic Operation of Task

Several tasks of XMC-E32A cannot be executed at the same time. Each task is executed according to its priority, and the main task program has higher priority than the periodic task program.

If the main task program execution cycle is reached during the execution of the periodic task program, the main task program is executed. Therefore, while the main task program is executed in accordance with the cycle, the periodic task program can be executed in several main task cycles. If you use the periodic task program, you should write the program by referring to this point.

In addition, the cycle should be set so that the task program execution can be completed within the set period. If the task exceeds the set period, a warning is issued. If the task execution is not completed until the periodic error detection time, the system switches to the ERROR state.



In the main task execution, the double line display after the program execution the motion control or periodic task execution indicates that the task execution is completed.

(1) Cycle of main task and periodic task

The main task and periodic task are the ones that are executed repeatedly in cycles. Both tasks have a task execution cycle, and the periodic task cycle can be set to a multiple of the main task cycle.

For example, if the main task cycle is 1^{ms} , and the periodic task cycle is 2^{ms} , the periodic task is executed every time the main task is executed twice.

(2) Initialization task

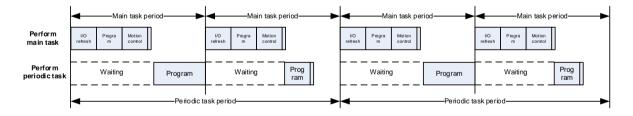
The initialization task is executed until the initialization task execution completion (_INIT_DONE) flag is set before the execution of the main task, and it is terminated when the user sets the _INIT_DONE flag in the program. Only when the initialization task is terminated, the main task and periodic task programs are executed. The initialization task cycle inherits the main task cycle.

Notice

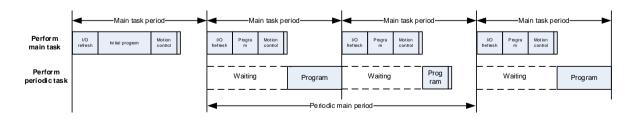
If the initialization task execution completion (_INIT_DONE) flag is set by the user-written initialization task program, the execution of the initialization task program is terminated, and the execution of the main task and periodic task programs are started.

The initialization task operates in the main task cycle and is included in the main task execution time.


When the initialization program execution is completed, and the initialization task execution is terminated as shown below, the main task program and periodic task program are executed.

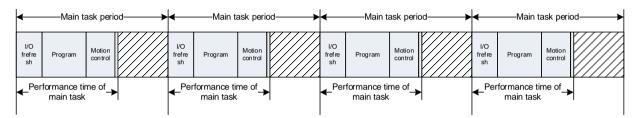

10.1.4 Examples of Task Execution Sequence

Below are descriptions of the execution sequence for the main task and periodic task.


(1) If there is only main task program

(2) If there main/periodic task programs

(3) If there is an initialization task program

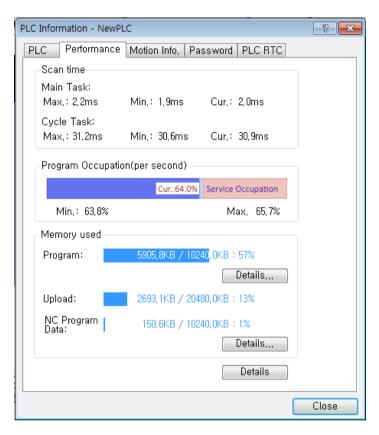


10.1.5 System Service Processing

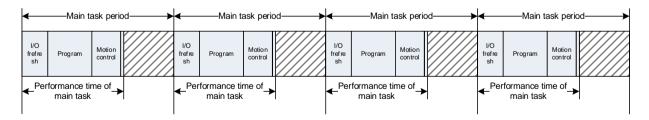
System service includes the following services.

System Service Names	Service Names Contents	
USB service	Processing of service requests in XG5000	
	Processing of service requests in XG5000	
Built-in Ethernet port service	Communication (P2P) service processing	
	FTP service processing	
SD memory card service	SD memory card command execution	
D memory card service	Data logging	

The system service is executed after the completion of the main task or the periodic task and s run at an idle time when the task is not running. The system service is executed in the shaded section as shown below.

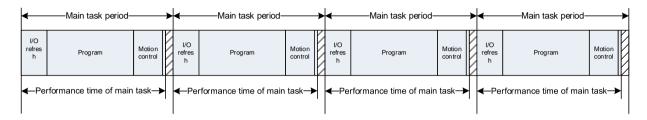


The order of priority of the system service and each task is main task > periodic task > system service, and the main task has the highest priority. When the main task execution cycle is reached while the system service is running, the system service is paused, and the main task is executed. In addition, if the main task execution cycle is reached while the system service is running, the system service is paused, and the periodic task is executed. When the execution of both the main task and the periodic task is completed, the paused system service is executed sub sequentially.

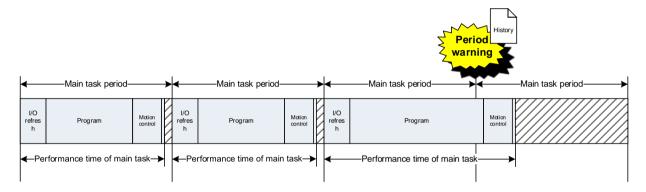

10.1.6 Program Occupancy Rate Operation

Program occupancy rate refers to the ratio of the task execution time per second during the system RUN operation. If there is only main task, the sum of the main task execution time is displayed as a percentage. If there is a periodic task, the main task and periodic task execution time is calculated and displayed as a percentage.

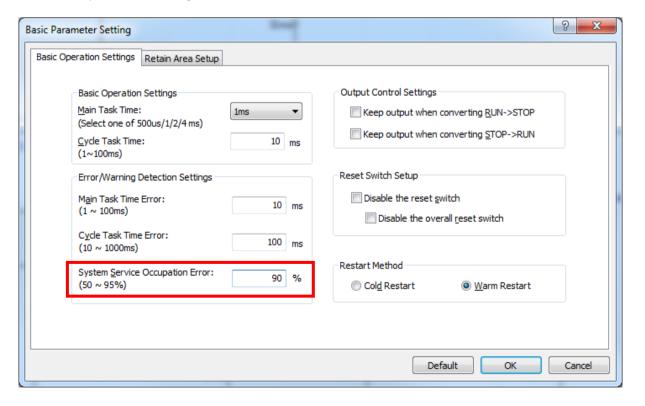
In the figure below, the program occupancy rate is currently 64%, which means that the main task and periodic task are executed about 64% of the time for one second, and the system service is running for the remaining time.



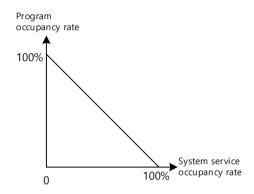
If there is no periodic task as shown below, the system service can be executed in the shaded section if the main task execution is completed.



If the program occupancy rate is high (system service occupancy rate is low) as shown below, the system service may not be performed normally. In the basic parameter, a user can set the value ranging from 50 to 95%, and if the set value is exceeded, the task program occupancy rate warning is generated. If the program occupancy rate exceeds 100%, the system enters the ERROR state.

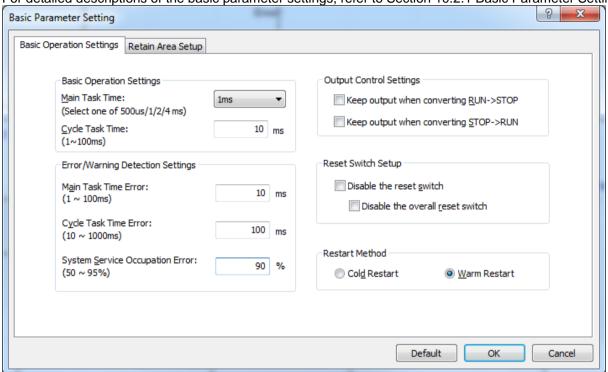

Adjust the main task cycle so that the program occupancy rate does not exceed 90%, if possible.

If the cycle warning is generated as shown below, the program occupancy rate may increase.



The value for setting the task program occupancy rate excess warning detection can be set from 50% to 95% in the basic parameter settings.

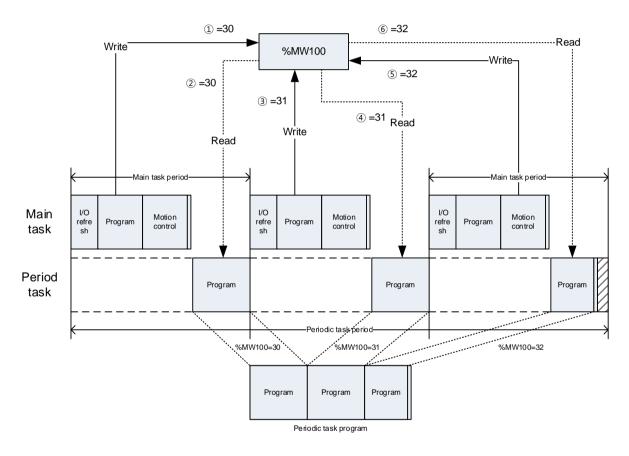
If the task program occupancy rate exceeds the set value, the task occupancy rate excess warning (_TASK_PRM_USAGE_OVER_WAR) is generated. If the task program occupancy rate exceeds 100%, the system state switches from RUN to ERROR, and the task program occupancy rate excess error (_TASK_PRM_USAGE_OVER_ER) is generated.


The program occupancy rate is inversely proportional to the system occupancy rate. If the program occupancy rate is 20%, the system occupancy rate is 80%. But if the program occupancy rate is 80%, the system occupancy rate is 20%.

The increase in the task program occupancy rate means that the main task and the periodic task occupy a large portion in one cycle, and thus the time required for the system service execution is reduced. Please make sure that the program occupancy rate does not exceed 95%. If it exceeds 95%, change the main task cycle.

10.1.7 Task Setting Items

To execute the task program, the following task-related items should be set. Each item is reflected immediately when the basic parameter items are transmitted. Even if the periodic cycle is not used, the cycle should be set. For detailed descriptions of the basic parameter settings, refer to Section 10.2.1 Basic Parameter Settings.


Items	Descriptions	Setting Values	Default
Main task cycle	Sets the time for the main task	500 μs, 1 ms, 2 ms, 4 ms	1 ms
Periodic task cycle	Sets the time of the periodic task as the multiple of the main task cycle	1~100 ms	10 ms
Main task cycle error	Sets the main task execution time when the main task is executed beyond the set time	1~100 ms	10 ms
Periodic task cycle error	Sets the periodic task execution time that causes an error when the periodic task is executed beyond the set time	10~1000 ms	100 ms
Task program occupancy rate warning	If the task program occupancy rate exceeds the set value because there are many main task programs or periodic task programs, the task program occupancy rate warning is generated. If the task program occupancy rate exceeds 100%, the task program occupancy rate error occurs, and it switches to the ERROR state.	50~95%	90%

10.1.8 Methods on How to Use Variables between Tasks

Extra attention should be given when reading and writing the same global variables in the main task and the periodic task.

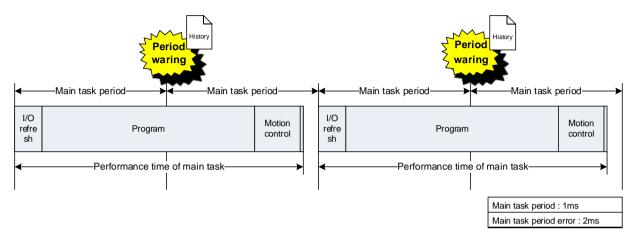
If the value of %MW100 is read and written in the main task and periodic task programs as shown below, the value of %MW100 will be changed continuously depending on the usage position in the periodic task.

- ① Write the value of %MW100 to 30 in the main task program
- 2 The value of %MW100 is 30 when read from the periodic task
- 3 Write the value of %MW100 to 31 in the main task program
- 4 The value of %MW100 is 31 when read from the periodic task
- 5 Write the value of %MW100 to 32 in the main task program
- 6 The value of %MW100 is 32 when read from the periodic task

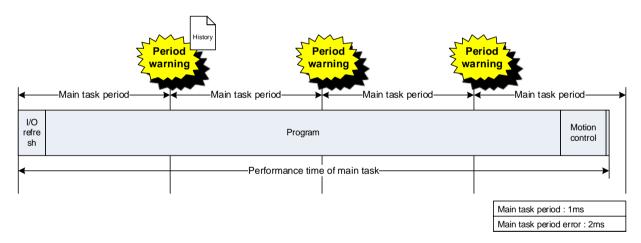
Since the value of %MW100 is continuously changed to 30, 31 and 32 in one cycle of the periodic task, the value may be different depending on the location of the device use. If in the periodic task program, the value is written in the global variable (example: %MW100) used in the main task program, the result of the main task program operation may be affected.

* Please be careful when programming to avoid using the same device between the main task program and the periodic task program, if possible.

10.1.9 Task Flags

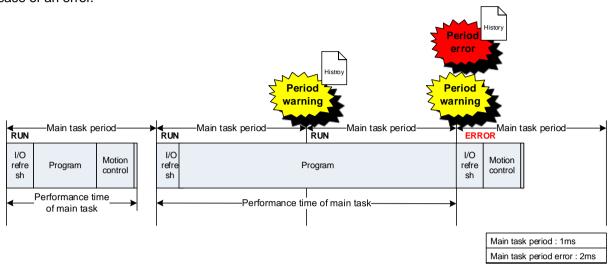

Below are descriptions of the task flags.

Flag name	Туре	Device	Description
_PROGRAM_RATIO_MAX	UINT	%FW518	User program maximum execution occupancy (1sec)
_PROGRAM_RATIO_MIN	UINT	%FW519	User program minimum execution occupancy (1sec)
_PROGRAM_RATIO_CUR	UINT	%FW520	User program current execution occupancy (1sec)
_PTASK_SCAN_WR	BOOL	%FX20486	Main task scan value initialization
_PTASK_CYCLE_WAR_NUM	UINT	%FW748	Main task period exceeded warning count
_PTASK_CYCLE_WAR	BOOL	%FX129	Main task period exceeded warning
_PTASK_SCAN_MAX	UINT	%FW512	Main task max. scan time(Unit:100 us)
_PTASK_SCAN_MIN	UINT	%FW513	Main task min. scan time(Unit:100 us)
_PTASK_SCAN_CUR	UINT	%FW514	Main task current scan time(Unit:100 us)
_CTASK_SCAN_WR	BOOL	%FX20487	Periodic task scan value initialization
_CTASK_CYCLE_WAR_NUM	UINT	%FW749	Periodic task period exceeded warning count
_CTASK_CYCLE_WAR	BOOL	%FX130	Periodic task period exceeded warning
_CTASK_SCAN_MAX	UINT	%FW515	Periodic task max. scan time(Unit:100us)
_CTASK_SCAN_MIN	UINT	%FW516	Periodic task min. scan time(Unit:100us)
_CTASK_SCAN_CUR	UINT	%FW517	Periodic task current scan time(Unit:100us)
_CTASK_CYCLE_ER	BOOL	%FX92	Periodic task period error
_PTASK_CYCLE_ER	BOOL	%FX91	Main task period error
_INIT_DONE	BOOL	%FX20496	Completion of initialization task
_INIT_RUN	BOOL	%FX24	Executing the initial task
_TASK_PRM_USAGE_OVER_WAR	BOOL	%FX135	Task program occupancy excess warning
_TASK_PRM_USAGE_OVER_ER	BOOL	%FX94	Task program occupancy excess error

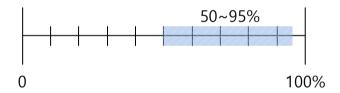

10.1.10 Task-Related Warning/Error

(1) Task cycle over warning

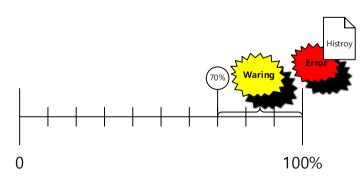
If the main task or the periodic task exceeds the cycle set by a user, the cycle over warning is generated. The warning is stored in the error history.



If the task execution is completed in the previous cycle as shown in the figure below, the history is stored. If the cycle over warning is continuously generated, the cycle over warning history is saved only for the first occurrence of the warning. The saved history can be checked in the error history.


(2) Task cycle error

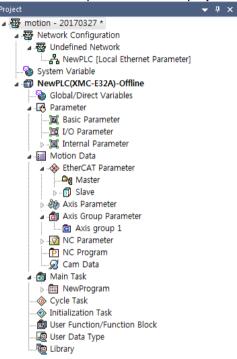
If the task is executed by exceeding the cycle error time set in the basic parameter, a cycle over error occurs. Refer to Section 0 Task Program Occupancy Rate Excess Warning/Error for corrective actions taken in the case of an error.



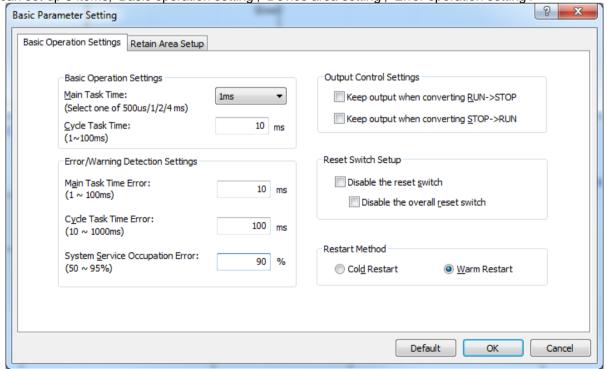
(3) Program occupancy rate excess warning/error

In the basic parameter, the program occupancy rate excess warning detection setting value can be set to 50~95%. If it exceeds the value set by a user, the program occupancy rate excess warning is generated, and if it is 100%, the program occupancy rate excess error occurs.

As shown in the figure below, if the program occupancy rate excess warning detection value of the basic parameter is set to 70%, a warning is generated when the program occupancy rate ranges from 70 to 99%, and an error occurs when it is 100%.

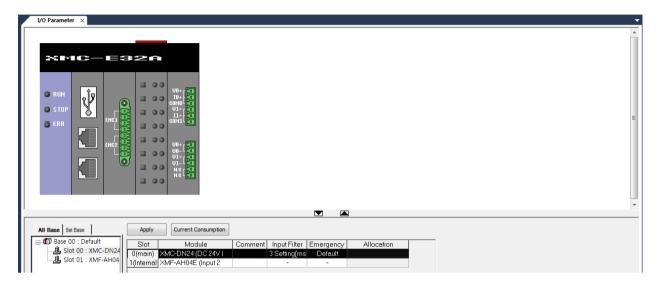


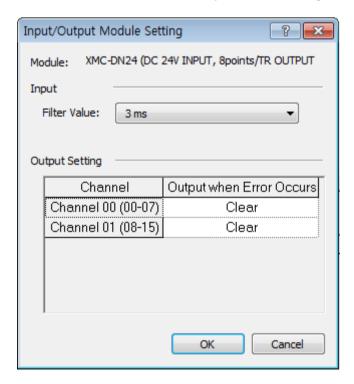
10.2 Parameter Setting

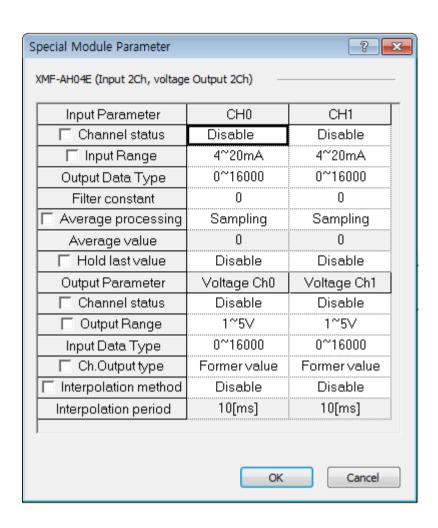

This section describes motion controller's parameter setting.

10.2.1 Basic Parameter Setting

If you click the basic parameter in the project window, the below screen will be displayed.

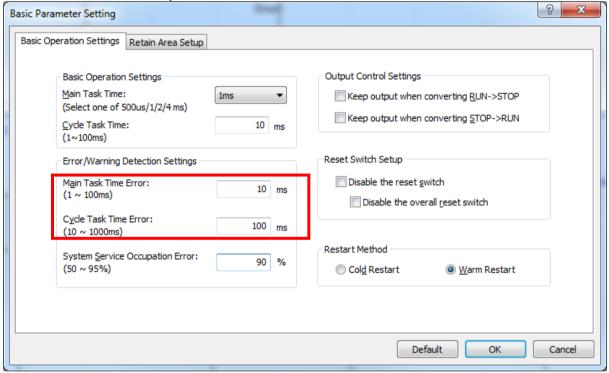

You can set up 3 items; 'Basic operation setting', 'Device area setting', 'Error operation setting'.


Classification	Items	Descriptions	Setting Values
	Main task cycle	Sets the time of the main task	500us, 1ms, 2ms, 4ms
	Periodic task cycle	Sets the time of the periodic task	1~100ms(a multiple of the main task)
	Main task cycle error	Sets the main task execution time that causes an error when the main task is executed beyond the set time	1~100ms
	Periodic task cycle error	Sets the periodic task execution time that causes an error when the periodic task is executed beyond the set time	10~1000ms
Basic operations	Task program occupancy rate warning	If the task program occupancy rate exceeds the set value because there are many main task programs or periodic task programs, the task program occupancy rate warning is generated. If the task program occupancy rate exceeds 100%, the task program occupancy rate error occurs, and it switches to the ERROR state.	50~95%
1		Maintains output when Run->Stop transition is allowed	Allowed/Prohibited
	Output maintenance in case of Stop → Run transition	Maintain output when Stop->Run transition is allowed	Allowed/Prohibited
	Reset switch operation shutdown	Sets whether or not to perform reset operation with the switch on the front panel of the product	Allowed/Prohibited
	Overall Reset switch operation shutdown	Sets whether or not to perform the overall reset operation with the switch on the front panel of the product	
	Restart mode	Selects restart mode	Cold, Warm
Memory area settings		Sets the range to retain for the M area	Among %MW0~%MW1048575, 524,288 Word settings


10.2.2 I/O Parameter Setting

It is the function to set up and reserve the information for each I/O. If you click <code>"I/O Parameter_"</code> in the project window, the below setting window will be displayed.

If you click the <code>"Module_"</code> in the <code>"slot_"</code> position, the list of each module will be displayed. Then, choose the module that is matched with the actual system to be configured. The selected slot will be displayed as below.

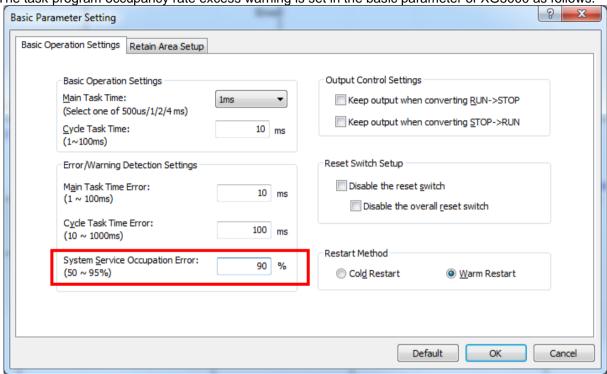

10.3 Self-Diagnosis Function

The Self-Diagnosis function is the function for the CPU part to diagnose the motion controller system for defects. In case errors occur during supplying the power to the motion controller system or during operation, it detects errors to prevent malfunction of the system and preventive maintenance.

10.3.1 Main Task/Periodic Task Cycle Error

Main task/periodic task cycle error is a function to a software error of the motion controller or a periodic error caused by the user program.

(1) It is used to detect that the program is executed for the time that exceeds the user's intended period due to an operation delay caused by the main task/periodic task program error. The main task/periodic task cycle error detection time is set in the basic parameters of XG5000 as shown below.

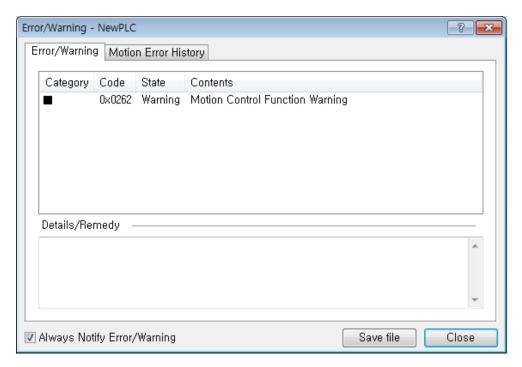


- (2) While the program is running, the elapsed scan time is monitored, and if the set detection time is exceeded, the operation of the motion controller is stopped immediately, and an error is generated.
- (3) When the main task/periodic task error occurs, the error is cleared if the power is turned on again, or the mode is switched to Stop mode

10.3.2 Task Program Occupancy Rate Excess Warning /Error

If the occupancy rate of the program increases due to the execution of the main/periodic tasks, the system service cannot be executed. To prevent this, this function allows the user to detect the task program occupancy rate excess warning/error. (System service: Services, excluding the main/periodic/ initialization task)

(1) The task program occupancy rate excess warning is set in the basic parameter of XG5000 as follows.



- (2) If the set occupancy rate is exceeded while monitoring the task program occupancy rate during the execution of program, the task program occupancy rate excess warning is generated. If the task program occupancy rate is 100% in the state where the warning occurs, the task program occupancy rate error is generated.
- (3) The following measures are required when the task program occupancy rate warning/error occurs.
 - (a) Secure the time for the system service to operate by reducing the amount of the user program execution within the main task/periodic task.
 - (b) Secure the time for the system servic to operate by increasing the execution cycle of the main task/periodic task of the basic parameter.
 - (c) Increase the task program occupancy rate excess warning setting of the basic parameter.

10.3.3 Error History Storage Function

The motion controller is designed to record the error history when errors occur, identify the cause of the errors and correct them.

Click on the <code>"Online" - "Diagnostics" - "PLC Error/Warning"</code> items of the menu to see the current errors and error history. Please refer to the details and action contents for each error item and eliminate the cause of error.

Items	Descriptions	Remarks
Error/Warning	Displays the current error/warning	=
Error history	Displays the error/warning that occur in chronological order	Save up to 100

Notice

The saved error history is deleted by clicking 'Clear' in the error/warning window.

If the error history exceeds 1,024, it is removed from the earliest history, and the latest 1,024 history is saved.

10.3.4 Failure Management

(1) Failure Types

The troubles are caused by failure of the motion controller itself, system configuration's error, error detection of operational results, etc. They can be divided into the failure mode stopping the operation for system safety; minor failure mode that informs a user of failure warning and resumes the operation.

The failures of the motion controller system are mainly caused by the below.

- Motion controller hardware's problems
- Operational error during execution of user programs
- Detection of errors caused by external device failure

(2) Operation mode in case of failures

In case failures occur, the motion controller system records the failure details in the special flag (F area) and determines whether resuming the operation based on the failure mode.

• In case of the motion controller hardware's failure

In case there are problems with the motion controller, power, etc. that the motion controller cannot works normally, the system will be stopped; In case of minor failures such as a battery's low voltage, the warning is displayed and the operation will be resumed.

- Computational error during execution of user programs In case of the numeric operation error (Ex.: in case the denominator of division operation is 0) occurred during execution of user programs, the details will be displayed in the error flag and the system will resume the operation. If the operational time exceeds the operation delay monitoring set time during operation or equipped I/O modules cannot be normally controlled, the system will be stopped.
- Detection of errors caused by external device failure The failure of the external control device can be detected by the motion controller's user program; in case of detecting failures, the system will be stopped; in case of detecting minor failures, only the detection status will be displayed and the operation will be continued. (For the detailed use of the function to detect external device's failures, refer to the 10.3.5 Failure Diagnosis Function for the External Device.)

The information on failures occurrence is saved in the special relay (F area). Among F area flags, the information related to the failures are as below.

Double Word	Bit	Flag Name	Function	Description
%FD0	%FX2	_ERROR	Error	Error status
	-	_CNF_ER	System error	Reports the failure status of the system.
	%FX70	_ANNUM_ER	External device failure	Failures are detected from the external device.
	%FX72	_BPRM_ER	Basic parameters	There are some problems with the basic parameters.
	%FX73	_IOPRM_ER	IO parameters	There are some problems with I/O parameters.
	%FX74	_SPPRM_ER	Special module parameters	Abnormal special module parameters
	%FX75	_CPPRM_ER	Communication module parameters	Abnormal communication module parameters
	%FX76	_PGM_ER	Program error	There are some errors with the program.
%FD2	%FX78	_SWDT_ER	System Watch dog	The system Watchdog works.
	%FX80	_SWDT_ER	System Watch dog	The system Watchdog works.
	%FX85	_ENCPRM_ER	Encoder parameter error	Abnormal encoder parameter
	%FX86	_AXISPRM_ER	Axis parameter	Abnormal axis parameter
	%FX87	_GROUPPRM_ER	Axis group parameter	Abnormal axis group parameter
	%FX88	_ECPRM_ER		Abnormal EtherCAT parameter
	%FX89	_NCPRM_ER	NC parameter	Abnormal NC parameter
	%FX90	_NCPGM_ER	NC program	Error of NC parameter
	%FX91	_PTASK_CYCLE_ER	Main task	Period error of main task
	%FX92	_CTASK_CYCLE_ER	Periodic task	Period error of periodic task
	%FX93	_SYSTEM_ER	System error	System error
	%FX94	_TASK_PRM_USAGE_ OVER_ER		The task program occupancy rate exceeds 100%

Double Word	Bit	Flag Name	Function	Description
	-	_CNF_WAR	System warning	Reports the minor failure status of the system.
	%FX128	_RTC_ER	RTC data error	Abnormal RTC data
	%FX129	_PTASK_CYCLE_WAR	Main task	Period warning of main task
	%FX130	_CTASK_CYCLE_WAR	Periodic task	Period warning of periodic task
%FD4	%FX131	_ABSD_ER	Shutdown caused by abnormal operation	Stoppage caused by abnormal operation.
70FD4	%FX132	_MOTION_CONTRO_W AR	Motion control warring	Motion control function warring
	%FX134	_ANNUM_WAR	External device failure	Minor failures are detected from the external device.
%FX135		_TASK_PRM_USAGE_ OVER_WAR	Occupancy rate over warring of task program	The task program occupancy rate exceeds.
	%FX224	_ERR	Calculation error	In case of calculation error, this is ON during 1 scan
	%FX227	_ALL_OFF	Overall output OFF	When overall output is OFF, this is ON
	%FX229	_LER	Operational error latch	It maintains 0 in case of operational error.
%FD7	%FX247	_ARY_IDX_ERR	Array index range over	In case of range over error of array index, this is ON during 1 scan
	%FX248	_ARY_IDX_LER	Array index range over latch	In case of range over error of array index, this is ON during 1 scan
	%FX249	_UDF_STACK_ERR	UDF stack over	In case of over error of UDF stack, this is ON during 1 scan
	%FX250	_UDF_STACK_LER	UDF stack over latch	In case of over error of UDF stack, this is ON
%FW202	-	_ANC_ERR	Information on the external device's failure	Displays the information on the external device's failure
%FW203	-	_ANC_WAR	Information on the external device's minor failure	Displays the information on the external device's minor failure

Word	Bit	Flag Name	Function	Description
%FW1282	-	_ANC_ERR	Information on the external device's failure	Displays the information on the external device's failure
%FW1283	-	_ANC_WAR	Information on the external device's minor failure	Displays the information on the external device's minor failure

Notice

For more details on the whole flags, refer to the Appendix 1 Flag Table of the Outline of this manual.

10.3.5 Failure Diagnosis Function for the External Device

It is the function to detect the failure of the external device connected to the motion controller to realize stoppage of the system and warning easily. Through this function, you can detect the external device's failure without complex programming and can monitor the failure position without special devices (XG5000, etc.) or programs.

You can use the failure diagnosis function for the external devices as below.

- (1) Failure types of external devices
 - The failures of external devices are divided into the two types; failure (error) detected by combination of user programs and special relay (F area) requires stoppage of the motion controller operation; minor failure (warning) that continues the motion controller's operation and displays the detection status only.
- (2) Flag to detect failures of external devices

The following flag types are used to diagnose failures of external devices.

Word	Bit	Flag Name	Function	Description
%FW1282	-	_ANC_ERR	Information on the external device's failures	Input the error code of user- defined serious failure of external device.
%FW1283	-	_ANC_WAR	Information on the external device's MINOR failures	Input the error code of user- defined minor failure of external device.
-	%FX70	_ANNUM_ER	detection of external serious error	It is On when the external device's serious failure occurs.
-	%FX134	_ANNUM_WAR	detection of external slight error	It is On when the external device's minor failure occurs.
-	%FX20482	_CHK_ANC_ERR	Request detection of external serious error	It is the command flag asking to detect the external device's serious failure.
-	%FX20483	_CHK_ANC_WAR	Request detection of external slight error minor failure	It is the command flag asking to detect the external device's minor failure.

- (3) How to detect the external device's serious failures
 - The following programming is used to detect the external device's serious failures.
 - (a) Save the error code that can be distinguished by external device's serious failures in %FW1282 (ANC ERR) through the MOVE command as below. (Input the values excluding 0)
 - (b) In case the external device's serious failures occur, %FX20482(CHK ANC ERR)flag will be On.
 - (c) When the main task program is completed, the motion controller checks whether %FX20482 (CHK ANC ERR) is ON and detects serious failures.
 - (d) If the external device's serious failures occur, the motion controller will be in error status and will stop the operation. Then, %FX70 (_ANNUM_ER) is ON and %FX20482(_CHK_ANC_ERR) flag is automatically Off. All outputs works based on IO parameter's emergency output settings.
 - (e) When failures occur, through XG5000, a user can figure out the causes of failures by monitoring %FW1282 (ANC ERR) flag.

- (4) How to detect the external device's minor failures
 - The following programming is used to detect the external device's minor failures.
 - (a) Save the error code that can be distinguished by external device's serious failures in %FW1282 (ANC ERR) through the MOVE command as below. (Input the values excluding 0)
 - (b) In case the external device's minor failures occur, %FX20483(_CHK_ANC_ERR)flag will be On.
 - (c) When the main task program is completed, the motion controller checks whether %FX20483 (CHK ANC ERR) is ON and detects serious failures.
 - (d) If the external device's minor failures occur, %FX134(_ANNUM_WAR)flag will be ON and continue to operation. Then, %FX20483 (_CHK_ANC_ERR) is automatically Off.
 - (e) When minor failures occur, through XG5000, a user can figure out the causes of failures by monitoring %FW20483(ANC WAR)flag.
 - (d) If you input 0 again to %FW1283(ANC WAR) after removing the causes of failures and turn ON%FX20483 (_CHK_ANC_WAR) again, detection of minor failures is canceled.

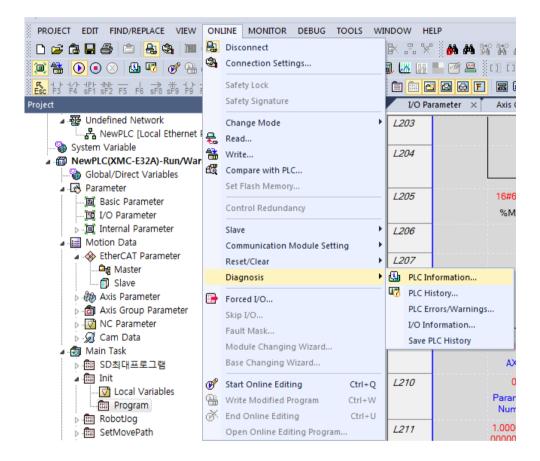
10.3.6 Instantaneous Power Failure Protection Function

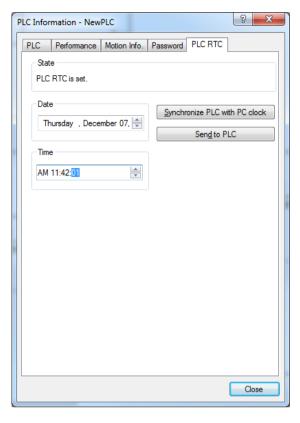
Instantaneous power failure is detected when the input power voltage supplied to the motion controller becomes lower than the standard.

If the instantaneous power failure is detected, the following operation processing is performed.

Power Failure Time	Operation Processing
Input power Instantaneous power Within 20ms	 If the instantaneous power failure occurs for the first time, the internal timer starts, and the operation is performed (without stopping) as before. If the instantaneous power failure is canceled (within 20ms of the reference time), the internal timer start-up is stopped, and the operation is performed as before.
Input power Instantaneous power Over 20ms	If the power is not supplied during the excess of 20ms after the first occurrence of the instantaneous power failure, restart operation is performed in the same way as the power input.

Notice


Instantaneous power failure refers to the state where the voltage of the power supply specified by the motion controller in the power condition is lowered as it exceeds the allowable fluctuation range, and the power failure for a short time (several ms to dozens of ms) is called instantaneous power failure.


10.4 RTC Function

The motion controller has the embedded clock (RTC) function that keeps running by battery backup even when the power is off. The time data of the embedded RTC can be used for time management such as the system's operating history or failure history, etc. The RTC's current time is updated every scan by the flags for the system's operating state information.

10.4.1 How to Use the RTC

- (1) Reading/Setting clock data
 - (a) Reading the data from XG5000 and setting
 - 1) Click ${
 m \clim{"Online}}$ ${
 m \clim{"Diagnosis}}$ ${
 m \clim{"motion controller information}}$.
 - 2) Click the motion controller clock tab of <code>"motion controller information"</code> .

- 3) If you want to send the time of the PC to the motion controller, click 'Synchronization with PC clock' button.
- 4) If you want to set up the user defined time, after changing set values of the data and time box, click 'Send to motion controller'.

(b) Reading with the special relay

You can monitor the data by the special relay as shown in the below example.

Memory	Flag name	Function	Data	Description
%FB52	_RTC_TIME	RTC data[]		
	_RTC_TIME[0]	RTC data(year)	h16	Year 2016
	_RTC_TIME[1]	RTC data(month)	h11	November
	_RTC_TIME[2]	RTC data(day)	h08	8 th day
0/ED52 0/ED50	_RTC_TIME[3]	RTC data(hour)	h19	At 7 pm
%FB52~%FB59	_RTC_TIME[4]	RTC data(minute)	h12	12 minutes
	_RTC_TIME[5]	RTC data(second)	h54	54 seconds
	_RTC_TIME[6]	RTC data(weekday)	h02	Tuesday
	_RTC_TIME[7]	RTC data(a hundred years)	h20	2000s(decade)
%FW30	_RTC_DATE	RTC current date	2016-11-08	November 8, 2016
%FW31	_RTC_WEEK	RTC current weekday	2	Tuesday
%FD16	_RTC_TOD	RTC current hour	19:17:14.345	19:17:14.345

(c) Example of modifying clock data through the program

A user can set up the clock data through the program using RTC-SET function blocks as below.

Function block	I/O variable	Description
RTC_SET	REQ	It executes the function block in rising edge.
BOOL - REQ DONE - BOOL	DATA	Time data to input (Refer to the below table.)
ARRAY[8] DATA STAT USINT	DONE	If the process is performed normally, 1 is output.
	STAT	In case of error, it outputs error codes.

Variable	Details	Example	Variable	Details	Example
DATA[0]	Year	16#16	DATA[4]	Minute	16#30
DATA[1]	Month	16#11	DATA[5]	Second	16#11
DATA[2]	Day	16#30	DATA[6]	Day of Week	-
DATA[3]	Hour	16#12	DATA[7]	Age	16#20

In case of 12:30:11, 30th, November, 2016, you do not need to input the separate day data since the day of week corresponding to the date is automatically set up.

(d) Example of modifying clock data through the system flags

You can set up the clock data by filling up the clock data in the below area and turning on %FX20480 (_RTC_WR) without using function blocks.

Memory	Flag name	Description
%FB2568	_RTC_TIME_USER	Time to set
	_RTC_TIME_USER[0]	Time to set (year)
	_RTC_TIME_USER[1]	Time to set (month)
	_RTC_TIME_USER[2]	Time to set (day)
%FB2568~	_RTC_TIME_USER[3]	Time to set (hour)
%FB2575	_RTC_TIME_USER[4]	Time to set (minute)
	_RTC_TIME_USER[5]	Time to set (second)
	_RTC_TIME_USER[6]	Time to set(weekday)
	_RTC_TIME_USER[7]	Time to set (a hundred of years)

(e) How to express day of the week

Number	0	1	2	3	4	5	6
Day	Sun.	Mon.	Tue.	Wed.	Thu.	Fri.	Sat.

(2) Time error

The RTC's error may be different depending on usual temperature.

Operation temperature	Maximum difference(Second/1 Day)	General case(Second/1 Day)
0℃	-12.26 ~ -1.03	-6.64
25℃	-10.37 ~ 0.86	-4.75
55℃	-13.09 ~ -1.86	-7.47

Notice

- The clock data may not be stated when the product is sent out from a factory so you need to set up clock data correctly before using the product.
- If you apply unavailable clock data to the RTC, it will not work normally. Ex.) 25:00, 32th, 14 month
- In case the RTC stops due to battery problem or errors occur, when you input new clock data to the RTC, the error will be cleared.

10.5 Remote Function

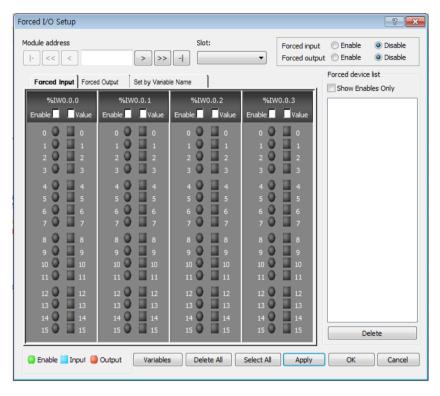
In the motion controller, you can change the operation mode through the key switch attached to the module or through communication. For remote operation, put the basic unit's mode change switch on STOP position.

- (1) The kinds of remote operations are as below.
 - Access to XG5000 and operation through the USB port installed in the basic unit
 - You can operate the other motion controllers connected to the network by using the motion controller's communication functions when XG5000 is connected to the basic unit.
 - You can control the motion controller's operation status with HMI software, etc. though the dedicated communication

(2) Remote RUN/STOP

- It is the function to execute RUN/STOP through communication modules through the outside.
- This convenient function can be helpfully used when the motion controller is installed in the bad palace to operate or you need to RUN/STOP the CPU modules of a control panel from the outside.

(3) Remote reset


- It is the function to reset the CPU module by remote control when errors occur.
- 'Reset' and 'Overall Reset' are available.

10.6 I/O Forced On/Off Functions

The forced I/O function is used to turn On/Off I/O areas by force regardless of the results of program execution.

10.6.1 Forced I/O Setting Method

Click "Online" - " Forced I/O setting . .

The below table represents the items related to the forced I/O setting.

Item		Description				
Movement of address		You can select the base and slot.				
Apply		You can set the forced input and output Enable / Unable				
	Flag	You can set the forced I/O Enable / Unable by bit.				
Individual	Data	You can set the forced I/O data (On/Off) by bit.				
View variables/comments		You can check the set input, output variables.				
Select All		You can set the forced I/O Enable under the condition that the whole I/O areas are On.				
Delete All		You can delete the forced I/O Enable under the condition that the whole I/O areas are Off.				
Set device		It displays the I/O area where even one bit is set.				

10.6.2 Time to Process the Forced I/O On/Off and Processing Method

(1) Forced input

When the forced input is set, among the data read from the input model at the time of Refresh, the data of the contact set as the forced On/Off is replaced by the forced set data to update the input image area. Accordingly, during program operation, among the actual input data, the forced set area is operated with the results replaced by the forced set data.

(2) Forced output

After completing the operation of user programs, at the time of output Refresh, among the data of the output image areas including the operation results, the data of the contact set as the forced On/Off is replaced by the forced set data, and then, they are output. Accordingly, in contrast with the forced input, in the case of the forced output, the data of the output image area shows the same data with the program operation results but the actual output changes by the forced output On/Off settings.

(3) Instructions to use the Forced I/O functions

- It work from the time of setting each I/O'Enable' after setting the forced data.
- Although the actual I/O modules are not equipped, the forced input can be set.
- In spite of Off → On of the power, change of operation modes and operation by the reset key. The previously set On/Off data is stored in the motion controller.
- Even in STOP mode, the forced input and output data is not eliminated.
- When you try to set the new data from the beginning, cancel all settings of I/O by using 'Delete All' before use.

(4) Operations in case of errors

 When errors occur after setting the forced output, it works based on \(\text{Output Hold when errors occur } \) of output control settings in the basic parameters and 「Emergency Output」 of the I/O parameters. In case of error occurrence, if you select the emergency output as 「Clear」 after setting Output Hold when errors occur, the output is off when errors occur; if you choose 「Hold」, the output status will be maintained.

10.7 Function Saving the Operation History

There are 5 types of operation history; error history, mode conversion history, power down history and system history. The occurrence time, frequency, operating details of each event are saved in the memory and you can conveniently monitor the data through XG5000. The operation history is saved in the motion controller unless it is deleted through XG5000.

10.7.1 Error History

It saves the error history occurred during operation.

- The error code, date, time, error details are saved..
- The histories can be saved up to 1,024 EA.
- It is automatically canceled when the memory backup is cleared due to the battery's low voltage, etc.

10.7.2 Mode Conversion History

It saves the information on the changed mode and time when changing the operation mode.

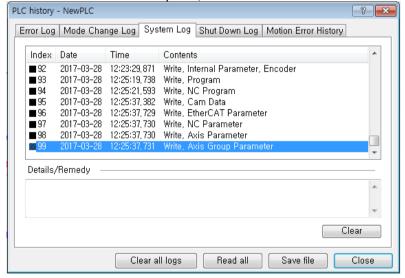
- It saves the data, time, mode conversion details.
- The histories can be saved up to 1,024 EA.

10.7.3 Power Down History

On or Off time of the power is saved as the ON/OFF information.

- ON/OFF information, date and time are saved.
- The histories can be saved up to 2.048 EA.

10.7.4 System History

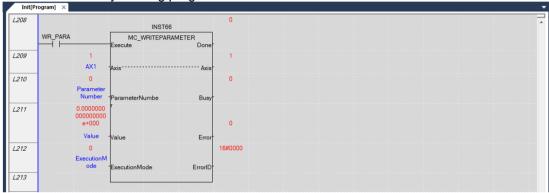

It saves the operation history of the system occurred during operation.

- The date, time and details of operation changes are saved.
- The histories related to system operation are saved; XG5000 operation information, change of the key switch position,
- The histories can be saved up to 1,024 EA.

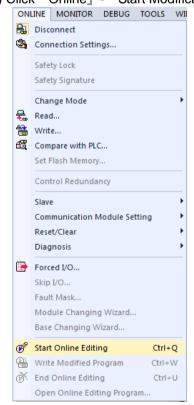
10.7.5 Motion Error History

It saves the error history occurred during motion control.

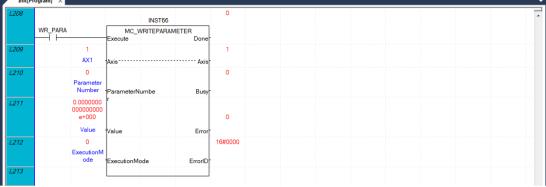
- The error code, date, time, error details are saved...
- The histories related to system operation are saved; XG5000 operation information, change of the key switch position, etc.
- The histories can be saved up to 2,048 EA.

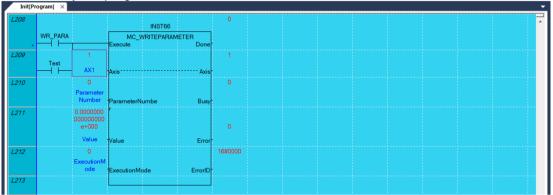

10.8 Program Modification during Operation(Modification during RUN)

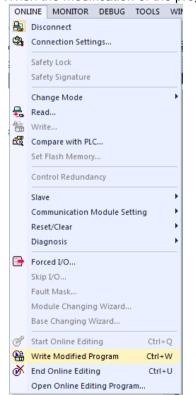
You can modify the programs and communication parameters without stopping control operations during running the motion controller. The below describes the basic modification method. For more details on Modification during RUN, refer to the XG5000 manual.

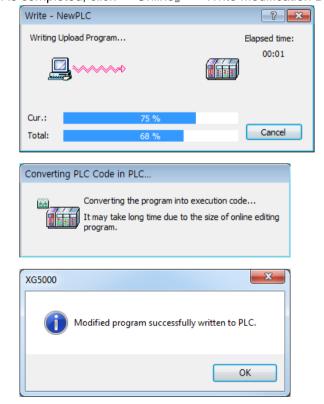

The items that can be modified during RUN are limited to programs, network parameters. You cannot modify adding tasks, deletion, parameters, etc. during RUN.

10.8.1 Modification Procedures during RUN

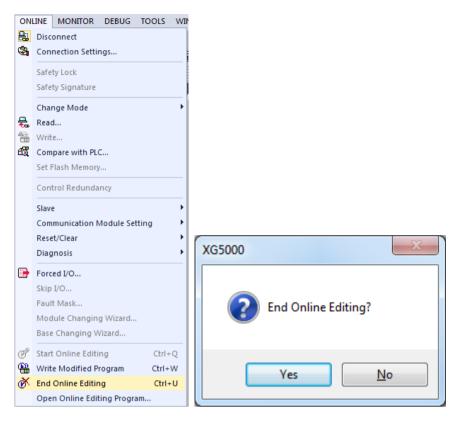

(1) It shows the currently running program.


(2) Click "Online" - "Start Modification During RUN" .

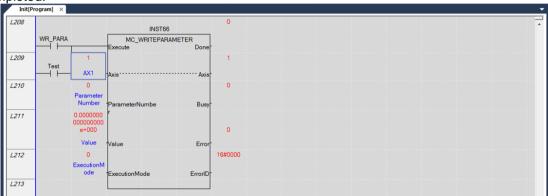

(3) Then, the background color of the program window changes and it is converted into the mode of modification during RUN.



(4) You can modify the program.

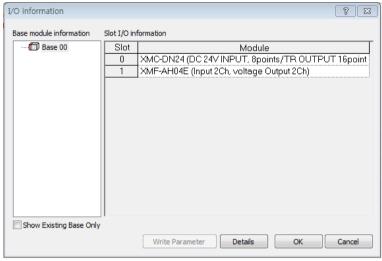


(5) When the modification of the program is completed, click 『Online』 - 『Write Modification During RUN』

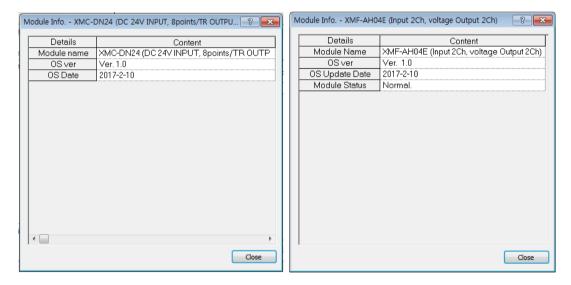


(6) When Write Program is completed, click <code>"Online_" - "End Modification During RUN_"</code> .

(7) The background color of the program window changes into the original one and modification during RUN is completed.


Notice

• For Modification of communication parameters during RUN, after changing the network configuration items of XG5000 in the RUN status without going into the Modification during RUN menu, click <code>"Online" - "Write" and choose 'Network Parameter' to execute Write.</code>


10.9 Read I/O Information

It is the function to monitor each module's information comprising the motion controller system.

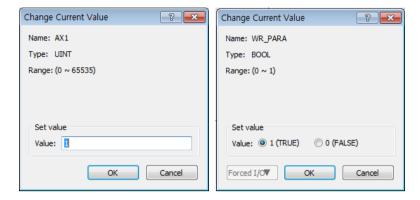
(1) If you click <code>"Online_" - "Diagnosis_" - "I/O Information_"</code>, the information of each module of connected systems will be monitored.


(2) If you click 'Detailed Information' after choosing the module, the details on the module will be displayed.

10.10 Monitoring Functions

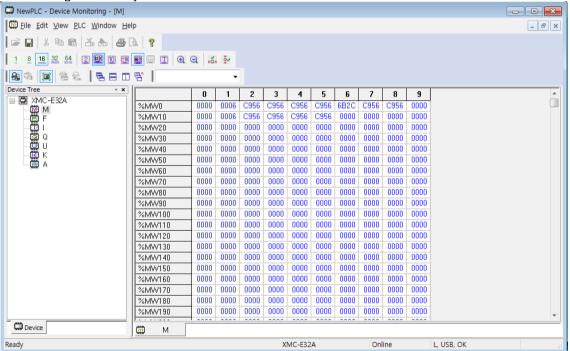
It is the function to monitor the motion controller system's general information.

(1) If you click <code>"Monitor"</code> , the submenu will be displayed as below.

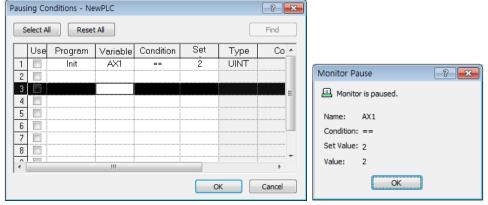


(2) The below table provides the descriptions on each item.

Items	Descriptions	Remarks	
Start/End monitor	Specifies the startup and end of the monitor.	Changes every time you click	
Suspend monitor	Suspends the monitor.		
Restart monitor	Executes the suspended monitor again.		
Monitor suspension setting	It is the function to suspend the monitor when the set device's value is matched with the conditions.	Restarts when you click 'Restart Monitor'	
Changing the current value	Changes the currently selected device's current value.		
System monitor	Monitors the current system's general information.		
Device monitor	It is the function to monitor each device.		
Trend monitor	Monitors the set device's trend.		
User event	Monitors the set device's value when the event specified by a user occurs.	For more details, refer to the XG5000 manual.	
Data trace	Traces the set device's value.		

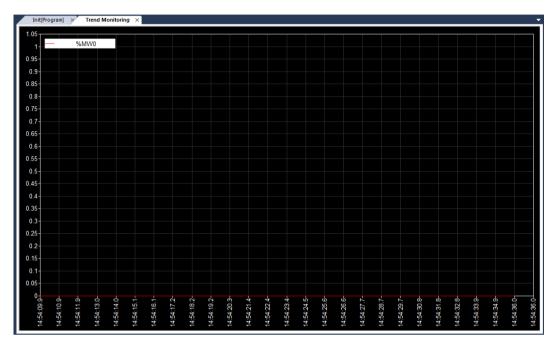

(a) Changing the current value

It is the function to change the current value of each selected device in the program window.


(b) Device monitor

It is the monitoring function by device.

(c) Monitor suspension setting


It is the function to stop monitoring when the set device value is matched.

(d) Trend Monitor

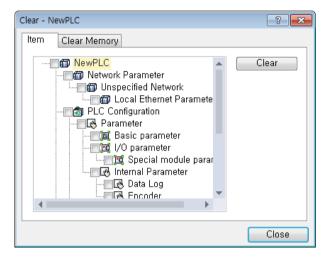
It is the function to represent the set device value in a graphic form. The value represented on the graph is not the data collected by the motion controller at the right timing but the value read from XG5000 through the communication function. Accordingly, communication delay can occur so it may not be matched with the actual data collected at the right cycle.

You are recommended to use the Trend Monitor function to check the rough data trend.

(e) Data trace

It is a function to collect device values set at the time of event set by the user or at a desired time and monitor them with graph or data. Unlike trend monitor, it collects actual data at a sampling period set by the user, and thus is used check actual data at a certain point in time.

- 1) Data Trace condition setting
- 2) Device setting
- 3) Data display


Note

For more details on the monitoring function, refer to XG5000 manual.


10.11 Function to Delete All of the Motion Controller

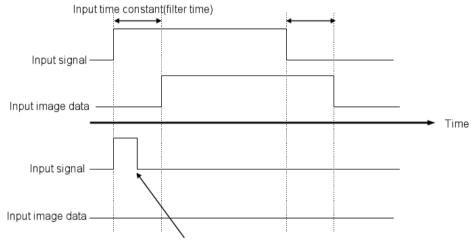
The function to delete all of motion controller is the initialization function to delete all programs, parameters, passwords, data stored in the motion controller.

- (1) How to delete all of motion controller
 - (a) Click "Online" "Reset/Clear" "Clear PLC".

(b) If you choose "Yes," in the dialog box, the window for selecting the connection method with the motion controller to be deleted is created.

(c) If you select "Yes" in the confirmation window, the data value will be cleared to "0". Since the parameter may need a default value depending on the data, an error may occur after the erase operation. If an error occurs, it is necessary to write the data as an initial value once.

10.12 Built-in Input/Output Function

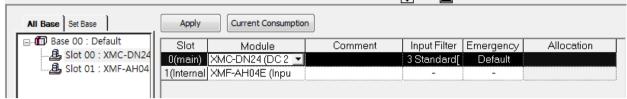

10.12.1 Input Filter Function

The motion controller's input modules have the input filter function to prevent the external noise signal flowed into the input signal. For more details on the input filter function, refer to the below.

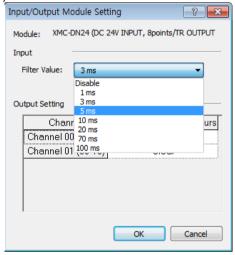
(1) Purposes and Operations of the input filter function

Under the environment with serious noise or in the case of the equipment that is greatly affected by the input signal's pulse width, the system may receive incorrect input depending on the input signal status. To prevent such incorrect input, the input filter function does not regard the signal that is shorter than the set time by a user as input. In the case of the motion controller, you can set the input filter time in the range of 1ms~100ms.

The below timing chart represents the operations of the input filter function.


The pulse width that is shorter than the input time constant is not regarded as the input signal

(2) Input filter setting method

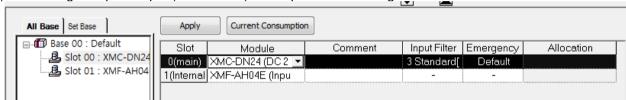

(a) Click 'I/O Parameter' in project window of XG5000.

(b) Select 'Digital Input/Output (XMC-DN24)' in I/O parameter setting window and double-click.

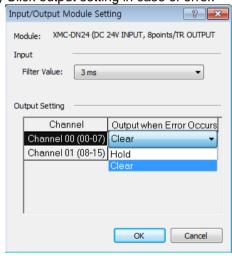
(c) Set the filter value.

Notice

When the filter value is set, the cycle of the main task should be set to a value smaller than the set filter value.


For example, if the filter value is set to 3ms, the cycle of the main task should be set to 1ms or 2ms.

10.12.2 Emergency Output Function


The XMC's output module supports the emergency output function to determine whether maintaining the output status of the output module or clearing it when the motion controller is stopped due to errors.

You can set the emergency output by 8 points. For more details on how to set the emergency output, refer to the below.

- (1) Output status setting in case of error
 - (a) Detect 'Digital Input/Output (XMC-DN24)' in I/O parameter setting window and double-click.

(b) Click output setting in case of error.

If you select[Clear] as the output setting when an error occurs, the output is turned off when the operation is stopped due to an error that occurs in the motion controller. If you select [Hold], the output status is maintained.

10.13 Reading of Serial Number Information

It is a function to monitor serial number information of motion controller.

(1) It can be monitored as follows through variables.

Memory	Flag name	Data	Description
	SERIAL_NUM		Serial number data[]
	_SERIAL_NUM[0]	h08	Serial number 1~2th digit
	_SERIAL_NUM[1]	h08	Serial number 3~4th digit
	_SERIAL_NUM[2]	h08	Serial number 5~6th digit
	_SERIAL_NUM[3]	h08	Serial number 7~8th digit
	_SERIAL_NUM[4]	h08	Serial number 9~10th digit
	_SERIAL_NUM[5]	h08	Serial number 11~12th digit
	_SERIAL_NUM[6]	h08	Serial number 13~14th digit
	_SERIAL_NUM[7]	h08	Serial number 15~16th digit
	_SERIAL_NUM[8]	h08	Serial number 17~18th digit
%FB80	_SERIAL_NUM[9]	h08	Serial number 19~20th digit
	_SERIAL_NUM[10]	h08	Serial number 21~22th digit
	_SERIAL_NUM[11]	h08	Serial number 23~24th digit
	_SERIAL_NUM[12]	h08	Serial number 25~26th digit
	_SERIAL_NUM[13]	h08	Serial number 27~28th digit
	_SERIAL_NUM[14]	h08	Serial number 29~30th digit
	_SERIAL_NUM[15]	h08	Serial number 31~32th digit
	_SERIAL_NUM[16]	h08	Serial number 33~34th digit
	_SERIAL_NUM[17]	h08	Serial number 35~36th digit
	_SERIAL_NUM[18]	h08	Serial number 37~38th digit
	_SERIAL_NUM[19]	h08	Serial number 39~40th digit

Chapter10 CPU Function

Ex) If the serial number is 123456789, the flag are displayed as follows
_(The unused area of the serial number is displayed as 0)

_								
Mon	Monitor 1							
	PLC	Program	Variable/Device	Value		Type	Device/Variable	Comment
1	NewPLC	<global></global>	□ _SERIAL_NUM			ARRAY[%FB80	Serial Number
2	NewPLC	<global></global>	_SERIAL_NUM[0]	HEX	16#50	BYTE		
3	NewPLC	<global></global>	_SERIAL_NUM[1]	HEX	16#07	BYTE		
4	NewPLC	<global></global>	_SERIAL_NUM[2]	HEX	16#21	BYTE		
5	NewPLC	<global></global>	_SERIAL_NUM[3]	HEX	16#31	BYTE		
6	NewPLC	<global></global>	_SERIAL_NUM[4]	HEX	16#BA	BYTE		
7	NewPLC	<global></global>	_SERIAL_NUM[5]	HEX	16#20	BYTE		
8	NewPLC	<global></global>	_SERIAL_NUM[6]	HEX	16#00	BYTE		
9	NewPLC	<global></global>	_SERIAL_NUM[7]	HEX	16#00	BYTE		
10	NewPLC	<global></global>	_SERIAL_NUM[8]	HEX	16#00	BYTE		
11	NewPLC	<global></global>	_SERIAL_NUM[9]	HEX	16#00	BYTE		
12	NewPLC	<global></global>	_SERIAL_NUM[10]	HEX	16#00	BYTE		
13	NewPLC	<global></global>	_SERIAL_NUM[11]	HEX	16#00	BYTE		
14	NewPLC	<global></global>	_SERIAL_NUM[12]	HEX	16#00	BYTE		
15	NewPLC	<global></global>	_SERIAL_NUM[13]	HEX	16#00	BYTE		
16	NewPLC	<global></global>	_SERIAL_NUM[14]	HEX	16#00	BYTE		
17	NewPLC	<global></global>	_SERIAL_NUM[15]	HEX	16#00	BYTE		
18	NewPLC	<global></global>	_SERIAL_NUM[16]	HEX	16#00	BYTE		
19	NewPLC	<global></global>	_SERIAL_NUM[17]	HEX	16#00	BYTE		
20	NewPLC	<global></global>		HEX	16#00	BYTE		
21	NewPLC	<global></global>		HEX	16#00	BYTE		
22								

Chapter 11 Datalog Function

11.1 Overview

Motion controller comes with built-in datalog function. This chapter describes the specification and usage of the datalog function.

11.1.1 Features

Using the motion controller internal datalog function, you can collect run data of motion controller and save them into a SD memory card in the CSV (Comma-Separated Values) format just with a simple parameter configuration. The function has the following features.

(1) Easy Motion Controller Device Data Saving

You can save motion controller's various device data with just a simple parameter configuration. It eliminates the need to construct a network to collect large volumes of run data, thereby saving system costs.

In addition, it eliminates problems that might be caused in network-based data collection, such as communication cutoff or cable disconnection.

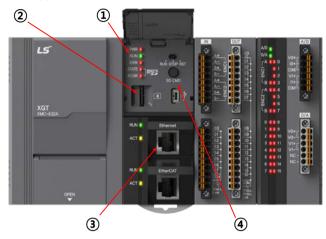
(2) Precise Data Collection

This function allows you to collect precise data for main task, by 1ms or in accordance with other various run conditions.

In addition, you can use the trigger function to save data before/after the trigger. Or you can use the event function to save data changes from the event occurrence. This allows for easy analysis of the system's run status, which also saves system maintenance costs.

(3) Large-volume Operation Data

The function supports up to 8GB SD memory card, which allows for saving run data over a long period of time


(4) FTP Interface

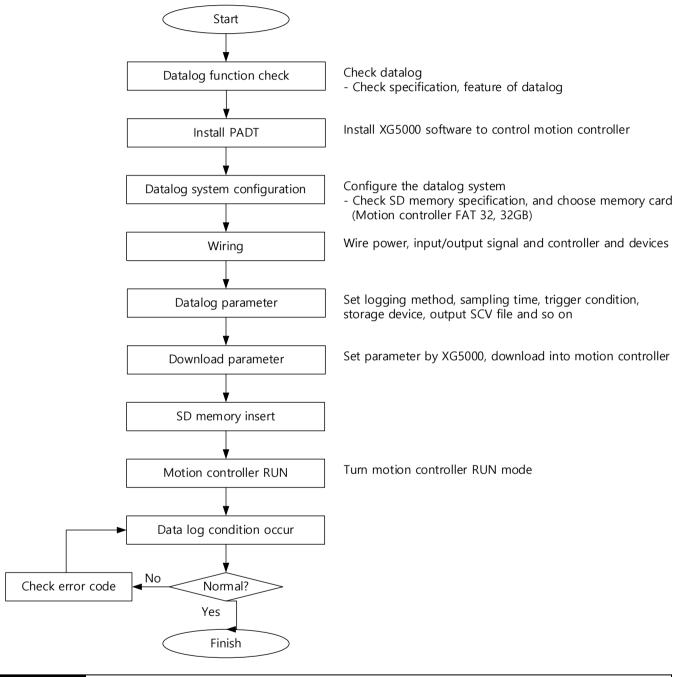
Files saved in the datalog can be read remotely using FTP, making it easier to verify data fluctuations.

11.1.2 Part Names

The names of pars related to datalog function are as follows.

(1) Part names

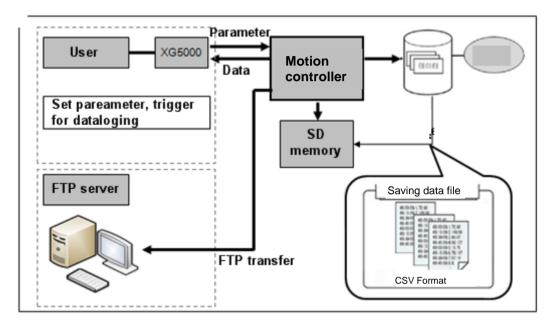
	Names	Description
1	Status LED	Indicates run status of SD memory and datalog.
2	SD memory mounting slot	A slot where SD memory is mounted.
3	Internal Ethernet Port	The port is used when transmitting files using the FTP function of the internal Ethernet.
4	SD CMD Button	It is used for SD PWR ON, OFF or SD additional functions • Push the button for 0.7[sec] ~ 3[sec] : SD additional function • Push the button above 3[sec] : SD PWR ON, OFF


(2) LED Indications

Names	Description	Specifications
PWR	Indicates motion controller power supply status	Turns on during power ON.
RUN	Indicates motion controller run	Turns on during RUN, and turns off at STOP, ERR.
ERR	Indicates motion controller error status	Flashes when error occurs
STATE	Indicates the status of SD memory mounted.	Turns on : SD card mounted, status normal Flashes : SD card mounted, error occurred (flashes at 2s interval) Turns off: SD card removed
RD/WR	Indicates SD card control status	Flashes: Reading or writing SD card (flashes at 100ms interval) Turns off: Access to SD card terminated

11.1.3 Operation Sequence

Datalog is performed in the following sequence.



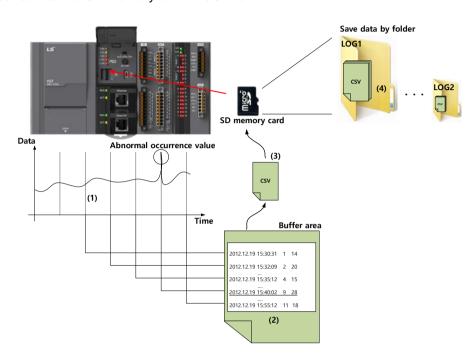
Note

- 1. The SD memory should be formatted in FAT 32 format to be used for motion controller datalog function.
- 2. The maximum storage of SD memory supported is 32GB.

11.1.4 Control Signal Flow

The datalog function saves the motion controller device values into the SD memory or exchanges the value with external device or software, in accordance with the following data flow.

11.2 Performance Specifications


Items			Specifications	Note
Group Configuration		uration	Up to 16 groups	
	Configuration Data		Up to 64 per group	
	Data Collection	n Type	regular / trigger / event	
Function	File Format		CSV	
Configuration	File Size		Up to 16MByte	
	Data Type		BIT, BYTE, WORD, DWORD, LWORD, SINT, INT, DINT, LINT USINT, UINT, UDINT, ULINT, REAL, LREAL, STRING	
	Save Data Ty	pe	Decimal, Hexadecimal, Exponent, character string	
	Sampling Cyc	ele	Main-task Cycle, Designation Cycle, Designation Time	
	Sampling Obj	ect	64 per file	
Regular Save	File	Conversion Timing	Designate with File Size 10 ~ 16,384KB Designate with No. of Save Lines 1,000~50,000	
	Conversion	Maximum No. of Files	256 per folder	
	Single Condition		Bit: elevation/descent	
			Word: small, big, same, different, big or same, small or same	
	Operation Condition		AND, OR condition	
Trigger Save	Trigger Save Range		Up to 69,905 data per group	
mgger c are	Files	Conversion	Designate with File Size 10 ~ 16,384KB	
		Timing	Designate with No. of Save Lines 1,000~50,000	
	Conversion	Maximum No. of Files	256 per folder	
	Single Condition		Bit: ON, OFF, elevation, descent, transfer Word: small, big, same, different, big or same, small or same	
	Operation Condition		AND, OR condition	
Event Save	Files	Conversion Timing	Designate with File Size 10 ~ 16,384KB Designate with No. of Save Lines 1,000~50,000	
	Conversion	Maximum No. of Files	256 per folder	
F	Formatting Ty	pe pe	Quick Format	
Formatting Function	Cluster Size		32kByte	
Function	Volume Label		LSIS (fixed)	
	Power Input		2.7 ~ 3.6VDC	
	Card Size		15mm * 11mm * 1.0mm	
SD memory	Maximum Capacity		Up to 32GB (Only 8GB can be available for above 8GB memory size)	
Ź	Memory Type		Micro SD, SDHC (Recommended manufacturer: SanDisk, Transcend)	
	File System		FAT 32	

Note

SanDisk, Transcend SD memories are recommended for internal datalog. Use of SD memory from other manufacturer may result in unexpected run. Please choose your SD memory card with caution.

11.3 Specification Functions

Datalog function refers to storing device values of motion controller at a set interval or when the trigger condition occurs. Thus collected data are saved into the SD memory card in CSV format.

11.3.1 Data Type and Device

You can save device memories using motion controller's datalog function. When the clock function is normal, the memory is saved along with the time information.

If the clock function is abnormal, the time information is saved as the default value, which is 2000/01/01 00:00:00.000.

(1) Data Type

The data types and character strings that can be saved using the internal datalog function of motion controller is as follows.

Data Type	Output	Size (including ',' BYTE)
BOOL	0 or 1	2
BYTE	00 ~ FF	3
WORD	0000 ~ FFFF	5
DWROD	00000000 ~ FFFFFFF	9
LWORD	00000000 00000000 ~ FFFFFFF FFFFFFF	17
SINT	-128 ~ 127	5
INT	-32,768 ~ 32,767	7
DINT	-2,147,483,648 ~ 2,147,483,647	12
LINT	-576,460,752,303,423,488 ~ 576,460,752,303,423,487	21
USINT	0 ~ 255	4
UINT	0 ~ 65,535	6
UDINT	0 ~ 4,294,967,295	11

Data Type	Output	Size (including ',' BYTE)
ULINT	0 ~ 1,152,921,504,606,846,975	20
REAL	-3.402823466e+038 ~ -1.175494351e-038 or 0 or 1.175494351e-038 ~ 3.402823466e+038	17
LREAL	-1.7976931348623157e+308 ~ -2.2250738585072014e-308 or 0 or 2.2250738585072014e-308 ~ 1.7976931348623157e+308	24
STRING	Fixed Character (up to 32 characters	33

ASCII Code	Indication	ASCII Code	Indication	ASCII Code	Indication	ASCII Code	Indication
0x20	SP	0x2A	*	0x3E	>	0x7B	{
0x21	!	0x2B	+	0x3F	?	0x7C	I
0x22	££	0x2D	-	0x41 ~ 0x5A	English (upper case)	0x7D	}
0x23	#	0x2E	•	0x5B	[0x7E	~
0x24	\$	0x2F	1	0x5C	١		
0x25	%	0x30 ~ 0x39	Number	0x5D]		
0x26	&	0x3A	:	0x5E	^		
0x27	•	0x3B	;	0x5F	_		
0x28	(0x3C	<	0x60	`		
0x29)	0x3D	=	0x61 ~ 0x7A	English (lower case)		

(2) Device Available for Saving
The devices that can be used to save files using the internal datalog function of motion controller are as follows.

Data Type	Description	Note
BOOL	I, Q, M, K, A, F, U	
WORD	I, Q, M, K, A, F, U	

(3) Calculates data unit when saving buffer

The motion controller for data saving supported by internal datalog is BYTE. Therefore, operation of data that accumulates inside the buffer during data collection is performed as follows.

(Unit: BYTE)

Туре	Calculation Unit
BOOL	1
BYTE	1
WORD	2
DWORD	4
LWORD	8
INT	2
SINT	1
DINT	4
LINT	8
UINT	2
USINT	1
UDINT	4
ULINT	8
REAL	4
LREAL	8
STRING	32

(4) Data Conversion

Data are collected in the following order, and converted into the set types.

(a) 2 WORD Data (DWORD, DINT, UDINT, REAL)

Ex) %MW0: 0x1234, %MW1: Converts to 0x0000 → 0000 1234

Sequence	#2	#1
Device	%MW1	%MW0

(b) 4 WORD Data (LWORD, LINT, ULINT, LREAL)

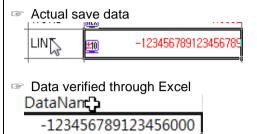
Ex) %MW0: 0x1234, %MW1:0x5678, %MW2:0x000, %MW3: Converts to 0x000 → 0000 0000 5678 1234

Sequence	#4	#3	#2	#1
Device	%MW3	%MW2	%MW1	%MW0

(c) Character String Conversion

- Unlike other types, character strings are saved up to 32 characters, and converted into 2 characters per word. If a 0x00 value exists during conversion, conversion is performed up to that character string, and further conversion is not performed.

Ex) 16 words without 0x00 → 32 characters


16 words with 0x00 → character string converted up to 0x00

- When converting character strings, characters which do not correspond with ASCII (see 11.3.1) are all converted to Null.

Sequence	#16	#15	#14		#1
Device	%MW14	%MW13		%MW0	%MW14

Note

If the data are saved using the LINT type, the following may not be represented when verifying the data through Excel.

In such cases, you can view the normal data by reading the data using Word Pad.

Note

Float conversion, such as REAL type, supports IEEE754 standards as follows.

BIT 31 BIT 0 Exponent Fix Sign (S) E) d Decimal Point (F)

Sign (S): 1 BIT Exponent (E): 8 BIT

Fixed Decimal Point (F): 23 BIT

Conversion Value:(-1)^S X (1+FX2⁻²³)X2^(E-127)

0< Exponent (E) < 255 → integer

Exponent (E) = 0, Fixed Decimal Point (F) = $0 \rightarrow 0$ (ZERO)

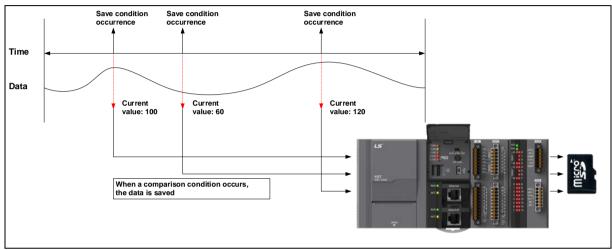
Exponent (E) = 0, Fixed Decimal Point (F) > 0 \rightarrow Conversion value close to 0

Exponent (E) = 255, Fixed Decimal Point (F) = 0 → INFINITY

Exponent (E) = 255, Fixed Decimal Point (F) > 0 \rightarrow NAN

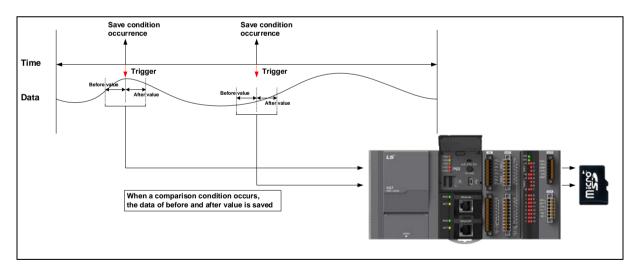
Note

In case of REAL, LREAL types, -NaN, +NaN are saved for undefined data, and -INF, +INF character strings are saved for data with infinite range.

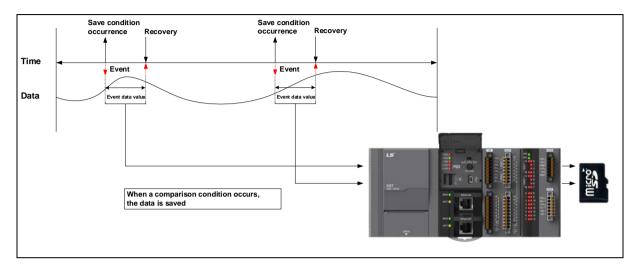

Please verify the data save range before use.

11.3.2 Data Save Method

The datalog function saves data using one of the three methods that follows.


(1) Regular Save

Regular Save refers to saving data at main task or at a set interval That is, data at the time of save condition are saved, without considering the status before or after the save condition. This method is useful for collecting certain data at a certain interval.


(2) Trigger Save

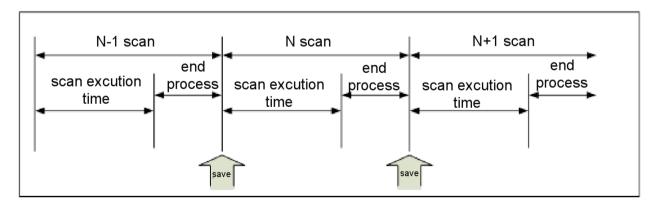
Trigger Save refers to saving a set number of data before and after the relevant point: the number of data are set by parameter. This method is useful when you want to view data from a certain period before and after a certain event.

(3) Event Save

Event Save refers to monitoring the device value collected, and saving the present data when a certain event condition is satisfied. This method is useful for analyzing fluctuation of event values and timing by saving data from the event occurrence to the event termination.

11.3.3 Data Sampling Condition

The datalog function classifies the data save conditions and intervals as follows, depending on the parameter setting.


(1) Regular Save

The following are condition setting items for Regular Save.

Setting Operation		Note
Save at every main task	Data are saved after End of each main task	
Save at certain interval	Data are saved after END of each main task after lapse of set time	
Save at certain time	Data are saved after END of each main task after lapse of set time	

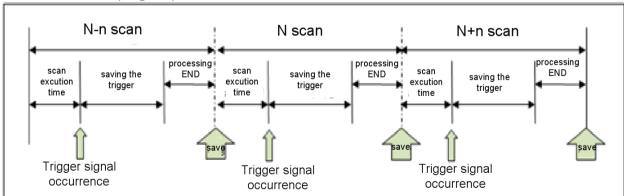
(a) Save at every scan

When using the scan interval save method, data are collected after END of each main task. If the volume of stored data is large, a scan watchdog timer error may occur.

- (b) Designation Cycle Save It samples data when a set interval arrives.
- (c) Designation Time Save It samples data when a set interval arrives.

Note

- 1. The data collection is performed at the interval set by the parameter.
- 2. Each group has its buffer area, where certain data are collected an then saved into the SD memory.
- 3. In case of data loss, DLxx_Ovf flag will be on.
- (2) Trigger Save


Save data in the preset number of collection data. The following are condition setting items for Regular Save.

	Trigger Occurrence Condition	Device Set Condition	Operation	Note
BIT	Elevation		Saves data at elevation edge of set device bit value FALSE → TRUE 0 1	
Condition	Descent		Saves data at descent edge of set device bit value TRUE → FALSE 1 0	
Word Condition	Elevation	Small	Samples data at the elevation edge when Device Set condition changes from FALSE (0) to TRUE(1). FALSE(0) TRUE(1) Ex) device value>= set value device value=set value device value>set value	
	Descent		Samples data at the descent edge when Device Set Condition changes from TRUE(1) to FALSE(0). TRUE(1) FALSE(0) Ex) device value device value=set value device value=set value device value=set value	

	Trigger Occurrence Condition	Device Set Condition	Operation	Note
	Elevation	Small or Same	Samples data at the descent edge when Device Set Condition changes from FALSE(0) to TRUE(1). FALSE(0) TRUE(1) Ex) device value>set value device value<=set value	
	Descent	Small of Same	Samples data at the descent edge when Device Set Condition changes from TRUE(1) to FLASE(0). TRUE(1) FALSE(0) EX) device value<=set value device value>set value	
Word	Elevation	Large	Samples data at the elevation edge when Device Set Condition changes from FALSE(0) to TRUE(1). FALSE(0) TRUE(1) Ex) device value<=set value device value==set value device value>=set value device value>=set value	
Condition	Descent		Samples data at the descent edge when Device Set Condition changes from TRUE (1) to FALSE(0). TRUE(1) FALSE(0) EX) device value> set value	
	Elevation	- Large or Same	Samples data at the elevation edge when Device Set Condition changes from FALSE(0) to TRUE(1). FALSE(0) TRUE(1) Ex) device value< set value Ex) device value>=set value	
	Descent		Samples data at the descent edge when Device Set Condition changes from TRUE(1) to FALSE(0). TRUE(1) FALSE(0) Ex) device value>=set value Ex) device value<	

	Trigger Occurrence Condition	Device Set Condition	Operation	Note
	Elevation	Somo	Samples data at the elevation edge when Device Set Condition changes from FALSE(0) to TRUE(1). FALSE(0) TRUE(1) Ex) device value ≠ set value device value = set value	
Word	Descent		Samples data at the descent edge when Device Set Condition changes from TRUE(1) to FALSE(0). TRUE(1) FALSE(0) device value= set value device value≠ set value	
Condition	Elevation	Different	Samples data at the elevation edge when Device Set Condition changes from FALSE(0) to TRUE(1). FALSE(0) TRUE(1) EX) device value= set value EXi device value≠ set value	
	Descent		Samples data at the descent edge when Device Set Condition changes from TRUE(1) to FALSE(0). TRUE(1) FALSE(0) device value= set value device value= set value	

Trigger occurrence condition is decided by main task END. If trigger occurs again when data sampling, the trigger is ignored and data sampling keeps on

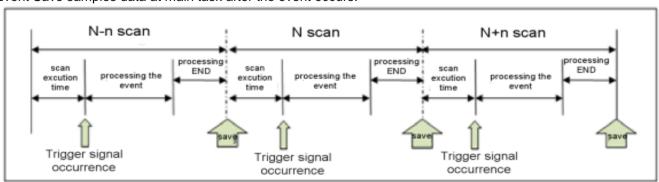
(3) Event Save

Event Save runs with similar conditions to Trigger Save. Event Save refers to saving data when the event occurs, until the conditions are not satisfied.

	Trigger Occurrence Condition	Device Set Condition	Operation	Release Value Setting		
	Elevation		Saves data at elevation edge of set device bit value FALSE → TRUE 0 1			
	Descent		Saves data at descent edge of set device bit value TRUE → FALSE 1 0			
Bit Condition	Transfer	- S			Saves data when set device bit value is transferred TRUE → FALSE FALSE → TRUE O Or Or	
	ON		Saves data when set device bit value is ON ON 1			
	OFF					

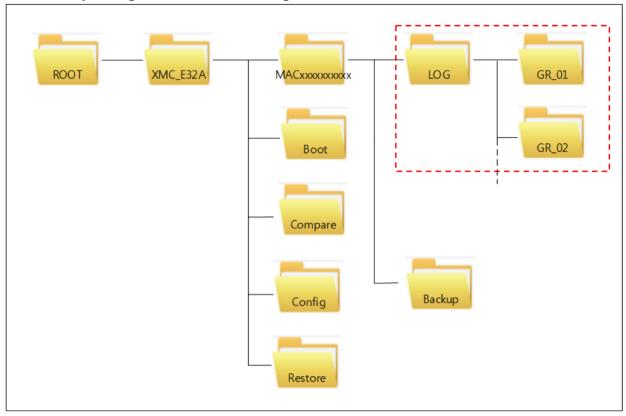
	Trigger Occurrence Condition	Device Set Condition	Operation	Release Value Setting
	Elevation		Samples data at the elevation edge when Device Set Condition changes from FALSE (0) to TRUE(1). FALSE(0) TRUE(1) EX) device value>=set value device value=set value device value>set value device value>set value	Setting Available
	Descent		Samples data at the descent edge when Device Set Condition changes from TRUE(1) to FALSE(0). TRUE(1) FALSE(0) EX) device value device value=set value device value=set value device value=set value	
Word Condition	Transfer	Small	Samples data at the elevation edge or descent edge FALSE(0) TRUE(1) Delication edge or descent edge TRUE(1) FALSE(0) Exit device value>=set value device value=set value=	
	ON		Samples data when Device Set Condition is TRUE(1) FALSE(0) TRUE(1) Ex) Device value ≥ Set value Device value = Set value Device value > Set value	
	OFF		Samples data when Device Set Condition is FALSE(0) TRUE(1) FALSE(0) Ex) Device value < Set value Device value > Set value Device value > Set value Device value > Set value	

	Trigger Occurrence Condition	Device Set Condition	Operation	Release Value Setting
	Elevation	Descent Transfer Small or Same ON OFF	Samples data at the elevation edge when Device Set Condition changes from FALSE (0) to TRUE(1). FALSE(0) TRUE(1) EX) device value>=set value device value=set value device value>set value device value>set value	Setting Available
	Descent		Samples data at the descent edge when Device Set Condition changes from TRUE(1) to FALSE(0). TRUE(1) FALSE(0) EX) device value device value=set value device value=set value device value=set value	
Word Condition	Transfer		Samples data at the elevation edge or descent edge FALSE(0) TRUE(1) TRUE(1) FALSE(0)	
	ON		Samples data when Device Set Condition is TRUE(1) FALSE(0) TRUE(1) Ex) Device value ≥ Set value Device value = Set value Device value > Set value	
	OFF		Samples data when Device Set Condition is FALSE(0) TRUE(1) Ex) Device value < Set value Device value ≥ Set value Device value > Set value Device value > Set value	


	Trigger Occurrence Condition	Device Set Condition	Operation	Release Value Setting
	Elevation		Samples data at the elevation edge when Device Set Condition changes from FALSE (0) to TRUE(1). FALSE(0) TRUE(1) EX) device value>=set value device value=set value device value>set value device value>set value	Setting Available
	Descent		Samples data at the descent edge when Device Set Condition changes from TRUE(1) to FALSE(0). TRUE(1) FALSE(0) EX) device value device value=set value device value=set value device value=set value	
Word Condition	Transfer	Large	Samples data at the elevation edge or descent edge FALSE(0) TRUE(1) TRUE(1) FALSE(0)	
	ON		Samples data when Device Set Condition is TRUE(1) FALSE(0) TRUE(1) Ex) Device value ≥ Set value Device value = Set value Device value > Set value	
	OFF		Samples data when Device Set Condition is FALSE(0) TRUE(1) FALSE(0) Ex) Device value < Set value Device value > Set value Device value > Set value Device value > Set value	

	Trigger Occurrence Condition	Device Set Condition	Operation	Release Value Setting
	Elevation		Samples data at the elevation edge when Device Set Condition changes from FALSE (0) to TRUE(1). FALSE(0) TRUE(1) EX) device value>=set value device value=set value device value>set value device value>set value	Setting Available
	Descent		Samples data at the descent edge when Device Set Condition changes from TRUE(1) to FALSE(0). TRUE(1) FALSE(0) EX) device value device value=set value device value=set value device value=set value	
Word Condition	Transfer Large or Sam	Large or Same	Samples data at the elevation edge or descent edge FALSE(0) TRUE(1) TRUE(1) FALSE(0)	
	ON		Samples data when Device Set Condition is TRUE(1) FALSE(0) TRUE(1) Ex) Device value ≥ Set value Device value = Set value Device value > Set value	
	OFF		Samples data when Device Set Condition is FALSE(0) TRUE(1) Ex) Device value < Set value Device value > Set value Device value > Set value Device value > Set value	

	Trigger Occurrence Condition	Device Set Condition	Operation	Release Value Setting
	Elevation		Samples data at the elevation edge when Device Set Condition changes from FALSE (0) to TRUE(1). FALSE(0) TRUE(1) EX) device value>=set value device value=set value device value>set value device value>set value	Setting Available
	Descent		Samples data at the descent edge when Device Set Condition changes from TRUE(1) to FALSE(0). TRUE(1) FALSE(0) EX) device value device value=set value device value=set value device value=set value	
Word Condition	Transfer Same	Same	Samples data at the elevation edge or descent edge FALSE(0) TRUE(1) Exidevice value=set value device value=set value=set value device value=set value device value=set value=set value=set value=set value=	
			Samples data when Device Set Condition is TRUE(1) FALSE(0) TRUE(1) Ex) Device value ≥ Set value Device value = Set value Device value > Set value Device value > Set value	
	OFF		Samples data when Device Set Condition is FALSE(0) TRUE(1) FALSE(0) Ex) Device value < Set value Device value ≥ Set value Device value > Set value Device value > Set value	


	Trigger Occurrence Condition	Device Set Condition	Operation	Release Value Setting
	Elevation	S	Samples data at the elevation edge when Device Set Condition changes from FALSE (0) to TRUE(1). FALSE(0) TRUE(1) EX) device value>=set value device value=set value device value>set value	Setting Available
	Descent		Samples data at the descent edge when Device Set Condition changes from TRUE(1) to FALSE(0). TRUE(1) FALSE(0) EX) device value <pre></pre>	
Word Condition	Transfer	Not Same	Samples data at the elevation edge or descent edge FALSE(0) TRUE(1) TRUE(1) FALSE(0)	
	ON		Samples data when Device Set Condition is TRUE(1) FALSE(0) TRUE(1) Ex) Device value ≥ Set value Device value = Set value Device value > Set value Device value > Set value	
	OFF		Samples data when Device Set Condition is FALSE(0) TRUE(1) FALSE(0) Ex) Device value < Set value Device value ≥ Set value Device value > Set value Device value > Set value	

When Event Save method is used, data are saved after END of each main task where the set bit condition occurred. Event Save samples data at main task after the event occurs.

11.3.4 Save Folder Structure

Data saved by datalog are saved in the following file structure.

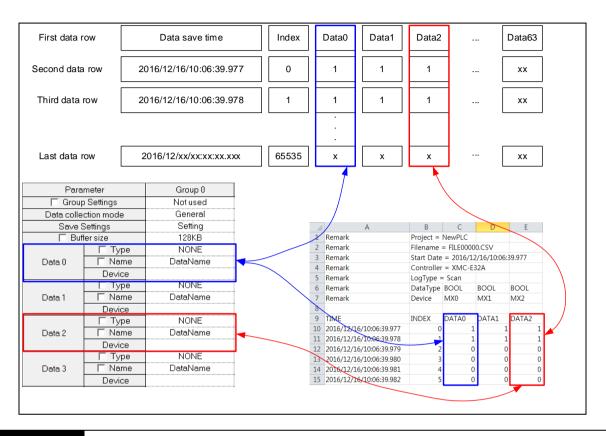
- (1) Folder Name: Folder name is fixed. Creating additional folder other than the structures show in in the Figure below in the SD memory, datalog function does not show normal function. Please be careful.
- (2) Data Save Folder: This folder saves log data generated by datalog. Each parameter setting group uses different folders. The file names are created in accordance with the following rules. The data folder name can be as long as 32 characters (in case of English, no space). (The folder name indicated in the folder structure diagram is arbitrary. Users can change the names.)

11.3.5 CSV File Format

CSV files generated by datalog function follow the following specifications

Items	Description
Separation Character	Comma (,)
Line Change Code	CR, LF(0x0D, 0x0A)
Character Code	ASCII Code
Field Data	Decimal, Hexadecimal, Exponent, character string
File Size	Up to 16Mbyte

		Α	В	С	D	E	F
	1	Remark	Project =	NewPLC			
	2	Remark	Filename :	= FILE0001.0	CSV		
J	3	Remark	Start Date	= 2016/11/	09/16:27:37.	267	
Header File <	4	Remark	Controller = XMC-E32A				
	5	Remark	LogType =	- Trigger			
	6	Remark	DataType	INT	WORD	INT	WORD
	7	Remark	Device	mw1	mw2	mw5	mw6
	8						
	9	TIME	INDEX	DataName	DataName	DataName	DataName
Data File 🗡	10	2016/11/09/16:27:37.267	441	20521	h'1029	4137	h'1029
	11	2016/11/09/16:27:37.271	442	20522	h'102A	4138	h'102A


(1) Header File Structure

The header structure of datalog files saved in the SD memory is as follows

The header ender	are or datalog moe caved in the or
Remark	Project Name
Remark	Save File Name
Remark	File Creation Time
Remark	Motion Controller Type
Remark	Datalog Save Type
Remark	Data Conversion Type
Remark	Device

(2) Data File Structure

The internal structure of datalog files saved in the SD memory is as follows

Note

- 1. Index indicates the number of saved data
- 2. Data 0, Data 1, ..., Data 63 indicate data names

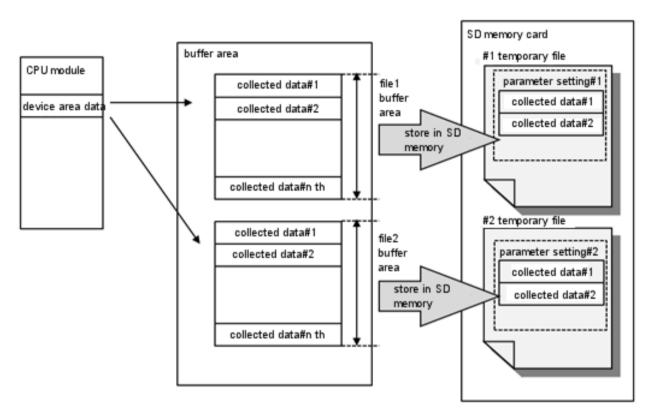
Note

When you read a CSV file in Microsoft Office Excel, several data may be displayed in a single cell. This is because you are required to use the "symbol as the text qualifier" when opening the CSV file in Excel. In this case, if you open the CSV file in the following order, it will be displayed normally.

- 1. Select the text in the data menu after executing Excel and then select the CSV file you want to open
- 2. Select [Comma] as a separator and [None] as a text in the Text Wizard Step 2 and then click Finish

Chapter11 Datalog Function

(3) Data File Item Description (a) First Data Line


String Name	Output	Size (Word)
Temporary String	Indicates date and time with fixed characters	5
Index String	Indicates index name	2
Data String	Outputs the data name designated at data setting	1-64
Data String	Outputs the data name designated at data setting	(Depends on parameter setting)

(b) Data Row Repeat

Column Name		Size (Byte)		
Date and Time	String is ou	24		
Column	Ex) 2014/09/17 10:15:20:243			
Index Column	Outputs co	unted numbers starting from 0 and up.	10	
	BOOL	0 or 1	2	
	BYTE	00 ~ FF	3	
	WORD	0000 ~ FFFF	5	
	DWORD	00000000 ~ FFFFFFF	9	
	LWORD	00000000 00000000 ~ FFFFFFF FFFFFF	17	
	SINT	-128 ~ 127	5	
	INT	-32,768 ~ 32,767	7	
	DINT	-2,147,483,648 ~ 2,147,483,647	12	
	LINT	-576,460,752,303,423,488 ~ 576,460,752,303,423,487	21	
Data Column	USINT	0 ~ 255	4	
Bata Colamii	UINT	0 ~ 65,535	6	
	UDINT	0 ~ 4,294,967,295	11	
	ULINT	0 ~ 1,152,921,504,606,846,975	20	
		-3.402823466e+038 ~ -1.175494351e-038		
	REAL	or 0 or	17	
		1.175494351e-038 ~ 3.402823466e+038		
		-1.7976931348623157e+308 ~ -2.2250738585072014e-308		
	LREAL	LREAL or 0 or		
		2.2250738585072014e-308 ~ 1.7976931348623157e+308		
	STRING	Fixed Character (up to 32 characters)	33	

11.3.6 How to Save CSV

Motion controller collects data whenever the sampling condition occurs, saves them into the SD memory as CSV files. When the data meet file conversion time, motion controller generates a new file in the SD memory card to perform data saving.

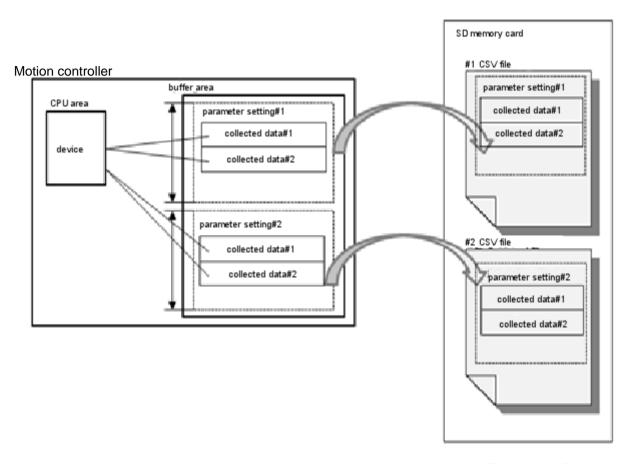
(1) File Conversion Test

Temporary files are converted to CSV files at the following points

At saving	Setting Range
When the designated number of saves have been completed in the temporary file	5,000 ~ 50,000
When the temporary file reaches the designated size	10KB ~ 16,384KB

(2) Operation in Case of Exceeding the Number of Save Files

When the number of maximum saved files set by the parameter is exceeded, the following run occurs in accordance with the set runs in case of file excess.


Operation Setting in Case of Excess	Operation	Note
Maintains the latest history	Overwrites and saves new data over the oldest file	
Maintains the initial history	Performs no more file saving	

Note

In case the SD memory is not capable of saving 256 files and the storage is full, it maintains the initial history saves file up to the full storage of SD memory, then stops data saving regardless of the the [History Setting] value in the parameter and generate the error code 6(%KW522)

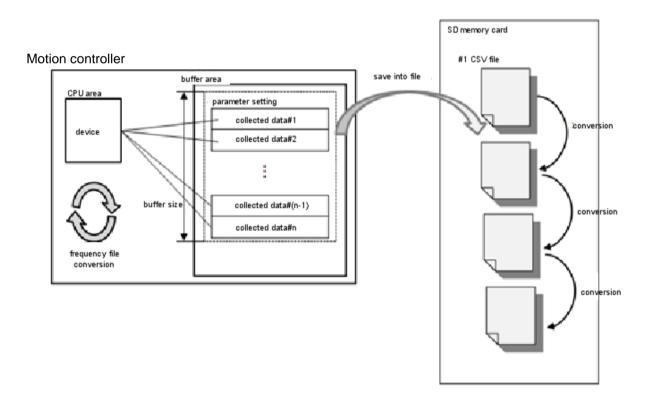
11.3.7 Buffer Memory

Motion controller has an internal buffer memory for datalog function. Buffer memory refers to a volatile memory which temporarily stores collected data before saving them into the temporary file in the SD memory.

In accordance with the set sampling condition, the collected data are stored in the buffer memory first and then saved in to the temporary memory of the SD memory card when datalog condition occurs. Therefore, setting too fast data sampling condition or sampling too much data, data loss can be caused by buffer memory excess.

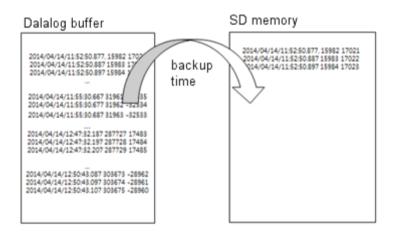
In case of data loss, 'C' string is stored together with the loss data. In this case, adjust the storage period in the datalog parameter, or reduce the amount of collected data to prevent data loss.

11.3.8 Data Omission

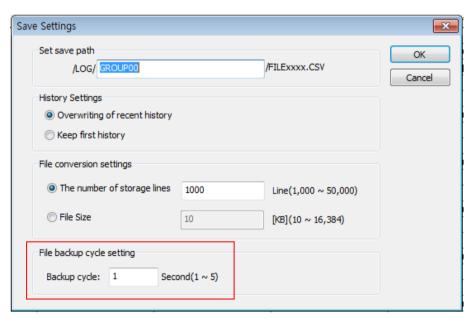

Data omission refers to situation where normal data collection is not possible. If data collection interval is set too short, data sampling might not be performed at every set interval, which in turn might cause data omission. Cases include the following.

(1) Buffer Excess

If data sampling condition is set too fast or too much data are being sampled, the speed of saving buffer memory values into the temporary file in the SD memory may be slower than the data collection speed, which causes the buffer storage to be exceeded and data omission.


(2) Too Frequent File Conversion

Upon occurrence of file conversion condition, the temporary file should be converted to CSV file to create a new temporary file. Meanwhile, the buffer memory values cannot be saved into the temporary file. Therefore, too frequent occurrence of file conversion condition may cause the buffer memory storage to be exceeded, and thus leading to data omission.



11.3.9 Files Backup Cycle

Data collected by datalog are not directly saved into the SD memory. They are saved into the designated buffer, and later saved in to the SD memory when a certain volume (4Kbyte) has been collected. When the data save interval is long and the volume of data to collect is not large, it takes a lot of time to save data into the SD memory. If collected data are saved only in the buffer before sudden shutoff or reset occurs, the saved data are all lost.

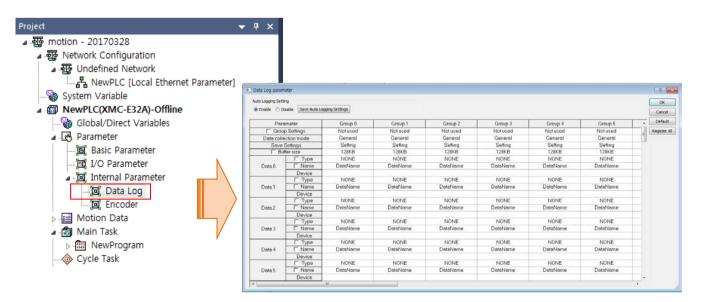
To prevent this, the collected data need to be saved into the data at certain intervals regardless of the storage. The data saved into the SD memory is not lost even in case of sudden power change. Backup time can be set at from 1 to 5 seconds. However, setting too short backup time may affect datalog performance.

11.4 Regular Save

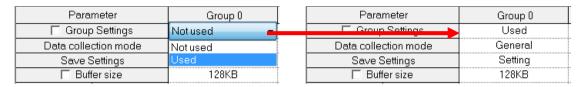
Among internal datalog functions of motion controller, Regular Save runs in two methods: Main task Save and Save at Designated Interval

Main task Saves refer to saving data at main task, and Save at Designated Interval refers to saving data at an interval set by the user.

11.4.1 Save Method

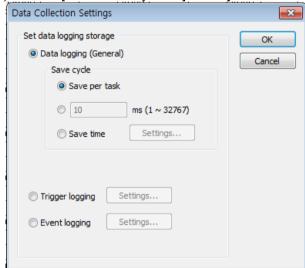

(1) Operation Description

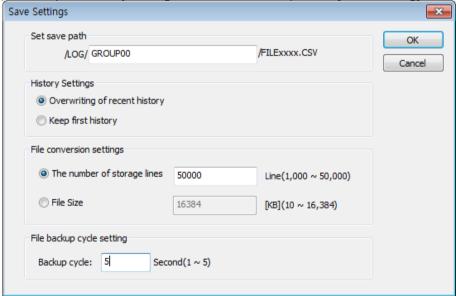
Among internal datalog functions of motion controller, Scan Saves refer to saving data at main task into the SD memory. When using the scan interval save method, data are saved after END of each main task. The collected data are accumulated in the motion controller internal buffer. When a certain amount is accumulated, these are saved into the SD memory. If the set interval is too short or the data to collect is too large, a scan watchdog timer error may occur due to increased data volume. Please be mindful of the scan watchdog setting of the basic parameter.



(2) Setting Method

(a) Choose XG5000 – [Project Window] - [internal parameter] - [datalog] This activates the datalog parameter setting window.


(b) Set the group to use on the datalog parameter window.


Note

It runs when both the datalog parameter and the datalog EN flag are set. In case either condition is omitted, the datalog run will not progress. Please verify whether both the datalog parameter and the datalog EN flag are set. (See 11.10, Flag List)

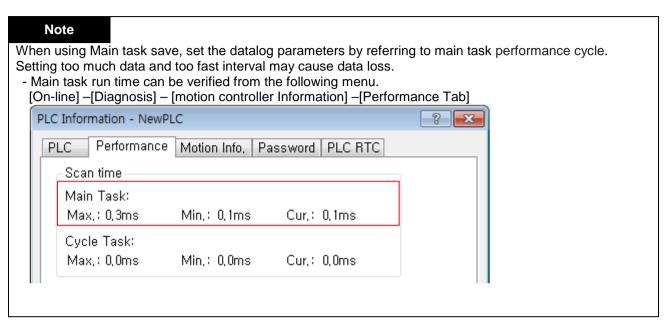
(c) Choose [Save at Every Scan] at the [Data Collection Method]

(d) Set the path, history setting and file conversion point at [Save Setting]

(e) Set the data conversion type, storage device and name

oci ine dala conversion type, stol				
Parameter		Group 0		
	□ Туре	NONE ▼		
Data 0	☐ Name	NONE		
	Device	BOOL		
	□ Туре	BYTE		
Data 1	☐ Name	WORD DWORD		
	Device	LWORD		
	□ Туре	SINT		
Data 2	☐ Name	INT		
	Device	DINT		
	□ Туре	LINT USINT		
Data 3	☐ Name	UINT		
	Device	UDINT		
Data 4	□ Туре	ULINT		
	☐ Name	REAL		
	Device	LREAL		
	□ Tyme	STRING		

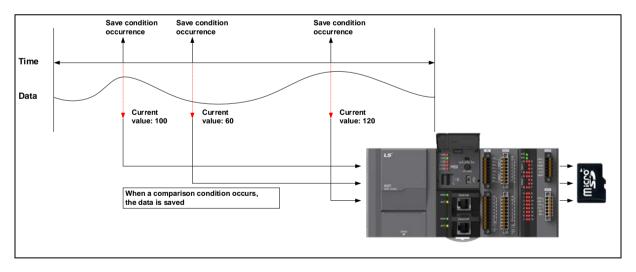
Parameter		Group 0
	□ Туре	INT
Data 0	□ Name	DataName
	Device	%MW0
	Г Туре	NONE
Data 1	□ Name	DataName
	Device	
	□ Туре	NONE
Data 2	□ Name	DataName
	Device	
	□ Туре	NONE
Data 3	□ Name	DataName
	Device	
Data 4	□ Туре	NONE
	□ Name	DataName
	Device	
		NONE


(f) Connect the SD memory card, and turn on the Datalog Enable Flag (%KW8224) when the _DL_Rdy(%KX8800) Flag is On to activate the function. Datalog will not be activated if the Enable Flag is ON while _DL_Rdy(%KX8800) Flag is OFF.

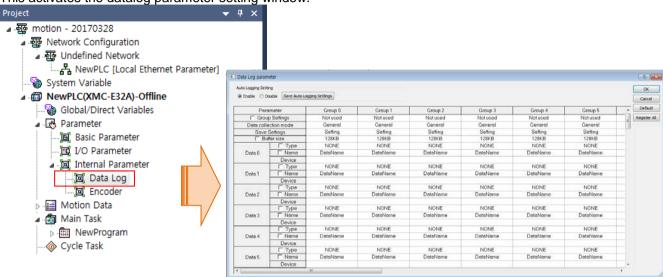
The following are Enable Flags for each datalog group

Item	Memory allocation	Type	Description
-	%KW514	WORD	Datalog Enable Flags
_DL00_Enable	%KX8224	BOOL	Group 00 Enable Flag 1: Operation, 0: Stop
_DL01_Enable	%KX8225	BOOL	Group 01 Enable Flag 1: Operation, 0: Stop
_DL02_Enable	%KX8226	BOOL	Group 02 Enable Flag 1: Operation, 0: Stop
_DL03_Enable	%KX8227	BOOL	Group 03 Enable Flag 1: Operation, 0: Stop
_DL04_Enable	%KX8228	BOOL	Group 04 Enable Flag 1: Operation, 0: Stop
_DL05_Enable	%KX8229	BOOL	Group 05 Enable Flag 1: Operation, 0: Stop
_DL06_Enable	%KX8230	BOOL	Group 06 Enable Flag 1: Operation, 0: Stop
_DL07_Enable	%KX8231	BOOL	Group 07 Enable Flag 1: Operation, 0: Stop
_DL08_Enable	%KX8232	BOOL	Group 08 Enable Flag 1: Operation, 0: Stop
_DL09_Enable	%KX8233	BOOL	Group 09 Enable Flag 1: Operation, 0: Stop
_DL10_Enable	%KX8234	BOOL	Group 10 Enable Flag 1: Operation, 0: Stop
_DL11_Enable	%KX8235	BOOL	Group 11 Enable Flag 1: Operation, 0: Stop
_DL12_Enable	%KX8236	BOOL	Group 12 Enable Flag 1: Operation, 0: Stop
_DL13_Enable	%KX8237	BOOL	Group 13 Enable Flag 1: Operation, 0: Stop
_DL14_Enable	%KX8238	BOOL	Group 14 Enable Flag 1: Operation, 0: Stop
_DL15_Enable	%KX8239	BOOL	Group 15 Enable Flag 1: Operation, 0: Stop

OFF the datalog Enable Flag to stop data saving.

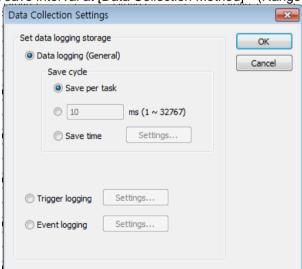

When the SD memory still has data to save, the Log Ending DLxx Stoping(%KX8963) flag turns ON, and back to OFF once all data are saved.

11.4.2 Save at Designated Interval


(1) Description of operation

Save at Designated Interval refers to saving data at intervals set by the user. It is different from Main task Save in that the former collects data at certain intervals, and is capable of saving data that change at certain intervals at more accurate points.

(2) Setting Method


(a) Choose XG5000 – [Project Window] - [internal parameter] - [datalog] This activates the datalog parameter setting window.

(b) Set the group to use on the datalog parameter window.

Parameter	Group 0	Parameter	Group 0
☐ Group Settings	Not used 📥	Croup Sottings	Used
Data collection mode	Notused	Data collection mode	General
Save Settings	Used	Save Settings	Setting
☐ Buffer size	128KB	☐ Buffer size	128KB

(c) Set save interval at [Data Collection Method] (Range: 1~32,767ms)

(d) Set the path, history setting and file conversion point at [Save Setting] Save Settings Set save path OK /FILExxxx.CSV /LOG/ GROUP00 Cancel History Settings Overwriting of recent history Keep first history File conversion settings The number of storage lines 1000 Line(1,000 ~ 50,000) File Size 10 [KB](10 ~ 16,384) File backup cycle setting Backup cycle: 1 Second(1 ~ 5)

(e) Set the data conversion type, storage device and name

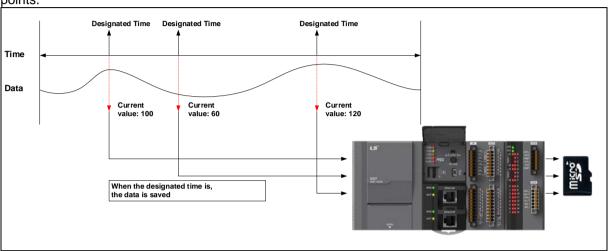
) Set the data conversion type, stor				
Parameter		Group 0		
	□ Туре	NONE -		
Data 0	☐ Name	NONE		
	Device	BOOL		
	□ Туре	BYTE		
Data 1	☐ Name	WORD DWORD		
	Device	LWORD		
	□ Туре	SINT		
Data 2	☐ Name	INT		
	Device	DINT		
	□ Туре	LINT USINT		
Data 3	☐ Name	UINT		
	Device	UDINT		
Data 4	☐ Type	ULINT		
	☐ Name	REAL		
	Device	LREAL		
	□ Tyme	STRING		

vice and name				
Para	meter	Group 0		
	Г Туре	INT		
Data 0	☐ Name	DataName		
	Device	%MW0		
	Г Туре	NONE		
Data 1	☐ Name	DataName		
	Device			
	Г Туре	NONE		
Data 2	☐ Name	DataName		
	Device			
	□ Туре	NONE		
Data 3	☐ Name	DataName		
	Device			
	Г Туре	NONE		
Data 4	☐ Name	DataName		
	Device			
	_ _ _	NONE.		

(f) Connect the SD memory card, and turn on the Datalog Enable Flag (%KW8224) when the _DL_ Rdy(%KX8800) Flag is On to activate the function. Datalog will not be activated if the Enable Flag is ON while _DL_ Rdy(%KX8800) Flag is OFF.

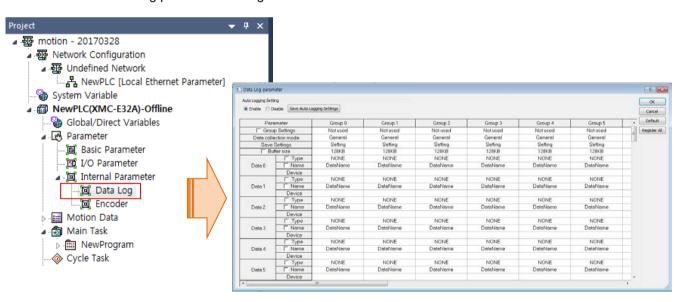
The following are Enable Flags for each datalog group

Item	Memory allocation	Type	Description
-	%KW514	WORD	Datalog Enable Flags
_DL00_Enable	%KX8224	BOOL	Group 00 Enable Flag 1: Operation, 0: Stop
_DL01_Enable	%KX8225	BOOL	Group 01 Enable Flag 1: Operation, 0: Stop
_DL02_Enable	%KX8226	BOOL	Group 02 Enable Flag 1: Operation, 0: Stop
_DL03_Enable	%KX8227	BOOL	Group 03 Enable Flag 1: Operation, 0: Stop
_DL04_Enable	%KX8228	BOOL	Group 04 Enable Flag 1: Operation, 0: Stop
_DL05_Enable	%KX8229	BOOL	Group 05 Enable Flag 1: Operation, 0: Stop
_DL06_Enable	%KX8230	BOOL	Group 06 Enable Flag 1: Operation, 0: Stop
_DL07_Enable	%KX8231	BOOL	Group 07 Enable Flag 1: Operation, 0: Stop
_DL08_Enable	%KX8232	BOOL	Group 08 Enable Flag 1: Operation, 0: Stop
_DL09_Enable	%KX8233	BOOL	Group 09 Enable Flag 1: Operation, 0: Stop
_DL10_Enable	%KX8234	BOOL	Group 10 Enable Flag 1: Operation, 0: Stop
_DL11_Enable	%KX8235	BOOL	Group 11 Enable Flag 1: Operation, 0: Stop
_DL12_Enable	%KX8236	BOOL	Group 12 Enable Flag 1: Operation, 0: Stop
_DL13_Enable	%KX8237	BOOL	Group 13 Enable Flag 1: Operation, 0: Stop
_DL14_Enable	%KX8238	BOOL	Group 14 Enable Flag 1: Operation, 0: Stop
_DL15_Enable	%KX8239	BOOL	Group 15 Enable Flag 1: Operation, 0: Stop


OFF the datalog Enable Flag to stop data saving. When the SD memory still has data to save, the _DLxx_Stoping(%KX8963) turns ON, and back to OFF once all data are saved.

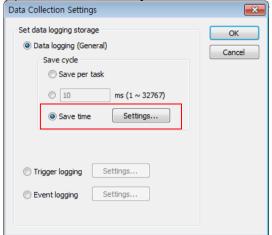
11.4.3 Save at Designated Time

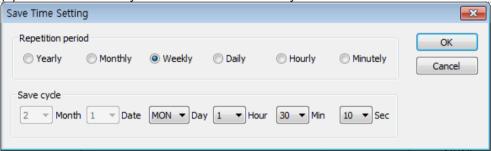
(1) Description of operation


Save at Designated Interval refers to saving data at Designated Time set by the user. It is different from Designed Interval Save in that the former collects data at certain intervals, and is capable of saving data at more accurate

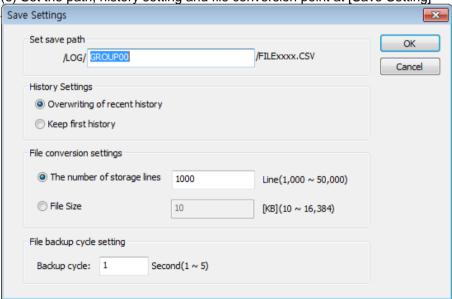
points.

(2) Setting Method


(a) Choose XG5000 – [Project Window] - [internal parameter] - [datalog] This activates the datalog parameter setting window.


(b) Set the group to use on the datalog parameter window.

Parameter	Group 0	Parameter	Group 0
☐ Group Settings	Not used 📥	Croup Sottings	Used
Data collection mode	Notused	Data collection mode	General
Save Settings	Used	Save Settings	Setting
☐ Buffer size	128KB	☐ Buffer size	128KB


(c) Set save interval at [Data Collection Method] (Range: 1~32,767ms)

(d) Select one of Every Year / Month / Week / Day / Hour / Minute

(e) Set the path, history setting and file conversion point at [Save Setting]

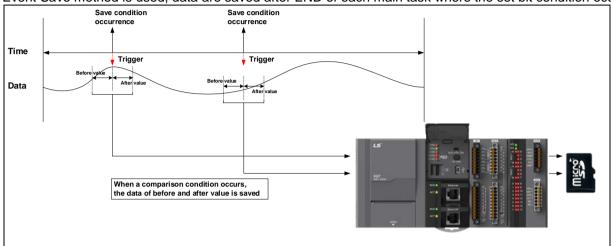
(f) Set the data conversion type, storage device and name

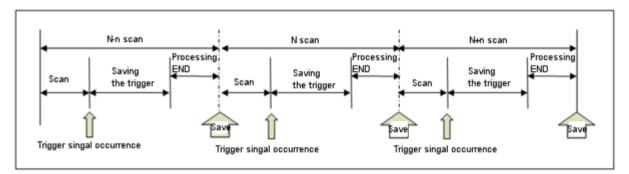
oct the data conversion type, stor					
Para	meter	Group 0			
	□ Туре	NONE ▼			
Data 0	☐ Name	NONE			
	Device	BOOL			
	□ Туре	BYTE			
Data 1	☐ Name	WORD DWORD			
	Device	LWORD			
	□ Туре	SINT			
Data 2	□ Name INT				
	Device	DINT			
	□ Туре	LINT USINT			
Data 3	☐ Name	UINT			
	Device	UDINT			
	□ Туре	ULINT			
Data 4	☐ Name	REAL			
	Device	LREAL			
	□ Tyne	STRING			

ioo ana namo				
Para	meter	Group 0		
	Г Туре	INT		
Data 0	☐ Name	DataName		
	Device	%MW0		
	□ Туре	NONE		
Data 1	☐ Name	DataName		
	Device			
	Г Туре	NONE		
Data 2	☐ Name	DataName		
	Device			
	□ Туре	NONE		
Data 3	☐ Name	DataName		
	Device			
Data 4	Г Туре	NONE		
	□ Name	DataName		
	Device			
	- T	L NONE		

(g) Connect the SD memory card, and turn on the Datalog Enable Flag (%KW8224) when the _DL_ Rdy(%KX8800) Flag is On to activate the function. Datalog will not be activated if the Enable Flag is ON while _DL_ Rdy(%KX8800) Flag is OFF.

The following are Enable Flags for each datalog group


Item	Memory allocation	Type	Description
-	%KW514	WORD	Datalog Enable Flags
_DL00_Enable	%KX8224	BOOL	Group 00 Enable Flag 1: Operation, 0: Stop
_DL01_Enable	%KX8225	BOOL	Group 01 Enable Flag 1: Operation, 0: Stop
_DL02_Enable	%KX8226	BOOL	Group 02 Enable Flag 1: Operation, 0: Stop
_DL03_Enable	%KX8227	BOOL	Group 03 Enable Flag 1: Operation, 0: Stop
_DL04_Enable	%KX8228	BOOL	Group 04 Enable Flag 1: Operation, 0: Stop
_DL05_Enable	%KX8229	BOOL	Group 05 Enable Flag 1: Operation, 0: Stop
_DL06_Enable	%KX8230	BOOL	Group 06 Enable Flag 1: Operation, 0: Stop
_DL07_Enable	%KX8231	BOOL	Group 07 Enable Flag 1: Operation, 0: Stop
_DL08_Enable	%KX8232	BOOL	Group 08 Enable Flag 1: Operation, 0: Stop
_DL09_Enable	%KX8233	BOOL	Group 09 Enable Flag 1: Operation, 0: Stop
_DL10_Enable	%KX8234	BOOL	Group 10 Enable Flag 1: Operation, 0: Stop
_DL11_Enable	%KX8235	BOOL	Group 11 Enable Flag 1: Operation, 0: Stop
_DL12_Enable	%KX8236	BOOL	Group 12 Enable Flag 1: Operation, 0: Stop
_DL13_Enable	%KX8237	BOOL	Group 13 Enable Flag 1: Operation, 0: Stop
_DL14_Enable	%KX8238	BOOL	Group 14 Enable Flag 1: Operation, 0: Stop
_DL15_Enable	%KX8239	BOOL	Group 15 Enable Flag 1: Operation, 0: Stop


OFF the datalog Enable Flag to stop data saving.

When the SD memory still has data to save, the _DLxx_Stoping(%KX8963) turns ON, and back to OFF once all data are saved.

11.5 Trigger Save

Trigger Save refers to saving a set number of data before and after the relevant point: the number of data is set by parameter. This method is useful when you want to view data from a certain period before and after a certain event. When Event Save method is used, data are saved after END of each main task where the set bit condition occurred.

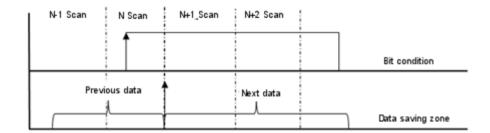
Note

After selecting Trigger Save, if the first trigger condition occurs and another trigger condition occurs while collecting data, the new trigger is ignored and the trigger reoccurrence flag value increases.

Note

If a trigger occurs after collecting one less than the number of sample blocks prior to the trigger, only the number of blocks collected until then is stored, and the sample is started after the trigger. In this case, the total number of blocks collected can be less than the total number of trigger blocks

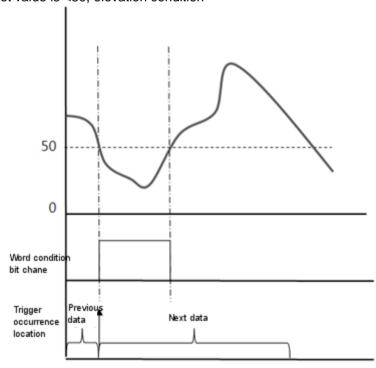
11.5.1 Trigger Condition


Trigger Save function runs under Single Condition, Multiple Condition. The setting item for single/multiple conditions are as follows. Multiple Condition runs by connecting Single Condition using AND, OR. Up to 4 Single Conditions can be set to form a condition. When the Trigger Condition occurs and data saving initiates, T character string is inserted into the first data string to indicate the trigger starting point.

(1) Single Condition

Single Condition runs under [BIT Condition], [WORD Condition].

(a) BIT Condition

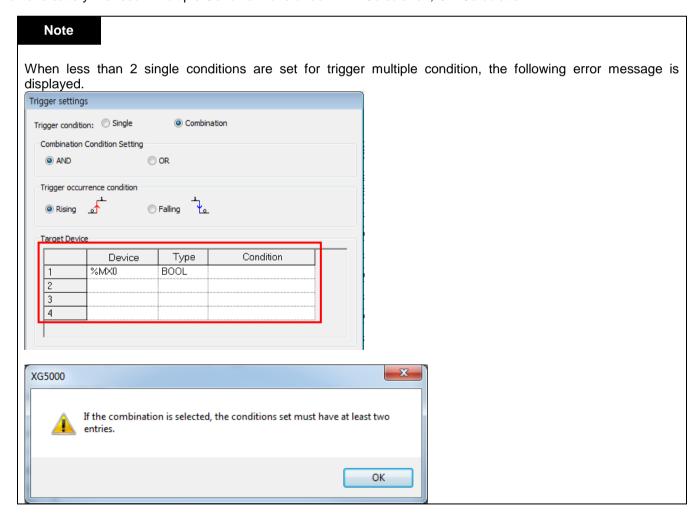

BIT condition checks the set device BIT value, and collects data by detecting trigger when the value is either [elevation] or [descent].

(b) WORD Condition

Word Condition compares the set device with the input value, and converts them into TRUE or FALSE. If the set device value satisfies the input condition, data are collected when the value is either [elevation] or [descent].

Ex) If set value is <50, elevation condition

(c) Condition Description

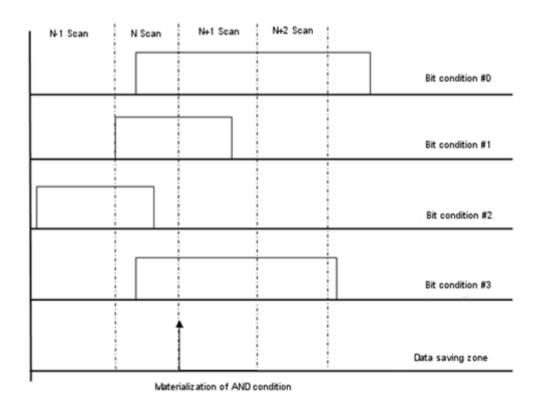

	Trigger Occurrence	Device Set Condition	Operation		
	Condition				
Bit	Elevation		Saves data at elevation edge of set device bit value FALSE → TRUE 0 1		
condition	Descent		Saves data at descent edge of set device bit value TRUE → FALSE 1 0		
	Elevation	Small	Saves data at the elevation edge of the relevant bit, when the set word device value is smaller than the input set value FALSE(0) TRUE(1) Ex) device value>=set value device value=set value device value>set value		
Word Condition	Descent		Saves data at the descent edge of the relevant bit, when the set word device value is smaller than the input set value TRUE(1) EX) device value <set device="" set="" td="" value="" value<=""><td></td></set>		
	Elevation	Small or Sama	Saves data at the elevation edge of the relevant bit, when the set word device value is smaller than or the same as the input set value FALSE(0) TRUE(1) EX) EX) device value>set value device value<=set value		
	Descent	Small or Same	Saves data at the descent edge of the relevant bit, when the set word device value is smaller than or the same as the input set value TRUE(1) FALSE(0) EX) device value<=set value device value>set value		

	Trigger Occurrence Condition	Device Set Condition	Operation	Note
	Elevation	Large	Saves data at the descent edge of the relevant bit, when the set word device value is larger than the input set value FALSE(0) TRUE(1) EX) device value<=set value device value==set value device value==set value device value==set value	
	Descent	Large	Saves data at the descent edge of the relevant bit, when the set word device value is larger than the input set value TRUE(1) FALSE(0) EX) device value> set value	
Word Condition	Elevation	Large or Same	Saves data at the elevation edge of the relevant bit, when the set word device value is larger than or the same as the input set value FALSE(0) TRUE(1) Ex) device value < set value device value >= set value	
	Descent Large or Same		Saves data at the descent edge of the relevant bit, when the set word device value is larger than or the same as the input set value TRUE(1) FALSE(0) Ex) device value>=set value device value	
	Elevation	Samo	Saves data at the elevation edge of the relevant bit, when the set word device value is the same as the input set value FALSE(0) TRUE(1) EX) device value set value device value set value	
Descent		Same	Saves data at the descent edge of the relevant bit, when the set word device value is the same as the input set value TRUE(1) FALSE(0) device value= set value device value≠ set value	

	Trigger Occurrence Condition	Device Set Condition	Operation			
Word Condition	Elevation	Different	Saves data at the elevation edge of the relevant bit, when the set word device value is different from the input set value FALSE(0) TRUE(1) EX) device value= set value device value≠ set value			
Condition	Descent		Saves data at the descent edge of the relevant bit, when the set word device value is different from the input set value TRUE(1) FALSE(0) device value = set value			

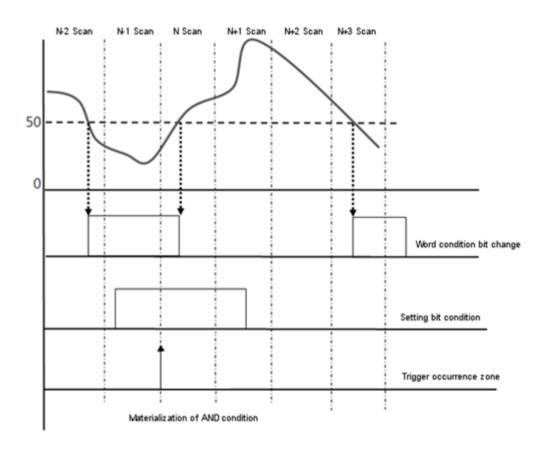
(2) Multiple Condition

Multiple condition refers to setting up to 4 single conditions and operating by performing the operations that fit the conditions. At least two Single Conditions should be set. Trigger Save begins when operation with the set single conditions satisfy the result. Multiple Condition runs under AND Calculation, OR Calculation.


(a) AND Calculation

Trigger occurs when all relevant conditions are satisfied at a single main task.

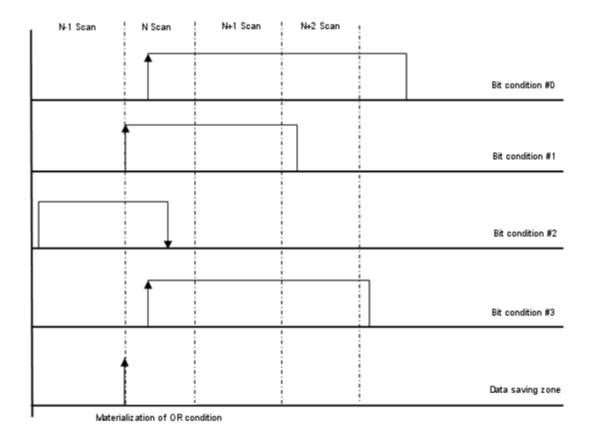
The following figure shows an example of trigger save activated by trigger elevation and descent occurring within the same main task cycle.


When setting only with BIT condition

	Condition	Set Device	Trigger Occurrence Condition	
Condition 0	BOOL	%MX1010		
Condition 1	BOOL	%IX1	Flouration	
Condition 2	BOOL	%MX2010	Elevation	
Condition 3	BOOL	%QX130		

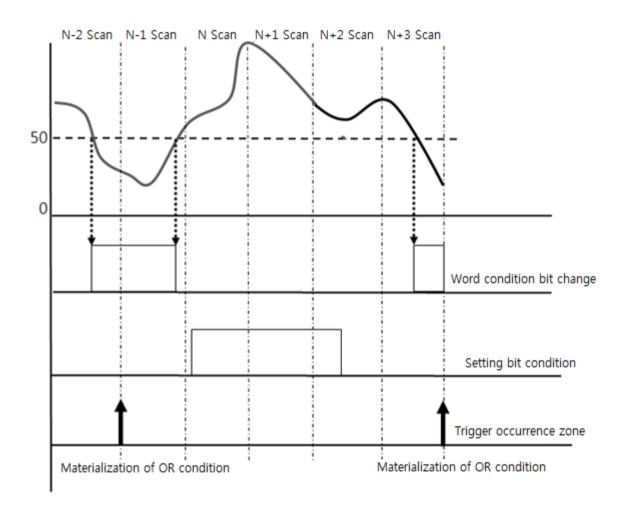
When setting with combination of BIT and WORD conditions

	Condition	Comparison Condition	Set Value	Set Device	Trigger Occurrence Condition
Condition 0	WORD	<	50	%MW10	Floretion
Condition 1	BOOL			%MX15	Elevation



(b) OR Calculation

Trigger occurs when even one condition is satisfied at a single main task. After selecting Trigger Save, if the Trigger Condition is again satisfied before data saving is complete, the new trigger is ignored and the number of collisions flag value increases.


When setting only with BOOL condition

	Condition	Set Device	Trigger Occurrence Condition	
Condition 0	BOOL	%MX1010		
Condition 1	BOOL	%IX1	Flavotica	
Condition 2	BOOL	%MX2010	Elevation	
Condition 3	BOOL	%QX130		

When setting with combination of BIT and WORD conditions

	Condition	Comparison Condition	Set Value	Set Device	Trigger Occurrence Condition
Condition 0	WORD	<	50	%MW10	Floretion
Condition 1	BOOL			%MX15	Elevation

11.5.2 Trigger Sample Block Calculation

During Trigger Save, data collection progresses for each sample block. Sample block refers to the unit of collected data set by the datalog parameter, where sample refers to each data value. The number of trigger sample blocks and the total number of samples are calculated as follows.

No. of sample blocks = Trigger Buffer Space1) / {(No. of set data2) * size of set data3)) +(RTC data size4))} No. of stored samples = sample block * No. of set data

- (1) Trigger Buffer Space: 64KB ~ 2,048KB /Group
- (2) No. of Set Data 64 (Maximum)
- (3) Size of Set Data

Unit: Byte

Data Type	Data Size
BOOL	1
BYTE	1
WORD	2
DWORD	4
LWORD	8
INT	2
SINT	1
DINT	4
LINT	8
UINT	2
USINT	1
UDINT	4
ULINT	8
REAL	4
LREAL	8
STRING	32

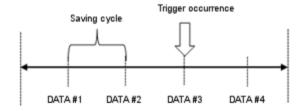
- Set the buffer memory: 128KB
- Number and type of setting data: 64 (BYTE)

Max. No. of sample blocks that can be set: $131,072 / \{ (64 * 1) + 29 \} = 1409$ sample blocks

(4) RTC size of data: 29 (fixed value)

11.5.3 Trigger Sample Calculation

The item that can be set at the parameter is the total number of trigger sample blocks and the number of sample blocks before trigger condition. The number of sample blocks after trigger is determined by the two input values

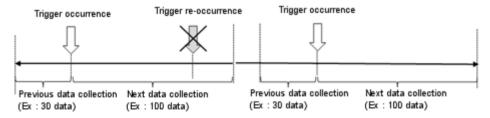

Total Number of Trigger Samples (Setting Available) = Number of Samples before +
Trigger Condition
(Setting Available)

Number of Samples after Trigger Condition (Setting Available)

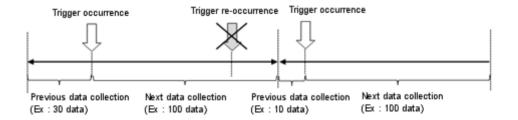
11.5.4 Trigger Sample Save Cycle

When Trigger Condition occurs, data collected are saved at the sampling interval set by the parameter. The saving interval is as follows.

→ Main task interval, 20ms, 50ms, 100 ms, 200 ms, 500 ms, 1000 ms, 2000 ms

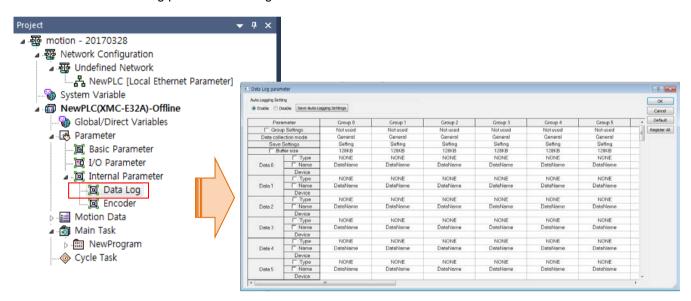


Caution


After selecting Trigger Save, if the Trigger Condition is again satisfied before data saving is complete, the new trigger is ignored and the trigger collisions number flag value increases. Trigger Condition is checked after saving the set number of trigger sample blocks, and then the data are saved.

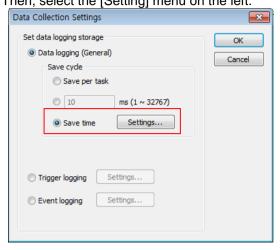
11.5.5 Trigger Sample Save Section

- (1) If Trigger occurs after the number of previous data set by the parameter
 - → Saves data in the number set by the parameter

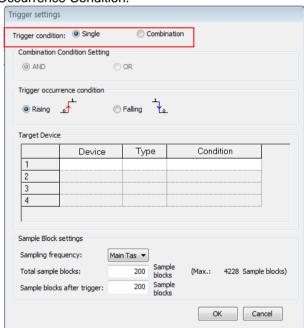


- (2) If Trigger occurs before the number of previous data set by the parameter
 - → Saves data in the number of transfer data collected, and then collects subsequent data (Saves less number of data than the number set by the parameter)

11.5.6 Setting Method

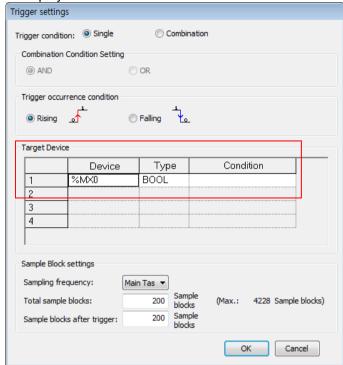

- (1) Single BIT Condition
 - (a) Choose XG5000 [Project Window] [internal parameter] [datalog] This activates the datalog parameter setting window.

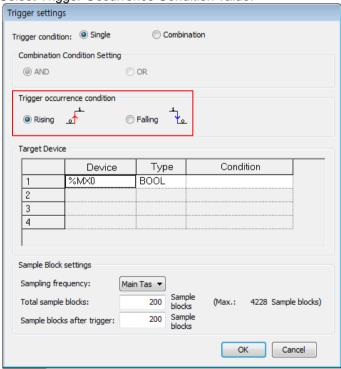
(b) Set the group to use on the datalog parameter window.


, 	Tot the group to doe on the datalog parameter in the think						
Parameter	Group 0		Parameter	Group 0			
☐ Group Settings	Not used 🕳		Croup Sottings	Used			
Data collection mode	Notused		Data collection mode	General			
Save Settings	Used		Save Settings	Setting			
☐ Buffer size	128KB	Ī	☐ Buffer size	128KB			

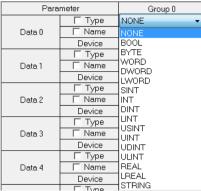
(c) Select [Trigger Logging] at [Data Collection Method] to activate [Setting] menu on the left. Then, select the [Setting] menu on the left.

(d) Upon selection, the following window is activated for trigger setting.

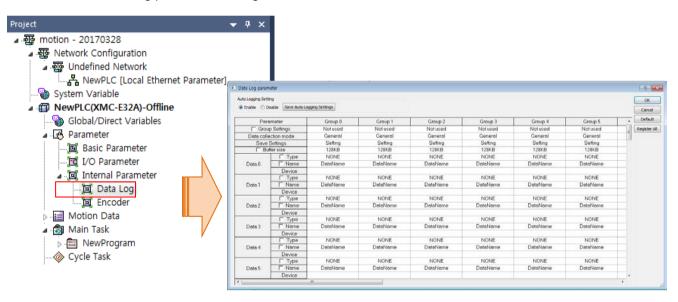

Select [Single Condition] as the Trigger Condition. Select either [Elevation] or [Descent] as the Trigger Occurrence Condition.


(e) Select the condition setting menu to activate the following setting window. Select [BIT Condition], and input device values into the device window in BIT types.

When setting is complete, the window closes and the conditions initially set at the Trigger Setting Condition menu are displayed as follows.

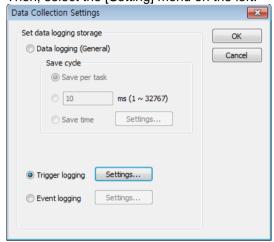


(f) Select Trigger Occurrence Condition value.

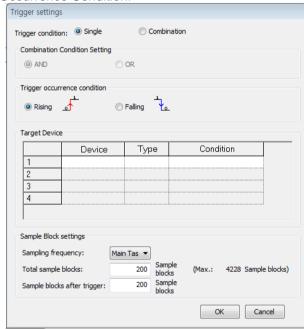

(g) Input sampling interval, total number of samples and number of samples after trigger, then finish Trigger setting. See [11.5.2 Trigger Sample Block Calculation] for operation of number of sample blocks.

(h) Device values set at the Datalog Basic Setting window are collected, and saved into the SD memory after type conversion.

(2) Single WORD Condition


(a) Choose XG5000 - [Project Window] - [internal parameter] - [datalog] This activates the datalog parameter setting window.

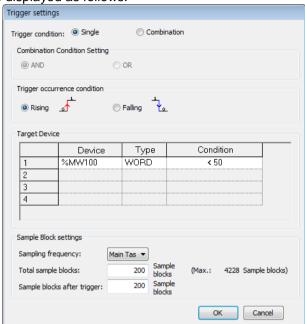
(b) Set the group to use on the datalog parameter window.


Parameter	Group 0		Parameter	Group 0
☐ Group Settings	Not used 📥		Croup Sottings	Used
Data collection mode	Notused		Data collection mode	General
Save Settings	Used		Save Settings	Setting
☐ Buffer size	128KB	Ī	☐ Buffer size	128KB

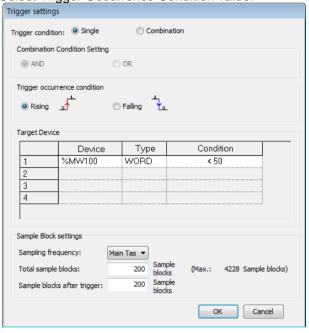
(c) Select [Trigger Logging] at [Data Collection Method] to activate [Setting] menu on the left. Then, select the [Setting] menu on the left.

(d) Upon selection, the following window is activated for trigger setting.

Select [Single Condition] as the Trigger Condition. Select either [Elevation] or [Descent] as the Trigger Occurrence Condition.

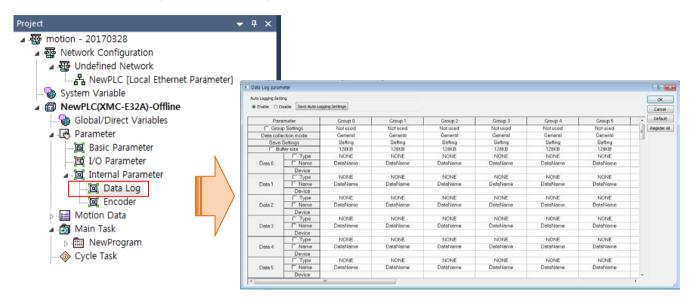

(e) Select the condition setting menu to activate the following setting window.

Select [Word Condition], and input device values into the device window in BIT types, and input comparison condition and comparison values


☞ Comparison Condition: Large, Large or Same, Same, Small, Small or Same, Not Same.

When setting is complete, the window closes and the conditions initially set at the Trigger Setting Condition menu are displayed as follows.

(f) Select Trigger Occurrence Condition value.

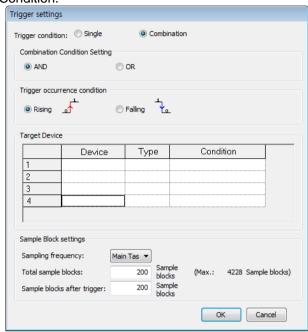

- (g) Input sampling interval, total number of samples and number of samples after trigger, then finish Trigger setting. See [11.5.2 Trigger Sample Block Calculation] for operation of number of sample blocks.
- (h) Device values set at the Datalog Basic Setting window are collected, and saved after type conversion.

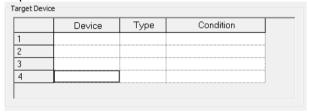
Caution

When inputting single, word condition set values, set device type as [BIT] and [WORD], respectively.

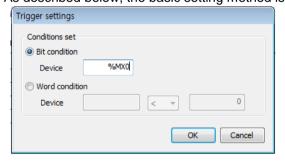
(3) Multiple AND Condition

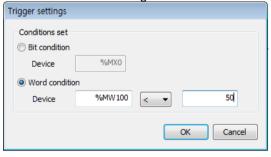
(a) Choose XG5000 - [Project Window] - [internal parameter] - [datalog] This activates the datalog parameter setting window.

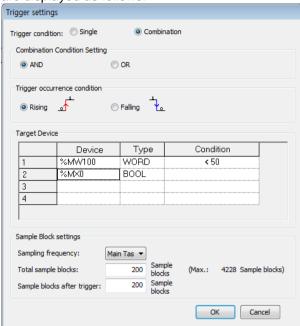

(b) Set the group to use on the datalog parameter window.


(c) Select [Trigger Logging] at [Data Collection Method] to activate [Setting] menu on the left. Then, select the [Setting] menu on the left.

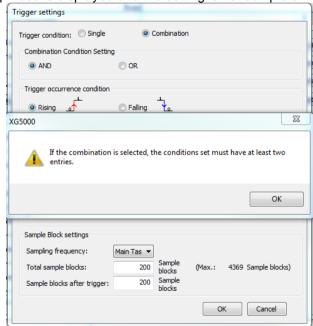
(d) Upon selection, the following window is activated for trigger setting. Select [Multiple Condition] as Trigger Condition, Select either [Elevation] or [Descent] as the Trigger Occurrence Condition.



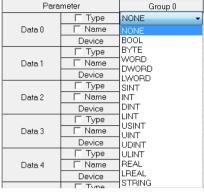

(e) Select [Trigger Condition] and [Multiple Condition] to activate the condition setting window which allows for up to 4 inputs.


(f) Select each condition setting menu one by one, inputting specific set values.

[Multiple Condition] activates Trigger Condition by combining [Single Conditions] through operation to save data. As described below, the basic setting method is the same as that of Single Condition.



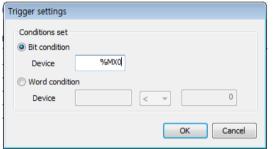
When setting is complete, the window closes and the conditions initially set at the Trigger Setting Condition menu are displayed as follows.



If only one [Condition Setting] is input after selecting Calculation Condition before finishing the setting, the following phrase is displayed and the setting is not complete.

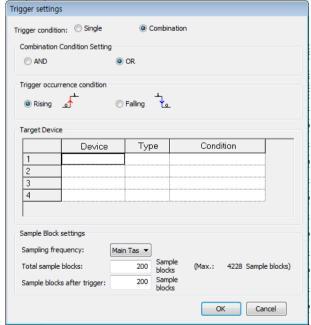
(g) Input sampling interval, total number of samples and number of samples after trigger, then finish Trigger setting.

(h) Device values set at the Datalog Basic Setting window are collected when the Trigger Condition occurs, converted into the set type, and saved into the SD memory.ion.

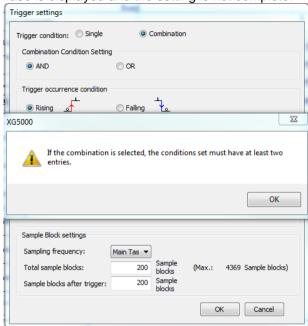


(4) Multiple OR Condition

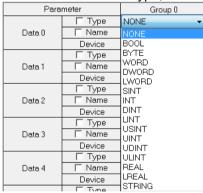
[Trigger Setting] is identical to the [Multiple AND Calculation] above.


(a) Select each condition setting menu one by one, inputting specific set values.

[Multiple Condition] activates Trigger Condition by combining [Single Conditions] through operation to save data. As described below, the basic setting method is the same as that of Single Condition.

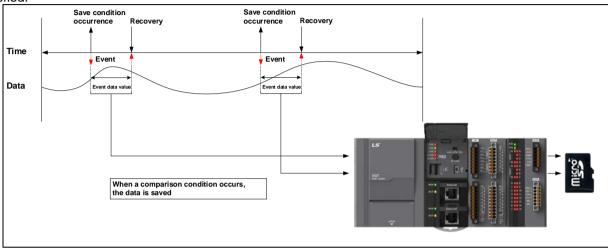


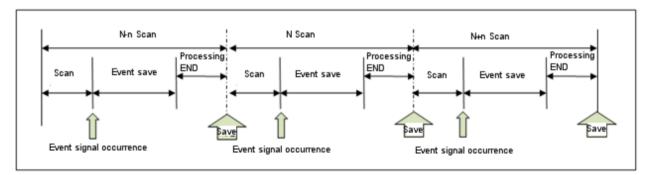
When setting is complete, the window closes and the conditions initially set at the Trigger Setting Condition menu are displayed as follows.



Chapter11 Datalog Function

If only one [Condition Setting] is input after selecting Calculation Condition before finishing the setting, the following phrase is displayed and the setting is not complete.




- (b) Input sampling interval, total number of samples and number of samples after trigger, then finish Trigger setting.
- (c) Device values set at the Datalog Basic Setting window are collected when the Trigger Condition occurs, converted into the set type, and saved into the SD memory.

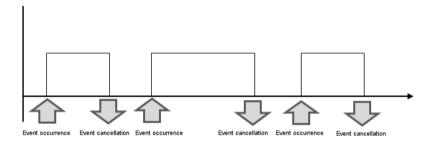
11.6 Event Save

Event Save refers to monitoring the device value collected, and saving the present data when a certain event condition is satisfied. This method is useful for analyzing fluctuation of event values and timing by saving data from the event occurrence to the event termination. Event Save refers to saving data when the event occurs, until the conditions are not satisfied.

Note

After selecting Trigger Save, if the first trigger condition occurs and another trigger condition occurs while collecting data, the new trigger is ignored.

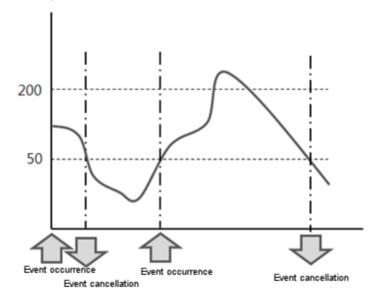
11.6.1 Event Condition


Event Save function runs under Single Condition, Multiple Condition. The setting item for single/operation conditions are as follows. Multiple Condition runs by connecting Single Condition using operation. Up to 4 Single Conditions can be set to form a condition. When the Trigger Condition occurs and data saving initiates, E character string is inserted into the first data string to indicate the event occurrence.

(1) Single Condition

Single Condition runs under BIT Condition, WORD Condition.

(a) BIT Condition


BIT condition checks the set device BIT value, and collects data by detecting trigger when the value is either [elevation], [descent], [transfer], [ON], or [OFF].

(b) WORD Condition

Word Condition compares the set device with the input value, and converts them into TRUE or FALSE. If the set device value satisfies the input condition, saves data when the value is [elevation], [descent], [transfer], [ON], or [OFF].

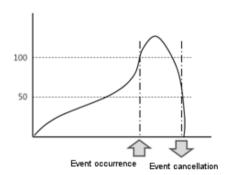
Ex) If set value is >50, elevation condition

(c) Release Value Setting

Among Event Save functions, release value setting can be done only in WORD Condition. It affects data save interval and frequency. Once the release value is set, the condition after event occurrence saves data until the release value is satisfied.

	Use Release Value Setting	Do Not Use Release Value Setting
%MW0 > 100	Release Value Setting 50	
%MW0 >= 100	Saves data until the setting value after event occurrence is 50	
%MW0 == 100	Release Value Cannot be Set	Saves data until the
%MW0 < 100	Release Value: 120	condition is met after event occurrence
%MW0 <= 100	Saves data until the setting value after event occurrence is 120	
%MW0 <> 100	Release Value Cannot be Set	

Note


Release value can be set as follows. If the following is not complied with, an error window will appear and data input will not work. Check it when setting the parameter.

Release value many not overlap with the range of set values.

Condition	Range of Release Value
Large	Set Value >= Release Value
Large or Same	Set Value > Release Value
small	Set Value <= Release Value
Small or Same	Set Value <= Release Value
Same	Setting Available
Not Same	Setting Available


Example 1) In the word condition, if the value is set to %MW0>100, and the cancelation value is set to 50.

If %MW0 exceeds 100, an event occurs, and the data is saved. However, since the cancelation value is set to 50, the data storage is performed until it reaches 50.

When the condition is met, the data is saved at the point of time set in the even occurrence condition. [Rise], [Fall], [Transition] conditions store 1 block of data by operation, and [ON],[OFF] conditions store data until the conditions are not met by the level operation.

Example 2) In the word condition, if the value is set to %MW0<50, and the cancelation value is set to 200 If %MW0 is less than 50, an event occurs, and the data is saved. However, since the cancelation value is set to 200, the data is saved until it reaches 200.

(d) Condition Description

	Trigger Occurrence Condition	Device Set Condition	Operation	Release Value Setting
	Elevation		Saves data at elevation edge of set device bit value FALSE → TRUE 0 1	
	Descent		Saves data at descent edge of set device bit value TRUE → FALSE 1 0	
Bit Condition	Transfer		Saves data when set device bit value is transferred TRUE \rightarrow FALSE FALSE \rightarrow TRUE 0 0 1	
	ON		Saves data when set device bit value is ON ON 1	
	OFF		Saves data when set device bit value is OFF OFF 1 0	

	Trigger Occurrence Condition	Device Set Condition	Operation	Release Value Setting
	Elevation		Samples data at the elevation edge when Device Set Condition changes from FALSE (0) to TRUE(1). FALSE(0) TRUE(1) EX) device value=set value device value=set value device value>set value	Setting Available
	Descent		Samples data at the descent edge when Device Set Condition changes from TRUE(1) to FALSE(0). TRUE(1) FALSE(0) Ex) device value device value=set value device value=set value device value=set value device value=set value	
Word Condition	Transfer	Small	Samples data at the elevation edge or descent edge TRUE(1) TRUE(1) FALSE(0)	
	ON		Samples data when Device Set Condition is TRUE(1) FALSE(0) TRUE(1) Ex) Device value ≥ Set value Device value = Set value Device value > Set value Device value > Set value	
	OFF		Samples data when Device Set Condition is FALSE(0) TRUE(1) FALSE(0) Ex) Device value < Set value Device value = Set value Device value > Set value Device value > Set value	

	Trigger Occurrence Condition	Device Set Condition	Operation	Release Value Setting
	Elevation		Samples data at the elevation edge when Device Set Condition changes from FALSE (0) to TRUE(1). FALSE(0) TRUE(1) EX) device value>=set value device value=set value device value>set value device value>set value	Setting Available
	Descent		Samples data at the descent edge when Device Set Condition changes from TRUE(1) to FALSE(0). TRUE(1) FALSE(0) EX) device value device value=set value device value=set value device value=set value	
Word Condition	Transfer	Small or Same	Samples data at the elevation edge or descent edge FALSE(0) TRUE(1) TRUE(1) FALSE(0)	
	ON		Samples data when Device Set Condition is TRUE(1) FALSE(0) TRUE(1) Ex) Device value ≥ Set value Device value = Set value Device value > Set value	
	OFF		Samples data when Device Set Condition is FALSE(0) TRUE(1) Ex) Device value < Set value Device value > Set value Device value > Set value Device value > Set value	

	Trigger Occurrence Condition	Device Set Condition	Operation	Release Value Setting
	Elevation		Samples data at the elevation edge when Device Set Condition changes from FALSE (0) to TRUE(1). FALSE(0) TRUE(1) EX) device value>=set value device value=set value device value>set value device value>set value	Setting Available
	Descent		Samples data at the descent edge when Device Set Condition changes from TRUE(1) to FALSE(0). TRUE(1) FALSE(0) EX) device value device value=set value device value=set value device value=set value	
Word Condition	Transfer	Large	Samples data at the elevation edge or descent edge FALSE(0) TRUE(1) Dial device value>=set value device value>set value device value=set value device value=set value device value=set value	
	ON		Samples data when Device Set Condition is TRUE(1) FALSE(0) TRUE(1) Ex) Device value ≥ Set value Device value = Set value Device value > Set value	
	OFF		Samples data when Device Set Condition is FALSE(0) TRUE(1) FALSE(0) Ex) Device value < Set value Device value > Set value Device value > Set value Device value > Set value	

	Trigger Occurrence Condition	Device Set Condition	Operation	Release Value Setting
	Elevation		Samples data at the elevation edge when Device Set Condition changes from FALSE (0) to TRUE(1). FALSE(0) TRUE(1) EX) device value>=set value device value=set value device value>set value device value>set value	Setting Available
	Descent		Samples data at the descent edge when Device Set Condition changes from TRUE(1) to FALSE(0). TRUE(1) FALSE(0) EX) device value device value=set value device value=set value device value=set value	
Word Condition	Transfer	Large or Same	Samples data at the elevation edge or descent edge FALSE(0) TRUE(1) TRUE(1) FALSE(0)	
	ON		Samples data when Device Set Condition is TRUE(1) FALSE(0) TRUE(1) Ex) Device value ≥ Set value Device value = Set value Device value > Set value	
	OFF		Samples data when Device Set Condition is FALSE(0) TRUE(1) Ex) Device value < Set value Device value > Set value Device value > Set value Device value > Set value	

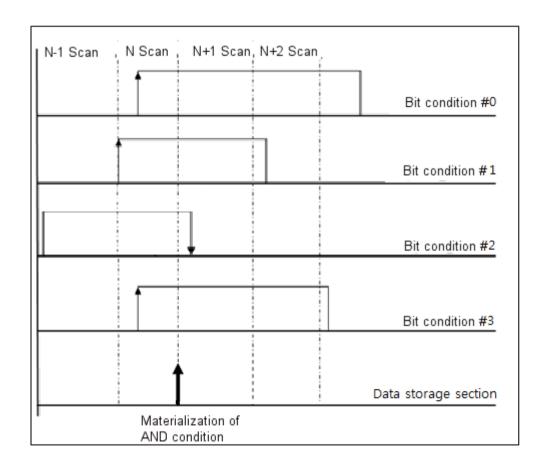
	Trigger Occurrence Condition	Device Set Condition	Operation	Release Value Setting
	Elevation		Samples data at the elevation edge when Device Set Condition changes from FALSE (0) to TRUE(1). FALSE(0) TRUE(1) EX) device value>=set value device value==set value device value>set value	Setting Available
	Descent		Samples data at the descent edge when Device Set Condition changes from TRUE(1) to FALSE(0). TRUE(1) FALSE(0) Ex) device value device value=set value device value=set value device value=set value	
Word Condition	Transfer	Same	Samples data at the elevation edge or descent edge FALSE(0) TRUE(1) TRUE(1) FALSE(0)	
	ON		Samples data when Device Set Condition is TRUE(1) FALSE(0) TRUE(1) Ex) Device value ≥ Set value Device value = Set value Device value > Set value Device value > Set value	
	OFF		Samples data when Device Set Condition is FALSE(0) TRUE(1) FALSE(0) Ex) Device value < Set value Device value > Set value Device value > Set value Device value > Set value	

	Trigger Occurrence Condition	Device Set Condition	Operation	Release Value Setting
	Elevation		Samples data at the elevation edge when Device Set Condition changes from FALSE (0) to TRUE(1). FALSE(0) TRUE(1) EX) device value>=set value device value=set value device value>set value device value>set value	Setting Available
	Descent		Samples data at the descent edge when Device Set Condition changes from TRUE(1) to FALSE(0). TRUE(1) FALSE(0) EX) device value device value=set value device value=set value device value=set value	
Word Condition	Transfer	Not Same	Samples data at the elevation edge or descent edge FALSE(0) TRUE(1) TRUE(1) FALSE(0)	
	ON		FALSE(0) TRUE(1) Ex) Device value ≥ Set value Device value = Set value Device value > Set value Device value > Set value	
	OFF		Samples data when Device Set Condition is FALSE(0) TRUE(1) Ex) Device value < Set value Device value > Set value Device value > Set value Device value > Set value	

(2) Multiple Condition

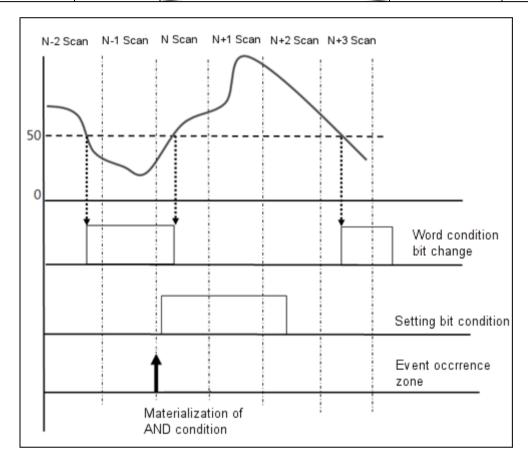
Multiple Condition refers to setting up to 4 single conditions and operating by performing the runs that fit the conditions

Event condition occurs when operation with the set condition satisfies the result


Setting	Operation				
AND Condition	Performs AND run with the set conditions, and saves data when the result is 1.				
OR Condition	Performs OR run with the set conditions, and saves data when the result is 1.				

(a) AND Calculation

Event occurs when all relevant conditions are satisfied at a single scan. The following is an example of activating Event Save.


When setting only with BIT condition

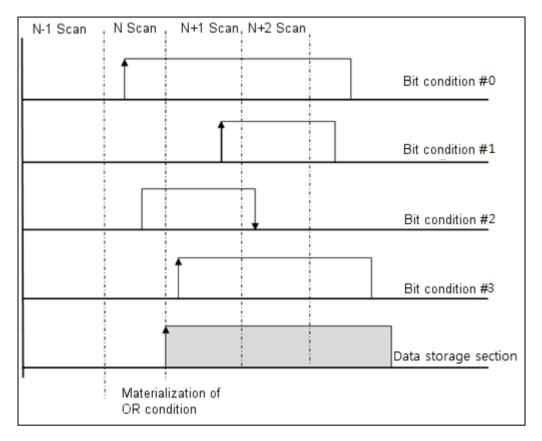
	Condition	Set Device	Event Occurrence Condition
Condition 0	BOOL	%MX1010	
Condition 1	BOOL	%IX1	Elevation
Condition 2	BOOL	%MX2010	Elevation
Condition 3	BOOL	%QX130	


When setting with combination of BIT and WORD conditions (no release value set)

	Condition	Comparison Condition	Set Value	Release Value	Set Device	Event Occurrence Condition
Condition 0	Word	<	50	-	%MW100	Elevation
Condition 1	BOOL				%MX15	Lievation

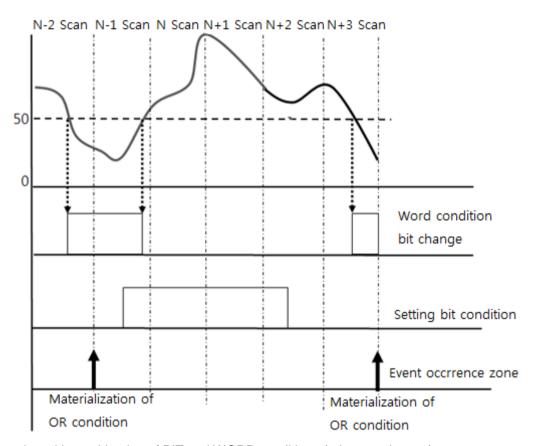
When setting with combination of BIT and WORD conditions (release value set)

	Condition	Comparison Condition	Set Value	Release Value	Set Device	Event Occurrence Condition
Condition 0	WORD	<	50	100	%MW100	Elevation
Condition 1	BOOL				%MX15	Elevation

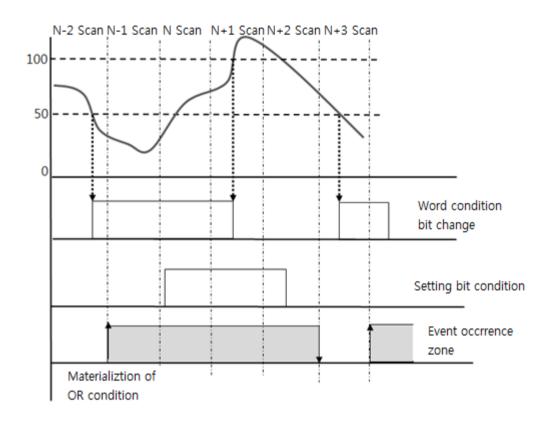


(b) OR Calculation

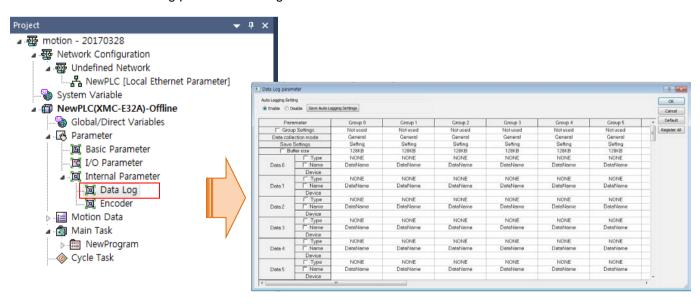
Event occurs when even one condition is satisfied at a single main task. After selecting Trigger Save, if the Trigger Condition is again satisfied before data saving is complete, and the trigger reoccurrence flag value increases.


When setting only with BIT condition

	Condition	Set Device	Event Occurrence Condition
Condition 0	BOOL	%MX1010	
Condition 1	BOOL	%IX1	ON
Condition 2	BOOL	%MX2010	ON
Condition 3	BOOL	%QX130	

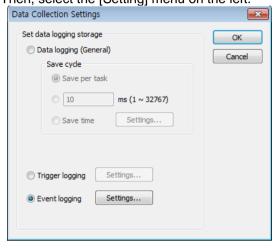

When setting with combination of BIT and WORD conditions (no release value set)

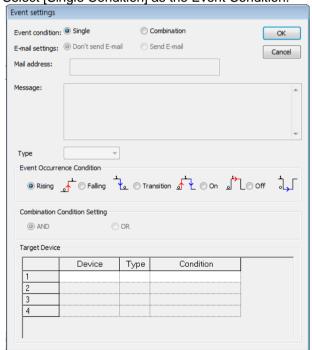
	Condition	Comparison Condition	Set Value	Release Value	Set Device	Event Occurrence Condition
Condition 0	WORD	~	50	-	%MW10	Elevation
Condition 1	BOOL				%MX15	Lievation


When setting with combination of BIT and WORD conditions (release value set)

	Condition	Comparison Condition	Set Value	Release Value	Set Device	Event Occurrence Condition
Condition 0	Word	~	50	100	%MW10	ON
Condition 1	BOOL				%MX15	ON

11.6.2 Setting Method

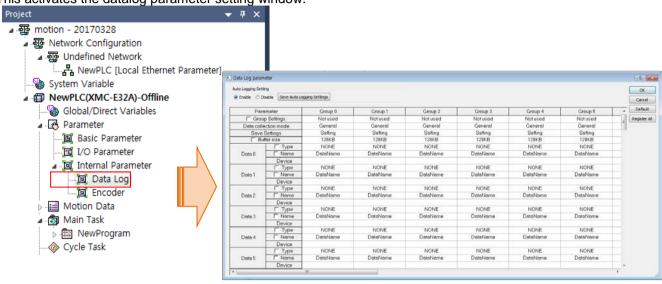

- (1) Single BIT Condition
 - (a) Choose XG5000 [Project Window] [internal parameter] [datalog] This activates the datalog parameter setting window.


(b) Set the group to use on the datalog parameter window.

(c) Select [Event Logging] at [Data Collection Method] to activate [Setting] menu on the left. Then, select the [Setting] menu on the left.

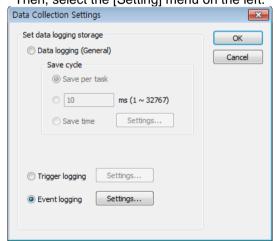

(d) Upon selection, the following window is activated for event setting. Select [Single Condition] as the Event Condition.

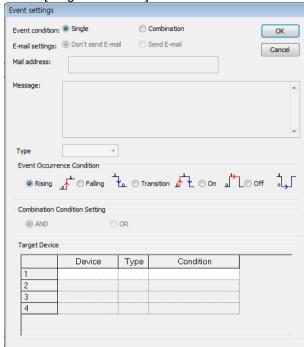
(e) Select the condition setting menu to activate the following setting window. Select [BIT Condition], and input device values into the device window in BIT types.


When setting is complete, the window closes and the conditions initially set at the Event Setting Condition menu are displayed as follows.

(f) Select the timing of data saving at the Event Occurrence Condition. The number and timing of data change depending on the set value.

(2) Single WORD Condition


(a) Choose XG5000 – [Project Window] - [internal parameter] - [datalog] This activates the datalog parameter setting window.


(b) Set the group to use on the datalog parameter window.

Parameter	Group 0	Parameter	Group 0
☐ Group Settings	Not used 📥	Croup Sottings	Used
Data collection mode	Notused	Data collection mode	General
Save Settings	Used	Save Settings	Setting
☐ Buffer size	128KB	☐ Buffer size	128KB

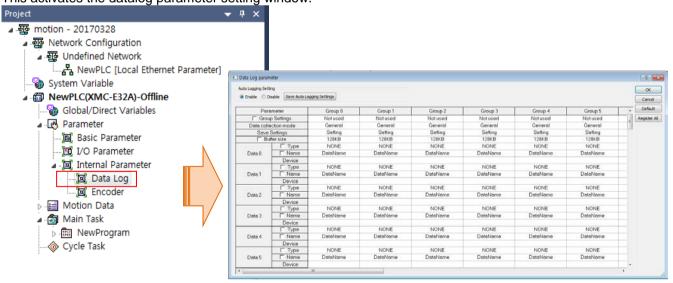
(c) Select [Event Logging] at [Data Collection Method] to activate [Setting] menu on the left. Then, select the [Setting] menu on the left.

(d) Upon selection, the following window is activated for event setting. Select [Single Condition] as the Event Condition.

(e) Select the condition setting menu to activate the following setting window. Select [WORD Condition], and input device values into the device window in BIT types.

Event settings Event condition:

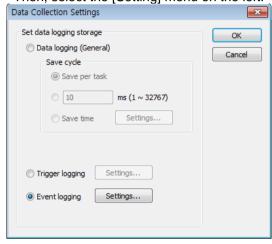
Single Combination OK E-mail settings:

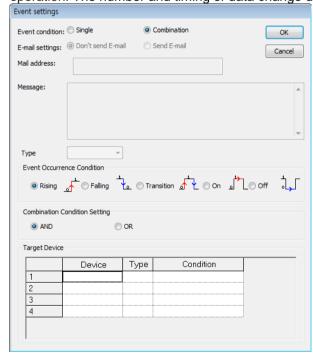

Don't send E-mail Send E-mail Cancel Туре Transition On Off Off Rising Falling Combination Condition Setting Target Device Туре Condition < 100, 0: Not used

When setting is complete, the window closes and the conditions initially set at the Event Setting Condition menu are displayed as follows.

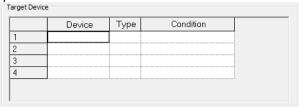
(f) Select the timing of data saving at the Event Occurrence Condition. The number and timing of data change depending on the set value.

(3) Multiple AND Condition

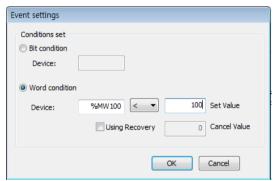

(a) Choose XG5000 - [Project Window] - [internal parameter] - [datalog] This activates the datalog parameter setting window.


(b) Set the group to use on the datalog parameter window.

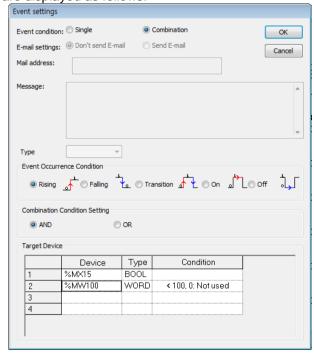
Parameter	Group 0	Parameter	Group 0
☐ Group Settings	Not used 🕳	Croup Sottings	Used
Data collection mode	Notused	Data collection mode	General
Save Settings	Used	Save Settings	Setting
☐ Buffer size	128KB	☐ Buffer size	128KB


(c) Select [Event Logging] at [Data Collection Method] to activate [Setting] menu on the left. Then, select the [Setting] menu on the left.

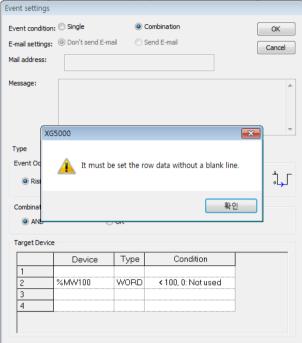

(d) Select the timing of data saving at the Event Occurrence Condition and set the operation condition to AND operation. The number and timing of data change depending on the set value and Time.



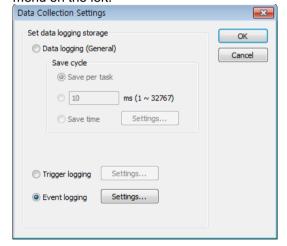
(e) Select [Event Condition] and [Multiple Condition] to activate the condition setting window which allows for up to 4 inputs.

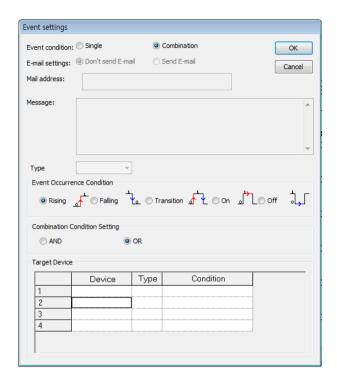


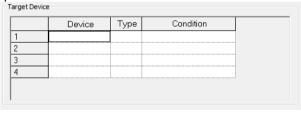
(f) Select each condition setting menu one by one, inputting specific set values. [Multiple Condition] activates Event Condition by calculating [Single Conditions] using the set run method. The basic setting is performed in the same way as Single Condition.



(g) When setting is complete, the window closes and the conditions initially set at the Event Setting Condition menu are displayed as follows.

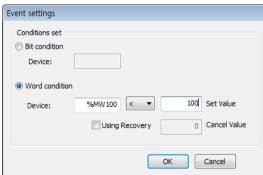



If only one [Condition Setting] is input after selecting Calculation Condition before finishing the setting, the following phrase is displayed and the setting is not complete.

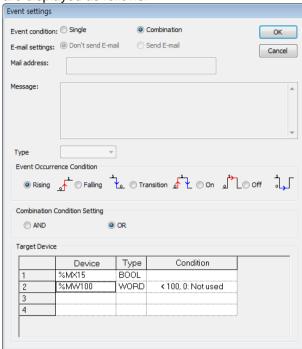

(4) Multiple OR Condition

- (a) The same sequence as [AND Calculation Condition] applies up to the [Event Setting] menu.
- (b) Select [Event Logging] at [Data Collection Method] to activate [Setting] menu on the left. Then, select the [Setting] menu on the left.

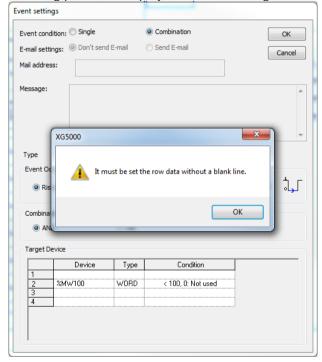




(c) Select [Event Condition] and [Multiple Condition] to activate the condition setting window which allows for up to 4 inputs.

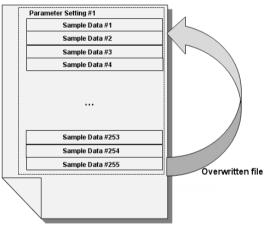


- (d) Select the timing of data saving at the Event Occurrence Condition and set the operation condition to OR operation. The number and timing of data change depending on the set value.
- (e) Select each condition setting menu one by one, inputting specific set values. [Multiple Condition] activates Event Condition by calculating [Single Conditions] using the set run method. The basic setting is performed in the same way as Single Condition.



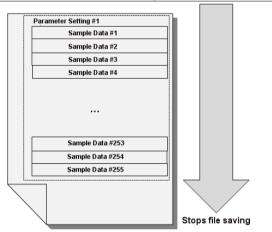
(f) When setting is complete, the window closes and the conditions initially set at the Event Setting Condition menu are displayed as follows.

(g) If only one [Condition Setting] is input after selecting Calculation Condition before finishing the setting, the following phrase is displayed and the setting is not complete.

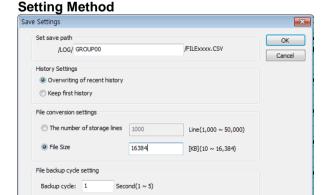

11.7 Additional Functions

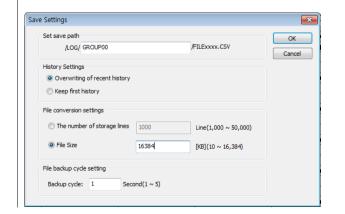
This section provides detailed description of additional functions of internal datalog

11.7.1 File Save History Setting


When the maximum number of files are saved into the datalog, file save changes depending on whether [Overwrite with Latest History] or [Maintain First History] is chosen at the [History Setting

Overwrite with the latest history




- Saves data in the maximum number of saved files (256 files/folder), and then goes back to the beginning to delete old files, and save the latest history.
- When the maximum files are saved after selecting [Overwrite with Latest History], the file save excess flag value increases. (See 5.10, Flag List)
- If the 10% or less of the SD memory storage is free, the data are written over the file first saved.
- The overwritten file has the same size as the previous one.

Maintains the initial history

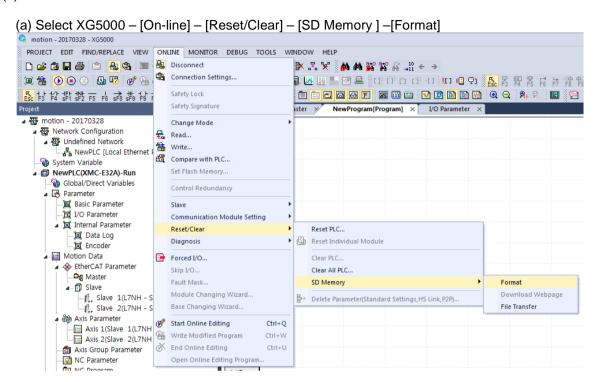
- Saves data in the maximum number of saved files (256 files/folder), and then stops file saving.
- If the 10% or less of the SD memory storage is free, stops file saving.

11.7.2 Formatting Function

Internal datalog supports SD memory formatting function. SD memory formatting is done through XG5000. SD memory formatting is supported only when motion controller is in STOP mode.

(1) Formatting Specifications

The SD memory formatting supported by datalog has the following specifications.


ltem	Set Specifications
File System ¹⁾	FAT32
Supported SD memory Capacity ²⁾	2GByte ~ 32GByte
Allotted Cluster Size ³⁾	32KByte (512 Sector ⁴⁾ x 8)
Volume Label ⁵⁾	LSIS (fixed)
Motion controller Operation Mode ⁶⁾	STOP (REMOTE available)
Formatting Mode ⁷⁾	Fast Formatting

- (a) File System: Rules of Saving Files into Disk
- (b) Supported SD memory Capacity: MMC card not supported, 2GByte~ 32GByte SD memory supported (Micro SD, SDHC supported)
- (c) Allotted Cluster Size 32kByte
- (d) Sector: Minimum Unit for Data Saving (Default: 512 Byte)
- (e) Volume Label: SD memory Card Name
- (f) Motion Controller Operation Mode: Operates only in STOP mode
- (g) Formatting Mode: Fast-formats the SD memory Only deletes the FAT and directory area within the file system.

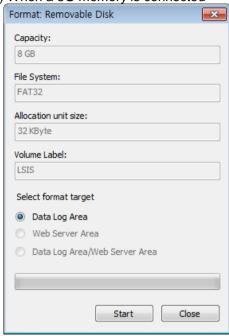
Note

- 1. When performing [Formatting Function] at motion controller, all contents within the SD memory are deleted, followed by creation of a folder with the name set by the parameter.
- 2. If the SD card file system is not FAT32, the format function is not supported in the XG5000. In an attempt to format the SD card other than FAT32, a warning window "No file system other than FAT32 is supported" is created. Please use after formatting to FAT32 in PC

(2) Execution

(b) Before executing SD memory formatting, cautions for formatting process are activated.. After reviewing the cautions, press [Yes] to proceed to the next stage.

Caution


- 1. Detaching the SD memory with force, power off or reset during formatting may cause internal damage of the connected card, which may not show normal run afterwards.
- 2. If SD memory is being recognized when connected, the formatting can be performed after the operation is completed.
- 3. Check RD/WRLED and relevant flags when SD memory is connected. If the motion controller mode is changed while the formatting is in progress, the formatting will not be performed normally (supported only in STOP state).
- 4. Transition to RUN mode is not possible during formatting.
- (c) Subsequently the formatting setting window is activated. The setting window is as follows.

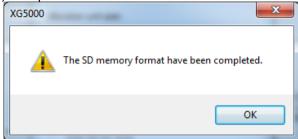
 The storage, file system and allotted unit size are Default values that are read when connecting the SD memory.

 Also, only fast formatting is supported. Volume label should be in English, and can be as long as 10 characters..

 After setting as indicated above, press [Start] to begin formatting. The status bar indicates the current progress.

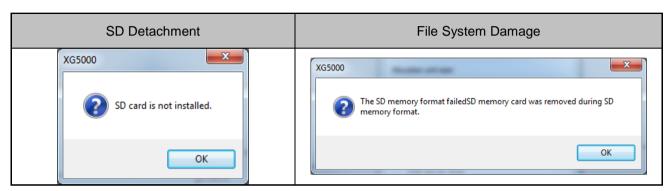
Ex) When a 8G memory is connected

(3) Formatting Complete and Error Codes


(a) Status Information

F Area Addre	ess	Flag Name	Description
%FW523		_SD_FmtInfo	SD memory formatting information
	%FX8368	_SD_FmtRun	SD memory formatting in progress
BOOL	%FX8369	_SD_FmtDone	SD memory formatting complete
	%FX8370	_SD_FmtNg	SD memory formatting failed
%FW524		_SD_FmtEcode	SD memory formatting error codes

(b) Error Code


Error Code	Error Name	Error Description
0x0001	SD Detachment	When the SD memory card is forcibly removed during SD memory formatting
0x0002	File System Damage	When the file system is damaged during SD memory formatting

(c) Completion Phrase

SD_FmtDone(%KX8369) Bit turns ON when formatting is complete. In this case, the following completion window appears.

If formatting failed, an error window appears along with the relevant code.

11.7.3 Diagnosis Function

Datalog provides SD memory diagnosis function.

SD memories that do not comply with the following cannot be used. Datalog function will not be executed when such memories are connected.

(1) FAT32 File System Diagnosis

The memory should be formatted using the FAT32 format, to allow for file saving. Files will not be saved if it is formatted using other formats.

Caution

Since sudden power off may cause file system / file damage or saving of abnormal data. Therefore, make sure to execute STOP flag or push the SD CMD button for 2 second when trying to stop datalog function, so as to ensure normal data saving.

11.8 CSV File Structure

11.8.1 File Save Format

The name of CSV files are created in the following form.

Name	F	I	L	E	0	0	0	0	0	.CSV
Description	File Name			Gro Nun	•	File Number			Extension	
Range	Fixed Value			0~	15		000 ~ 255		Fixed Value	

The first 4 characters are fixed as 'FILE,' and the 5 ~ 6th numbers indicates the group number selected, and the following

7~9th numbers indicate the file number.

For example, the 8th file of the 'GROUP11' folder will be named 'FILE11008.CSV.'

11.8.2 File Name and Save Sequence

When executing datalog function after selecting a certain group, the file sequence progresses from Number 0. When executing datalog function on multiple groups, files are first created for Group 0, and progresses sequentially to Group

Selecting [Do Not Use] at the [Group Setting] will stop fie saving in the current group, and files creating will move into the next group.

Group Name	Group 0	Group 1	Group 2	Group 3	Group 4	Group 5	 Group 15
File Name	LOG0000	LOG1000	LOG2000	LOG3000	LOG4000	LOG5000	LOG9000
and Creation							
Sequence	LOG0255	LOG1255	LOG2255	LOG3255	LOG4255	LOG5255	LOG15255

Note

While the data value collected from motion controller is saved at the interval set by the parameter, saving into the SD memory is performed using Main Task Save method, starting from Group 0. However, it can change flexibly depending on file storage.

11.9 SD Memory Card

11.9.1 SD Memory Specifications

To use datalog function, the SD memory used should satisfy the following specifications.

Items	Description
Memory Capacity:	Up to 32 GB (supports SPI MODE, SD, SDHC)
	(Only 8GB can be available in more than 8GB memory)
File System	FAT32
Voltage Range	2.7 ~ 3.6V
Working Temperature Range	-25°C ~ 85°C
Static Tolerance	Should satisfy IEC61000-4-2
Number of Detachments	Up to 10,000 times
Current Consumption	Up to 100mA (when reading, writing)
Number of Read/Writes	Up to 100,000 times (for SLC)
Size	15mm * 11mm * 1mm
Recommended Products	SanDisk, Transcend

Note

- 1. Datalog function of motion controller is capable of using all SD memories that satisfy the specifications
- 2. Optimal performance can be expected by using the recommended products (SanDisk, Transcend). Please use the recommended products unless required otherwise

11.9.2 Caution

Please pay attention to the following when using datalog function with SD memory card.

- (1) Power Off during SD Memory Writing
 - (a) Power off or motion controller reset during writing of data collected by motion controller into the SD memory may damage the file system of the memory card. Although motion controller verifies the file system of the SD memory when applying electric power to convert the damaged files into usable files, such restoration may not be possible depending on the level of damage. When powering off motion controller, please perform power off after verifying that the SD memory writing is not being performed.
 - (b) Power off or motion controller reset during writing of data collected by motion controller into the SD memory causes all data saved in the buffer memory inside the buffer memory. Therefore, the data collected immediately before power off may not have been saved properly. When powering off motion controller, please perform power off after verifying that the SD memory writing is not being performed.
- (2) Time Required when Suspending SD Memory Writing

In cases of using K area flag to turn off the datalog permission flag while data saving is in progress, all data collected before reception of the relevant flag command are saved into the SD memory, and then the datalog operation stops.

Therefore, a small time is required until the datalog function actually stops. The time required for datalog stop varies depending on the volume of data collected.

While the datalog stop is being performed, DLxx_Stoping (xx is the group number) flag is turned on, and when the stop is completed, _DLxx_Finish flag is turned on. During the stop, the size of the remaining dada to be saved to the SD card is displayed in the _DLxx_WaitingData flag.

Chapter11 Datalog Function

- (3) Removal of Memory Card during Read/Write in SD Memory
 - (a) Forcibly removing the SD memory from motion controller during writing or reading of data collected by motion controller may damage the file system of the memory card. Therefore, please remove SD memory after disabling the datalog function using the command flag. If SD memory is removed during read/write of the SD memory, the SD STATE LED flashes at 500ms interval.
 - The following figure shows the sequence of disconnecting or exchanging SD memory card.
 - (b) Power off or reset during datalog run may cause abnormal data saving. Also, the file system may be damaged and not recognized the SD memory and the files.
- (4) Using the cover to prevent SD memory removal

Please set the direction correctly when connecting the SD memory to the motion controller.

If you want to remove the SD memory, press the SD memory deeply to remove the memory.

In addition, please use the cover to prevent the SD memory from being removed due to vibration.

11.9.3 Micro SD Memory Usage Capacity

Up to 32GB memory can be mounted on the motion controller, but only about 80% of 8GB can be used. Even if the SD card with more than 8GB is installed, the capacity corresponding to about 80% of 8GB, not 80% of the total capacity can be used, and therefore it can no longer be used when more than 6.4GB is used. This is to prevent excessive increase of SD memory access time when the data is stored.

Caution

- 1. SD memory state may affect main task time and saving performance. SD memory should be formatted before use.
- 2. When using the SD memory for a long time, formatting on a regular basis is required to maintain performance.

11.10 Flag List

11.10.1 Common Flag

Address	Туре	Variable	Function	Description
%KX8800	BOOL	_DL_Rdy	Datalog ready	It is the flag indicating whether the datalog is ready.
%KX8192	BOOL	_DL_AutoLogStop	Stop Auto-logging	It is the flag indicating stop command input of auto-logging.
%KX8801	BOOL	_DL_Err	Datalog error state	It is the flag indicating error state of the datalog.
%KX8256	BOOL	_SD_Attach	SD attachment state	It is the flag indicating attachment state of SD memory.
%KX8257	BOOL	_SD_Rdy	SD memory ready	It is the flag indicating whether the SD memory is enabled.
%KX8258	BOOL	_SD_Err	SD memory error	It is the flag indicating error state of SD memory.
%KX8259	BOOL	_SD_Init	SD memory initializing state	It is the flag indicating initialization state of SD memory.
%KX8260	BOOL	_SD_Closing	SD memory closing state	It is the flag indicating closing state of SD memory.
%KX8261	BOOL	_SD_FATErr	File System Error	It is the flag indicating error state of SD memory file system
%KX8262	BOOL	_SD_AutoLogAct	Act Auto-logging	It is the flag indicating acting state of auto-logging.
%KX8263	BOOL	_SD_Busy	SD memory busy state	It is the flag indicating busy state of SD memory.
%KX8264	BOOL	_SD_SpaceWarn	SD memory insufficient state	It is the flag indicating insufficient state of SD memory capacity.
%KX8265	BOOL	_SD_Detach	SD memory detachment state	It is the flag indicating detachment state of SD memory.
%KD259	UDINT	_SD_VolTot	SD memory storage capacity(GB)	The Capacity of attachment SD memory (GB) (In case of 8GB or more, it is displayed as 8GB)
%KD260	UDINT	_SD_VolAvail	Available storage capacity(KB)	The usable capacity of SD memory (KB)
%KW522	WORD	_SD_Ecode	SD memory error code	It is the flag indicating error number of SD memory.
%KW523	WORD	_SD_FmtInfo	SD memory format information	It is the flag indicating format information of SD memory.
%KX8368	BOOL	_SD_FmtRun	SD memory format operation state	It is the flag indicating that the SD memory is formatting.
%KX8369	BOOL	_SD_FmtDone	SD memory format complete state	It is the flag indicating that the format of SD memory is completed normally.
%KX8370	BOOL	_SD_FmtErr	SD memory format fail state	It is the flag indicating that the format of SD memory is failed

Address	Туре	Variable	Function	Description
%KW524	WORD	_SD_FmtEcode	SD memory format error code	It is the flag indicating error number that occurred while formatting the SD memory.
%KW525	WORD	_SD_FmtProgress	SD memory format progress ratio(%)	It is the flag indicating format progress ration of SD memory. (0~100(%))
%KW526	WORD	_SD_AttachCnt	SD memory attachment count	It is the flag indicating attachment count of SD memory.
%KW527	WORD	_SD_DetachCnt	SD memory detachment count	It is the flag indicating detachment count of SD memory.
%KX8640	BOOL	_SD_AddfuncAct	SD additional function operation state	It is the flag indicating that the additional function of SD memory is operating.
%KX8641	BOOL	_SD_AddfuncErr	SD additional function error state	It is the flag indicating that the additional function of SD memory is error state.
%KX8642	BOOL	_SD_AddfuncDone	SD additional function complete state	It is the flag indicating that the additional function of SD memory is completed operation state.
%KX8643	BOOL	_SD_CmpResult	SD result of comparison	It is the flag indicating comparison operation result of SD memory
%KW541	WORD	_SD_AddfuncKind	SD type of additional function	It is the flag indicating type of that the additional function of SD memory is.
%KW542	WORD	_SD_AddfuncEcode	SD additional function error code	It is the flag indicating error number that occurred while operating the additional function of the SD memory.

11.10.2 Group Specific Flag

(1) Parameter Group 0 Flag

Address		Variable	Function	Description
	Туре			Description
%KX8224	BOOL	_DL00_Enable	Group 00 datalog enable state	0: Stop, 1: Save
%KX8960	BOOL	_DL00_Rdy	Group 00 datalog ready	0: Not ready, 1: Ready
%KX8961	BOOL	_DL00_Act	Group 00 datalog operation state	0: Stop, 1: Saving
%KX8962	BOOL	_DL00_Err	Group 00 datalog error state	0: No error, 1: Error
%KX8963	BOOL	_DL00_Stoping	Group 00 datalog stopping state	0: Not stopping, 1: Stopping
%KX8964	BOOL	_DL00_Finish	Group 00 datalog finish state	0: Incomplete, 1: Complete
%KX8965	BOOL	_DL00_Trig	Group 00 trigger occurrence state	0: Stop, 1: Operating
%KX8966	BOOL	_DL00_TrigDone	Group 00 trigger complete state	0: Incomplete, 1: Complete
%KX8967	BOOL	_DL00_Evt	Group 00 event occurrence state	0: Stop, 1: Operating
%KX8968	BOOL	_DL00_Ovf	Group 00 buffer overflow state	0: normal, 1: overflow
%KW561	WORD	_DL00_Ecode	Group 00 datalog error code	-
%KW562	WORD	_DL00_FileIdx	Group 00 datalog file index number	range :0~255
%KW563	WORD	_DL00_FileRollcnt	Group 00 overwrite count	-
%KD282	UDINT	_DL00_FileSize	Group 00 file size(Byte)	-
%KD283	UDINT	_DL00_DataRow	Group 00 data row number	-
%KD284	UDINT	_DL00_RemainBuf	Group 00 remaining buffer size(Byte)	-
%KD285	UDINT	_DL00_WaitingData	Group 00 waiting data size(Byte)	-
%KW572	WORD	_DL00_OvfCnt	Group 00 buffer overflow count	-
%KW573	WORD	_DL00_TrigCnt	Group 00 trigger occurrence count	-
%KW574	WORD	_DL00_TrigOvrap	Group 00 trigger overlap count	-
%KW575	WORD	_DL00_EvtCnt	Group 00 event occurrence count	-

(2) Parameter group 1th~15th flag

Address	Size	Variable	Function	Description
%KW580	20Word	-	-	Parameter of group 1(the same structure with group 0)
%KW600	20Word	-	-	Parameter of group 2(the same structure with group 0)
%KW620	20Word	-	-	Parameter of group 3(the same structure with group 0)
%KW640	20Word	-	-	Parameter of group 4(the same structure with group 0)
%KW660	20Word	-	-	Parameter of group 5(the same structure with group 0)
%KW680	20Word	-	-	Parameter of group 6(the same structure with group 0)
%KW700	20Word	-	-	Parameter of group 7(the same structure with group 0)
%KW720	20Word	-	-	Parameter of group 8(the same structure with group 0)
%KW740	20Word	-	-	Parameter of group 9(the same structure with group 0)
%KW760	20Word	-	-	Parameter of group 10(the same structure with group 0)
%KW780	20Word	-	-	Parameter of group 11(the same structure with group 0)
%KW800	20Word	-	-	Parameter of group 12(the same structure with group 0)
%KW820	20Word	-	-	Parameter of group 13(the same structure with group 0)
%KW840	20Word	-	-	Parameter of group 14(the same structure with group 0)
%KW860	20Word	-	-	Parameter of group 15(the same structure with group 0)

 $^{^{\}star}$ _DLxx_Enable(Datalogging Enable Flag per Group) is set to each Bit of %KW514

11.10.3 Error Code and Solution

Error codes related to datalog function is as follows.

Items	Error Code	Error Name	Cause and Solution	Note
	0x0000	No Error	-	
	0x0001	SD Card Recognition Error	It occurs when SD card is damaged, or SD which is not formatted to FAT32 is mounted. Format it with FAT32 and try mounting it again. If it is still not recognized, replace the SD card.	
	0x0002	Partition Information Error	Failed to read partition information. Format it with FAT32 and try mounting it again. If it is still not recognized, replace the SD card.	
	0x0003	File System Error	Format in FAT32 format and connect SD memory.	
Overall Error	0x0004	SD Card Not Supported	Please connect SD Card with storage of 2GB~16GB.	
Codes	0x0005	SD Card Capacity Check Failed	SD memory capacity test failed, and thus SD cannot be used. Replace SD memory or re-connect it after formatting.	
	0x0006	Lack of Free Space for SD Card	The available capacity of SD card is less than 20% of the maximum capacity. (In case of SD card with more than 8GB, about 6.4GB, which is about 80% of 8GB, is used.) Replace it with another SD card or secure the capacity by formatting and then re-connect it.	
	0x0007	Folder Creation Failed	Datalogging group folder cannot be created in SD card. Replace the SD card if it is damaged or re-connect it after formatting.	
Group-	0x0100	Group No. xx Folder Creation Error		
specific Error Codes	0x0200	Group No. xx File Open Error	Format in FAT32 format and connect SD memory.	
Codes	0x0400	Group No. xx File Write Error		

11.11 Datalog Performance

11.11.1 Data Processing Time

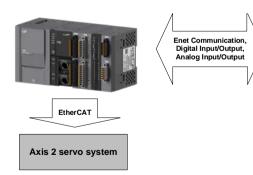
This section describes the data storage time of datalog function.

The processing times described in this section do not represent absolute values, but actual measurement of each example.

The actual processing time varies depending on the scan time, volume of collected data, format of the collected data, type and storage of SD memory and number of files in the SD memory.

11.11.2 Save Performance by Main Task Interval

The following figures are save performance measurement by main task save intervals and number of set data saved. These measurements represent relative values. The actual vales may vary depending on the program, setting parameter and SD memory applied. You can use it as a reference when using datalog function.


(1) Set Condition

Data processing time was measured under the following conditions.

Item		Description	Note
Main ta	sk Interval	1ms, 2ms, 4ms	
Buffe	er Size	128kByte	
Data Coll	ection Time	4 Word/ 10ms	
	Sampling Method	Designated Main task Interval	
Datalog Setting	Data	M Area, Type: Word	
Datalog Setting	CSV Output	Time, Index information included	
	File Save	16MByte	
SD Memory Card		Transcend 16G	

(2) System configuration

The system for performance measurement was configured using the built-in function of motion controller.

Chapter11 Datalog Function

(3) Measurement Results:

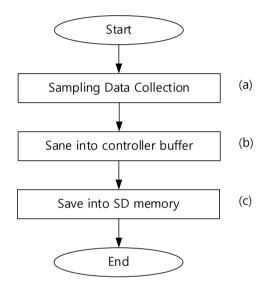
The storage performance according to the main task cyclic is shown in the following table.

(a) In case of WORD type

	Number of Devices							
	4 WORD (4 WORD * 1 Group)	8 WORD (8 WORD * 1 Group)	16 WORD (16 WORD * 1 Group)	32 WORD (32 WORD * 1 Group)	64 WORD (32 WORD * 2 Group)			
1ms	Normal	Buffer overflow occurred	Buffer overflow occurred	Buffer overflow occurred	Buffer overflow occurred			
2ms	Normal	Normal	Buffer overflow occurred	Buffer overflow occurred	Buffer overflow occurred			
4ms	Normal	Normal	Normal	Normal	Buffer overflow occurred			

(b) In case of LWORD type

(10) 111 0 010 0							
	Number of Devices						
	4 LWORD (4 LWORD * 1 Group)	8 LWORD (8 LWORD * 1 Group)	16 LWORD (16 LWORD * 1 Group)	32 LWORD (32 LWORD * 1 Group)	64 LWORD (64 LWORD * 1 Group)		
1ms	Normal	Buffer overflow occurred	Buffer overflow occurred	Buffer overflow occurred	Buffer overflow occurred		
2ms	Normal	Normal	Buffer overflow occurred	Buffer overflow occurred	Buffer overflow occurred		
4ms	Normal	Normal	Normal	Normal	Buffer overflow occurred		


11.11.3 Save Process Time Verification

Datalog function does not guarantee saving of all data under any setting. It performs the maximum operation that motion controller is capable of at the time when datalog condition occurs. That is, since datalog processing time may fluctuate depending on the parameter setting, sampling data amount, scan time and run state of motion controller's other functions such as internal communication and position determination, it may not run as specified by the set collection condition in some cases. Therefore, it is recommended to use datalog function after verifying each processing time of the system before using datalog function.

(1) Save Process Time Verification

The following figure represents the flow from datalog function performed by motion controller to saving into SD memory.

Details are as follows.

Stage		Operation	Note
(a)	Data Collection	When datalog is started, data is collected and stored in the internal buffer. Data collection is performed in accordance with conditions set in the parameter (storage for each main task and specified cycle, etc.), data may not be collected in accordance with the set conditions depending on the number of data and function usage.	
(b)	Data Design	The collected data is designed and processed in a form that can be stored in the CSV file. After the design, it is stored in a buffer. If the data storage buffer is full, the designed data will wait until there is available free space in the buffer.	
(c)	Data Storage	It performs the operation of saving the designed data as a file in the SD card. If the data storage rate cannot keep up with the data collection rate, the internal buffer is exceeded, and data may be dropped.	

(2) Methods on how to check the data storage processing time

To confirm whether the collected data is stored normally in the SD card, check the following contents

Checklist	Contents and Solutions		Note
Buffer overflow flag	Contents	Check whether the number of times when the buffer overflow occurred in K area is 0. If it is not 0, data collection is faster than data collection time, and thus the data may not be stored. Insert 'C" string in the saved file	
	Solutions	For the main task cycle, increase the main task cycle, and increase the sampling period in case of the specified cycle sampling. Reduce the amount of data collected per sampling. Only the necessary data is saved as a file (using the trigger storage function).	

Chapter 12 SD Additional Function

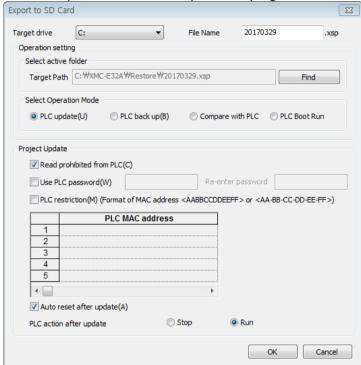
12.1 Overview

The motion controller has built-in additional functions using the SD card.

This chapter describes the specifications and usage of the SD additional features.

12.1.1 Characteristics

Through the motion controller's SD additional features, you can perform the PLC update, backup, comparison, boot operation. These functions can be executed by operating the SD CMD buttons on the PLC.

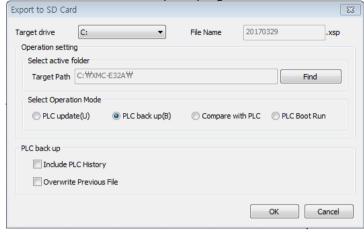

- (1) SD card setting function for SD additional features
 - SD card setting through XG5000
- (2) Motion controller update using the SD card
 - Preventing leak of the motion controller program by using password setting
 - Limit update using the motion controller's MAC address
 - Motion controller's auto reset and operation mode can be set after updating
- (3) Motion controller backup using the SD card
 - Motion controller's program can be saved to the SD card without XG5000
 - Motion controller's history also can be backed up.
- (4) Comparison with the motion controller using the SD card
 - You can compare the motion controller's parameters, motion data, motion controller programs, NC codes, CAM data.
 - The comparison results can be saved and checked on the SD card.
- (5) Motion controller's boot operation using the SD card
 - Motion controller program can be protected by password setting.
 - Limiting the boot operation using the motion controller's MAC address

12.1.2 Export to the SD Card

Select [XG5000] - [Project] - [SD Card Setting] - [Export to SD Card] to launch the window where you can set the SD card. (The function, 'Export to SD card' is available only when the XG5000 is not online.)

(1) PLC update

The PLC update function is to update the program stored in the SD card to the PLC.

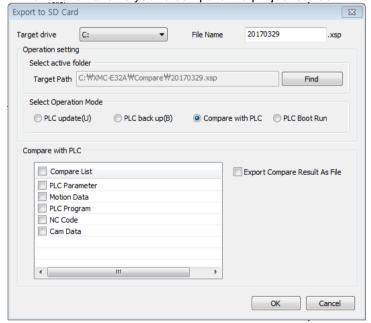


The description of each item in the PLC update mode is as follows.

Item	Description		
Target drive	Select the storage medium to store the project data		
Select action folder	Location where you will save the project data (folder)		
Out of a configuration	Set the PLC operations when inserting the SD card		
Select operation mode	PLC Update: Updating the PLC using the data stored in the SD card		
Do not read from PLC	When the PLC project is updated using the SD, 'Read from PLC' is prohibited.		
Use PLC password	Check whether the PLC project can be updated using the SD including the PLC password setting		
Limit PLC usage	Specify the PLC that can update the PLC project		
Auto-reset after update is completed	Whether to execute the PLC reset after the PLC update is completed		
PLC status after update is completed	Set the PLC operation mode after the PLC update is completed		

(2) PLC Backup

It is the function to back up the program stored in the PLC to the SD card.

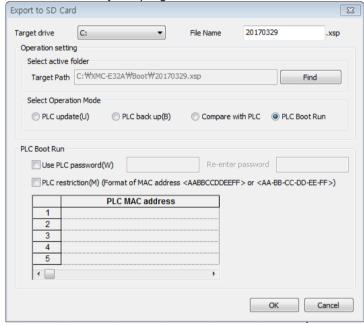


In the PLC backup mode, the description of each item is as follows.

Item	Description
Target drive	Select the storage medium to store the project data
Select action folder	Location where you will save the project data (folder)
	Set the PLC operations when inserting the SD card
Select operation mode	PLC backup: Saving the PLC project to the SD card
Include PLC history	Check whether to back up the history saved in the PLC together during the PLC backup
Overwrite existing file	If there is a file backed up to the SD card, checking whether to overwrite it.

(3) Comparison with the PLC

This function allows you to compare the project stored in the PLC with the project stored in the SD card.

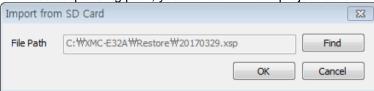


In the comparison mode with the PLC, the description of each item is as follows.

Item	Description
Target drive	Select the storage medium to store the project data
Select action folder	Location where you will save the project data (folder)
	Set the PLC operations when inserting the SD card
Select operation mode	Comparison with the PLC: Compare the projects stored in the PLC and
	SD card
Comparison item	Only the desired items can be compared.
Save comparison results to a	
file	Check whether the comparison result is saved as csv type file.

(4) PLC boot operation

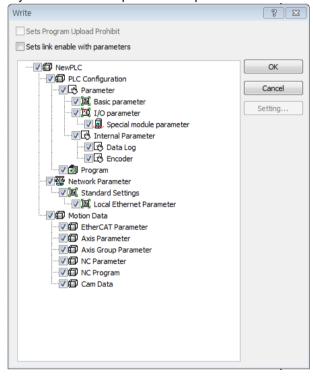
It is the function to start the PLC by using the project stored in the SD. If you turn Off, On the PLC after removing the SD, it runs by the program that was driven before boot operation.

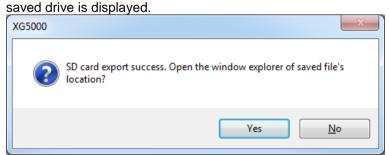

The description of each item in the PLC boot operation mode is as follows.

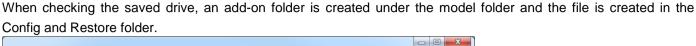
Item	Description
Target drive	Select the storage medium to store the project data
Select action folder	Location where you will save the project data (folder)
	Set the PLC operations when inserting the SD card
Select operation mode	PLC boot operation: Operating the PLC using the data stored in the SD
	card
Use PLC password	Check whether the PLC boot operation can be updated using the SD
Limit PLC usage	Specify the PLC that can execute the PLC boot operation

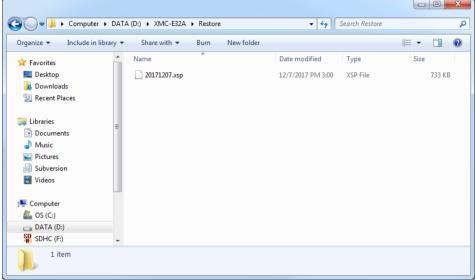
12.1.3 Import from the SD Card

Select [XG5000] - [Project] - [SD card setting] - [Import from SD] to launch the window to read the file.


In the corresponding path, you can confirm the project saved in the SD of XG5000 is opened.


12.1.4 PLC Update Function


The PLC update function is available only when the PLC is in the STOP mode.


If you select 'PLC update' in 'Export to SD card' and click OK, the writing window will be created as below.

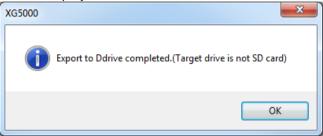
After completing 'Export to SD card' successfully, the window indicating successful completion is created and the

When the SD card is inserted into the SD card slot of the PLC, the flag(% KW541) of SD additional features is displayed according to the values set in the Config.

%KW541	SD additional features mode						
0	Additional functions X						
1	PLC backup function						
2	PLC update function						
3	Comparison with the PLC						
4	Boot operation function						

If you press the SD CMD button once for more than 0.7 second and less than 2 seconds, the flag (%KX8640) will be turned On and the PLC update operation will be executed while the SD RD/WR LED and SD additional features are running.

When the update is completed normally, the flag (%KX8640) is turned Off and the completion flag of SD additional features (%KX8642) is turned On while the SD RD/WR LED and SD additional features are running.


If an error occurs during operation, the SD additional function error flag (%KX8641) is turned On and the error value is displayed in the SD additional function error code (%KW542).

- (1) When 'Read-protected from PLC' is set, even if the update process is normal, reading from the PLC via XG5000 is prohibited. If the PLC password option is set and the password has not been set in the PLC, the password will be saved to the PLC along with the project update. In addition, if the password is already set in the PLC before performing the project update using the SD, the update will be executed only when the password set as the option matches the password of the PLC.
- (2) If 'Limit PLC usage' option is set, the PLC update is performed only when the MAC address stored as the option matches the MAC address of the PLC.
- (3) If auto-reset is set after update is completed, the PLC will be reset automatically after updating is done, and the PLC operation mode will be changed into the PLC status option specified value.

12.1.5 PLC Backup Function

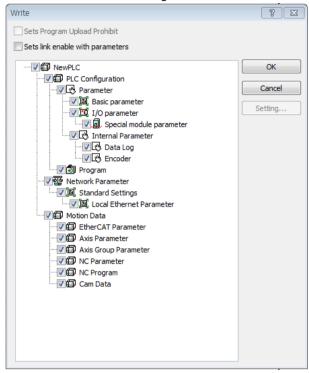
This function backs up the project stored in the PLC to the SD card. The project of the PLC is backed up in the Backup folder in the MAC address folder of the product and saved as a file. The PLC backup function can operate regardless of the PLC mode.

After 'Export to SD card' is done successfully, the window indicating successful completion is created and the saved drive is displayed

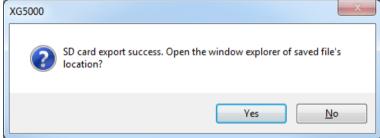
When the SD card is inserted into the SD card slot of the PLC, the flag(% KW541) of SD additional features is displayed according to the values set in the Config.

%KW541	SD additional features mode				
0	Additional functions X				
1	PLC backup function				
2	PLC update function				
3	Comparison with the PLC				
4	Boot operation function				

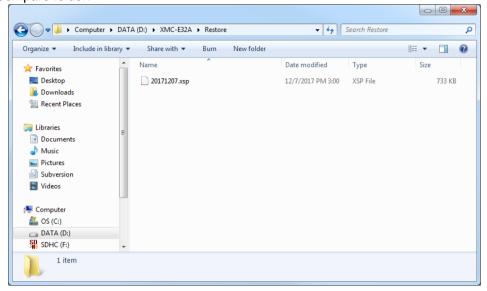
If you press the SD CMD button once for more than 0.7 second and less than 2 seconds, the flag(%KX8640) will be turned On and the PLC update operation will be executed while the SD RD/WR LED and SD additional features are running.


When the backup is completed normally, the flag(%KX8640) is turned Off and the completion flag of SD additional features (%KX8642) is turned On while the SD RD/WR LED and SD additional features are running.

If an error occurs during operation, the SD additional function error flag (%KX8641) is turned On and the error value is displayed in the SD additional function error code (%KW542).


After removing the SD card, you can see the project will be saved under the Backup folder in the product's corresponding path and the saved project will be opened when executing 'Import from SD' in XG5000.

12.1.6 Comparison with the PLC


This function is used to compare the project stored in the PLC with the program stored in the SD card. The comparison result can be checked through the flag or .csv file. If you select 'Comparison with the PLC' in 'Export to SD card' and click OK, the writing window will be created as below.

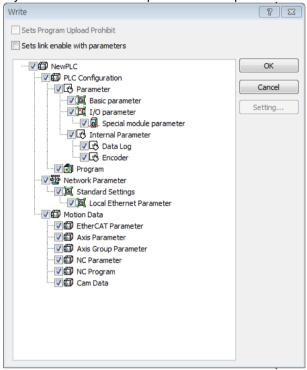
After completing 'Export to SD card' successfully, the window indicating successful completion is created and the saved drive is displayed.

When checking the saved drive, an add-on folder is created under the model folder and the file is created in the Config, Compare folder.

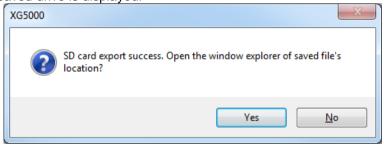
When the SD card is inserted into the SD card slot of the PLC, the flag(% KW541) of SD additional features is displayed according to the values set in the Config.

%KW541	SD additional features mode					
0	Additional functions X					
1	PLC backup function					
2	PLC update function					
3	Comparison with the PLC					
4	Boot operation function					

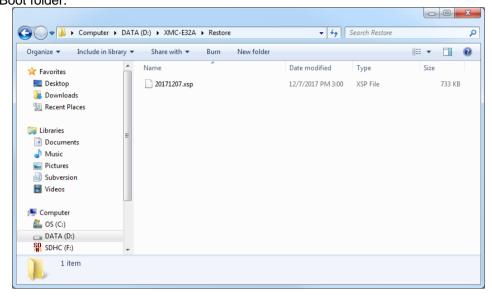
If you press the SD CMD button once for more than 0.7 second and less than 2 seconds, the flag(%KX8640) will be turned On and the PLC update operation will be executed while the SD RD/WR LED and SD additional features are running.


When the comparison is completed normally, the flag(%KX8640) is turned Off and the completion flag of SD additional features (%KX8642) is turned On while the SD RD/WR LED and SD additional features are running. If an error occurs during operation, the SD additional function error flag (%KX8641) is turned On and the error value is displayed in the SD additional function error code (%KW542).

- (1) When there is a discrepancy of the comparison, the SD comparison result flag (% KX8643) is turned Off and if it is the same, the SD comparison flag is turned On.
- (2) If you check the item, 'Save comparison result to file' when executing 'Export to SD card', the result file (CmpResult.csv) is created in the 'Compare' folder and the comparison result is saved.


12.1.7 PLC Boot Operation

This function is to operate the PLC with the program saved in the SD, not the project saved in the PLC. The programs that were already running are stored in the PLC. If the PLC power is turned off, on after removing the SD card, it is driven by the existing program again.

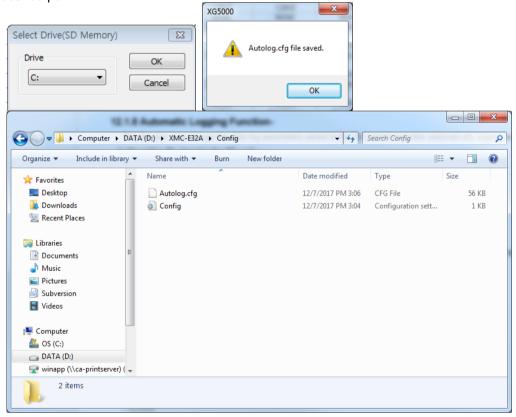

If you select 'PLC boot operation' in 'Export to SD card' and click OK, the writing window will be created as below.

After completing 'Export to SD card' successfully, the window indicating successful completion is created and the saved drive is displayed.

When checking the saved drive, an add-on folder is created under the model folder and the file is created in the Config, Boot folder.

The boot operation must be performed when the PLC is powered off. After installing the SD card in the PLC power off state, turn on the PLC power while pressing the SD CMD button.

When the boot operation mode is completed normally, the flag(%KX8640) is turned Off and the completion flag of SD additional features (%KX8642) is turned On while the SD RD/WR LED and SD additional features are running. If an error occurs during operation, the SD additional function error flag (%KX8641) is turned On and the error value is displayed in the SD additional function error code (%KW542).


12.1.8 Automatic Logging Function

This function is to change the data log parameters saved in the PLC and it executes automatically logging according to the setting file stored in the SD card.

There are the items for automatic logging setting on the top left of the data log parameters window.

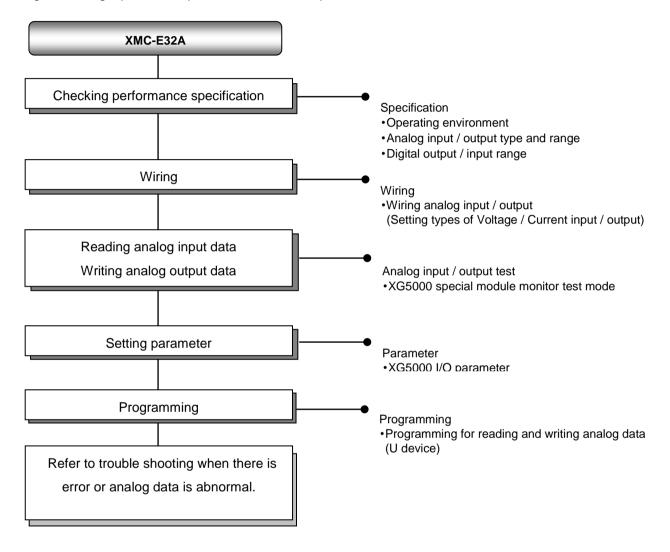
If you save the auto logging settings after setting the parameter related to data log, you can save the setting file to the desired path.

Auto-logging is executed when the power is turned On after the SD card is mounted while the PLC is off.

- (1) If the parameters stored in the PLC are set to 'Prohibit automatic logging', the settings of Autolog.cfg will not be reflected but will operate according to the existing program settings.
- (2) Since the corresponding parameters stored in the SD are saved in the PLC, if other SD card is inserted and the PLC power is turned off or on, same operations will be executed as auto logging settings.

12.1.9 Error Codes and Countermeasures

The error codes related to SD additional features are as follows. The error code is displayed together with the additional function mode.


(For example, when there is no file password among PLC update functions (0x2005) \rightarrow 2: additional function mode, 5: error operation)

Category	Error code	Error name	Remarks
	0xX001	File error (file open failure, CRC error)	
	0xX002	Damaged file (damaged head, tail, etc.)	
	0xX003	Unsupported file version	
	0xX004	Model mismatch	
	0xX005	No password in file	
	0xX006	Password discrepancy	
	0xX007	MAC address mismatch	
Whole error codes	0xX008	File decryption error	
	0xX009	IO configuration mismatch	
	0xX00A	No save file	
	0xX00B	PLC mode is RUN status	
	0xX00C	No SD card	
	0xX00D	SD card error status	
	0xX00E	In the process of powering off the SD card	
	0xX00F	State that the SD card is powered off	

Chapter 13 Built-in Analog Function

13.1 Overview

Before using the analog input and output function, follow steps below.

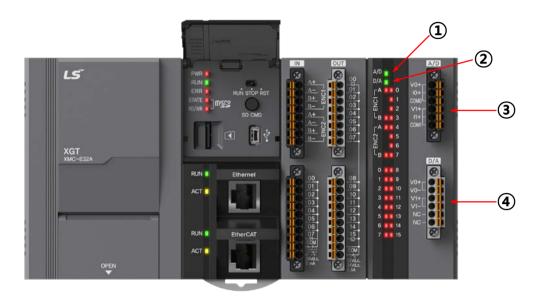
Note

The analog function is supported only by analog-type products (XMC-E32A/E16A/E08A).

Performance specifications are as follows

(1) Input performance specification

Number of channels Type	Items		Performance specification			
Analog input Ana	Number of o	channels	2 channels			
Analog input		Туре		Current		
Analog input Range Range Range Range Range						
Analog input						
Input Range Current input or Voltage input can be selected through the external terminal wiring setting 1 no voltage mode, use V+ and COM terminal for the channel. 1 no voltage mode, use V+ and I+ terminal and then use I+ and COM terminal.				0 to 20 mA DC		
Current input or Voltage input can be selected through the external terminal wiring setting	_			(Input resistance 250 Ω)		
Setting	input	Range	` .			
Novitage mode, use V+ and COM terminal for the channel. Novitage mode, use V+ and I+ terminal and then use I+ and COM terminal.				ted through the external terminal wiring		
Note			•			
Digital range Digital ran			1			
Signed value				and then use I+ and COM terminal.		
Digital range Precise value 1,000 to 5,000 (1 to 5 V) 0 to 5,000 (0 to 5 V) 0 to 10,000 (0 to 10 V) 0 to 20,000 (0 to 20 mA) 0 to 20,000 (0 t			-			
Precise value		Signed value		1 4 000 4 00 000 (4 4 00 4)		
range Precise value 0 to 5,000 (0 to 5 V) 0 to 10,000 (0 to 10 V) -10,000 (0 to 10 V) 0 to 10,000 (0 to 10 V) -10,000 (0 to 10 V) 0 to 10,000 (10 to 20 mA) Max. resolution Accuracy 1/16,000 (0.250 mV (1 to 5 V) (0 to 5 V) (0.625 mV (0 to 10 V) (0.625 mV (0 to 20 mA) (0 to 20 mA) (0.625 mV (0 to 20 mA) (0 to 20 mA) (0.625 mV (0 to 20 mA) (0 to 2	Digital		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
Note 10,000 (0 to 10,000 (±10 V) -10,000 to 10,000 (±10 V) -10,000 to 10,000 (±10 V) -10,000 -1	_	Precise value	,	0 to 20,000 (0 to 20 mA)		
Percentile value 0 to 10,000						
Max. resolution						
Max. resolution 0.250 mV (1 to 5 V) 1.0 μA (4 to 20 mA) 1.25 μA (0 to 20 mA) 1.		Percentile value				
Max. resolution 0.3125 mV (0 to 5 V) 0.625 mV (0 to 10 V) 1.250 mV (±10V) 1.25 μA (0 to 20 mA) Accuracy ±0.2% or less (When ambient temperature 25±5°C) ±0.3% or less (When ambient temperature 0 to 55°C) Max. conversion speed 0.5 ms/channel Absolute max: input ±15 V DC ±30 mA DC Filter Digital filter (4 to 64,000 ms) Count average (4 to 16,000 ms) Count average (2 to 64,000) Moving average (2 to 100) Weighted average (1 to 99%) Detection alarm Disconnection (1 to 5 V DC, 4 to 20 mA DC) Hold last value When input signal exceeds the effective range, holds the last effective value. Alarm function When input signal exceeds the effective range, relevant flag turns on.			·	T		
O.625 mV (0 to 10 V) 1.250 mV (±10V) Accuracy ±0.2% or less (When ambient temperature 25±5°C) ±0.3% or less (When ambient temperature 0 to 55°C) Max. conversion speed Absolute max. input ±15 V DC ±30 mA DC Filter Digital filter (4 to 64,000 ms) Time average (4 to 16,000 ms) Count average (2 to 64,000) Moving average (2 to 100) Weighted average (1 to 99%) Detection alarm Disconnection (1 to 5 V DC, 4 to 20 mA DC) Hold last value Alarm function When input signal exceeds the effective range, relevant flag turns on.			,			
Accuracy ### Accuracy #### 1.250 mV (±10V) ##### ±0.2% or less (When ambient temperature 25±5°C) ###################################	Max. resolu	tion	,	1.25 μA (0 to 20 mA)		
#0.2% or less (When ambient temperature 25±5°C) #0.3% or less (When ambient temperature 0 to 55°C) Max. conversion speed			, , ,			
Accuracy # ±0.3% or less (When ambient temperature 0 to 55°C) Max. conversion speed # ±0.3% or less (When ambient temperature 0 to 55°C) # # ±0.3% or less (When ambient temperature 0 to 55°C) # # # ±0.3% or less (When ambient temperature 0 to 55°C) # # # ±0.3% or less (When ambient temperature 0 to 55°C) # # # ±0.3% or less (When ambient temperature 0 to 55°C) # # ±0.3% or less (When ambient temperature 0 to 55°C) # # ±0.3% or less (When ambient temperature 0 to 55°C) # # ±30 mA DC # # ±30 mA DC # # Time average (4 to 16,000 ms) # Count average (2 to 64,000) # # Moving average (2 to 100) # Weighted average (1 to 99%) # # Detection alarm # Disconnection (1 to 5 V DC, 4 to 20 mA DC) # Hold last value # # Hold last value # # # # Hold last value # # # # # # # # # # # # # # # # # # #			1.250 mV (±10V)			
# ±0.3% or less (When ambient temperature 0 to 55°C) Max. conversion speed	A		±0.2% or less (When ambient temperature 25±5°C)			
Absolute max. input ±15 V DC ±30 mA DC Filter Digital filter (4 to 64,000 ms) Average Time average (4 to 16,000 ms) Count average (2 to 64,000) Moving average (2 to 100) Weighted average (1 to 99%) Detection alarm Disconnection (1 to 5 V DC, 4 to 20 mA DC) Hold last value When input signal exceeds the effective range, holds the last effective value. Alarm function When input signal exceeds the effective range, relevant flag turns on.	Accuracy		±0.3% or less (When ambient temperature	0 to 55℃)		
Additional function Filter Digital filter (4 to 64,000 ms) Time average (4 to 16,000 ms) Count average (2 to 64,000) Moving average (2 to 100) Weighted average (1 to 99%) Detection alarm Disconnection (1 to 5 V DC, 4 to 20 mA DC) Hold last value When input signal exceeds the effective range, holds the last effective value. Alarm function When input signal exceeds the effective range, relevant flag turns on.	Max. conve	rsion speed	0.5 ms/channel			
Additional function Average Average	Absolute ma	ax. input	±15 V DC	±30 mA DC		
Additional function Average Average Average Average Count average (2 to 64,000) Moving average (2 to 100) Weighted average (1 to 99%) Detection alarm Disconnection (1 to 5 V DC, 4 to 20 mA DC) Hold last value When input signal exceeds the effective range, holds the last effective value. Alarm function When input signal exceeds the effective range, relevant flag turns on.		Filter	Digital filter (4 to 64,000 ms)			
Additional function Moving average (2 to 100) Weighted average (1 to 99%) Detection alarm Disconnection (1 to 5 V DC, 4 to 20 mA DC) Hold last value When input signal exceeds the effective range, holds the last effective value. Alarm function When input signal exceeds the effective range, relevant flag turns on.			Time average (4 to 16,000 ms)			
Additional function Moving average (2 to 100) Weighted average (1 to 99%) Detection alarm Disconnection (1 to 5 V DC, 4 to 20 mA DC) Hold last value When input signal exceeds the effective range, holds the last effective value. Alarm function When input signal exceeds the effective range, relevant flag turns on.		Average				
Detection alarm Disconnection (1 to 5 V DC, 4 to 20 mA DC) Hold last value When input signal exceeds the effective range, holds the last effective value. Alarm function When input signal exceeds the effective range, relevant flag turns on.	Additional	Average				
Hold last value When input signal exceeds the effective range, holds the last effective value. Alarm function When input signal exceeds the effective range, relevant flag turns on.	function					
Alarm function When input signal exceeds the effective range, relevant flag turns on.		Detection alarm				
		Hold last value	, ,			
Input terminal 6 point terminal		Alarm function	When input signal exceeds the effective range, relevant flag turns on.			
	Input termin	al	, ,			

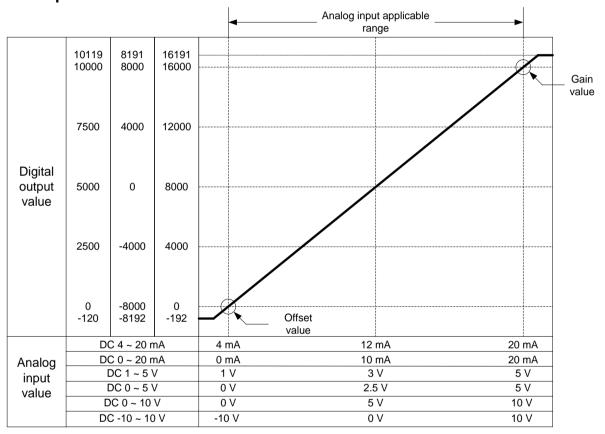

(2) Output performance specification

Items		Performance specification
Number of	channels	2 channels
Analog output	Range	1 to 5 V DC 0 to 5 V DC 0 to 10 V DC -10 to 10 V DC (Load resistance: 1 kΩ or more) Output ranges are set in user program or I/O parameter per each channel.
	Unsigned value	0 to 16,000
	Signed value	-8,000 to 8,000
Digital range	Precise value	1,000 to 5,000 (1 to 5 V) 0 to 5,000 (0 to 5 V) 0 to 10,000 (0 to 10 V) -10,000 to 10,000 (±10 V)
	Percentile value	0 to 10,000
Max. resolu	ıtion	1/16,000 0.250 mV (1 to 5 V) 0.3125 mV (0 to 5 V) 0.625 mV (0 to 10 V) 1.250 mV (±10 V)
Accuracy		±0.2% or less (When ambient temperature is 25±5°C) ±0.3% or less (When ambient temperature is 0 to 55°C)
Max. conve	rsion speed	0.5 ms/ channel
Additional f	unction	Setting of channel output status Select one among previous, minimum, average, maximum value Setting of interpolation method Linear interpolation, S-type interpolation
Output term	ninal	6 point terminal

(3) Common performance specification

Items	Performance specification					
Insulation method	Photo-coupler and trans insulation between the input/output terminal and motion					
modiation method	controller power (no insulation between channels)					
I/O occupied points	Fixed point assignment: 64 points					

13.2 Name of Analog Part and Functions


No.	Name	Description				
1	A/D LED	Displays the operation status of analog input part On: Normal operation Blinks: Error occurs (Flickering 1s intervals) Off: Power off or module error				
2	Displays the operation status of analog output part On: Operation normal Blinks: Error occurs (Flickering 1s intervals) Off: Power off or module error					
3	Input terminal	Wiring input terminal block to connect with external device				
4	Output terminal	Wiring output terminal block to connect with external device				

13.3 Characteristic of I/O Control

Voltage/Current input ranges are able to set from each channel by using user program or I/O parameter. Data output type of digital is defined as shown below.

- (1) Unsigned Value
- (2) Signed Value
- (3) Precise Value
- (4) Percentile Value

13.3.1 Input Characteristic

(1) 4 to 20mA DC Input range

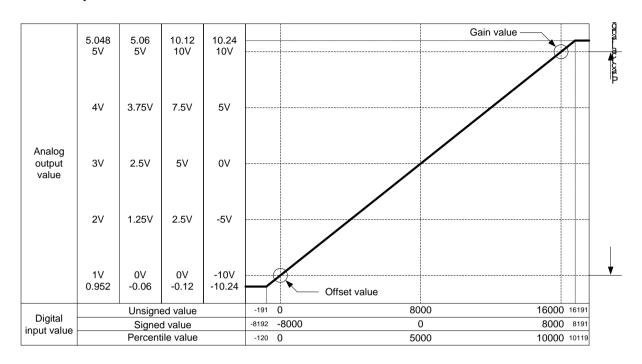
1) The Zenti Kibe impartiange							
Digital autout range	Analog input current (mA)						
Digital output range	3.808	4	8	12	16	20	20.191
Unsigned value (-192 to 16,191)	-192	0	4,000	8,000	12,000	16,000	16,191
Signed value (-8,192 to 8,191)	-8,192	-8,000	-4,000	0	4,000	8,000	8,191
Precise value (3,808 to 20,191)	3,808	4,000	8,000	12,000	16,000	20,000	20,191
Percentile value (-120 to 10,119)	-120	0	2,500	5,000	7,500	10,000	10,119

(2) 0 to 20 mA DC Input range

Divital autout name	Analog input current (mA)						
Digital output range	-0.24	0	5	10	15	20	20.239
Unsigned value (-192 to 16191)	-192	0	4,000	8,000	12,000	16,000	16,191
Signed value (-8192 to 8191)	-8,192	-8,000	-4,000	0	4,000	8,000	8,191
Precise value (-240 to 20239)	-240	0	5,000	10,000	15,000	20,000	20,239
Percentile value (-120 to 10119)	-120	0	2,500	5,000	7,500	10,000	10,119

(3) 1 to 5 V DC Input range

District systems to see an	Analog input voltage (V)								
Digital output range	0.952	1	2	3	4	5	5.047		
Unsigned Value (-192 to 16,191)	-192	0	4,000	8,000	12,000	16,000	16,191		
Signed Value (-8,192 to 8,191)	-8,192	-8,000	-4,000	0	4,000	8,000	8,191		
Precise Value (952 to 5,047)	952	1,000	2,000	3,000	4,000	5,000	5,047		
Percentile Value (-120 to 10,119)	-120	0	2,500	5,000	7,500	10,000	10,119		


(4) 0 to 5 V DC Input range

Digital output range	Analog input voltage (V)								
Digital output range	-0.06	0	1.25	2.5	3.75	5	5.059		
Unsigned Value (-192 to 16,191)	-192	0	4,000	8,000	12,000	16,000	16,191		
Signed Value (-8,192 to 8,191)	-8,192	-8,000	-4,000	0	4,000	8,000	8,191		
Precise Value (-60 to 5,059)	-60	0	1,250	2,500	3,750	5,000	5,059		
Percentile Value (-120 to 10,119)	-120	0	2,500	5,000	7,500	10,000	10,119		

(5) 0 to 10 V DC Input range

Digital autout range	Analog input voltage (V)								
Digital output range	-0.12	0	2.5	5	7.5	10	10.119		
Unsigned Value (-192 to 16,191)	-192	0	4,000	8,000	12,000	16,000	16,191		
Signed Value (-8,192 to 8,191)	-8,192	-8,000	-4,000	0	4,000	8,000	8,191		
Precise Value (-120 to 10,119)	-120	0	2,500	5,000	7,500	10,000	10,119		
Percentile Value (-120 to 10,119)	-120	0	2,500	5,000	7,500	10,000	10,119		

13.3.2 Output Characteristic

(1) 1 to 5 V DC Output range

1) Tio o T Bo output	rango								
District	Analog output voltage (V)								
Digital input	0.952	1	2	3	4	5	5.047		
Unsigned value (-192 to 16,191)	-192	0	4,000	8,000	12,000	16,000	16,191		
Signed value (-8,192 to 8,191)	-8,192	-8,000	-4,000	0	4,000	8,000	8,191		
Precise value (952 to 5,047)	952	1,000	2,000	3,000	4,000	5,000	5,047		
Percentile value (-120 to 10.119)	-120	0	2,500	5,000	7,500	10,000	10,119		

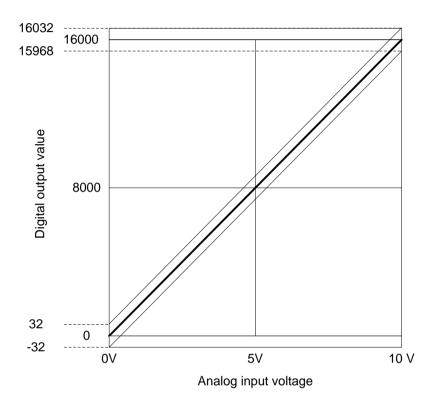
(2) 0 to 5 V DC Output range

Digital value	Analog output voltage (V)								
Digital value	-0.06	0	1.25	2.5	3.75	5	5.059		
Unsigned value (-192 to 16,191)	-192	0	4,000	8,000	1,2000	16,000	16,191		
Signed value (-8,192 to 8,191)	-8,192	-8,000	-4,000	0	4,000	8,000	8,191		
Precise value (-60 to 5,059)	-60	0	1,250	2,500	3,750	5,000	5,059		
Percentile value (-120 to 10,119)	-120	0	2,500	5,000	7,500	10,000	10,119		

(3) 0 to 10 V DC Output range

Digital input	Analog output voltage (V)								
Digital input	-0.12	0	2.5	5	7.5	10	10.119		
Unsigned value (-192 to 16,191)	-192	0	4,000	8,000	12,000	16,000	16,191		
Signed value (-8,192 to 8,191)	-8,192	-8,000	-4,000	0	4,000	8,000	8,191		
Precise value (-120 to 10,119)	-120	0	2,500	5,000	7,500	10,000	10,119		
Percentile value (-120 to 10,119)	-120	0	2,500	5,000	7,500	10,000	10,119		

(4) -10 to 10 V DC Output range


,	Analog output voltage (V)								
	40.04								
	-10.24	-10	-5	0	5	10	10.239		
Unsigned value (-192 to 16,191)	-192	0	4,000	8,000	12,000	16,000	16,191		
Signed value (-8,192 to 8,191)	-8,192	-8,000	-4,000	0	4,000	8,000	8,191		
Precise value (-10,240 to 10,239)	-10,240	-10,000	-5,000	0	5,000	10,000	10,239		
Percentile value (-120 to 10,119)	-120	0	2,500	5,000	7,500	10,000	10,119		

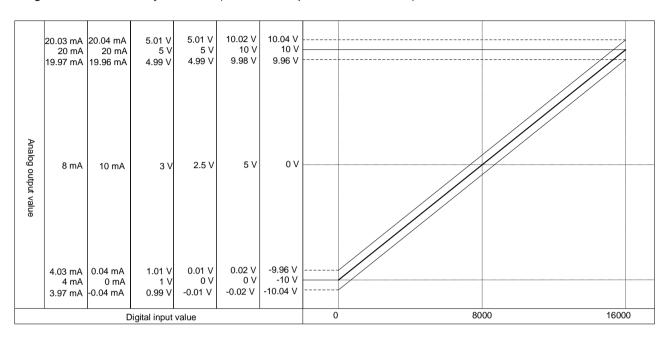
13.4 Accuracy

13.4.1 Input Accuracy

Accuracy of digital output value does not changed even if input range is changed. Figure below shows the range of the accuracy with analog input range of 0 to 10 V and digital output type of unsigned value selected.

Accuracy is ±0.2% (Ambient temperature of 25±5°C).

(1) Accuracy when using 5 V input $16,000 \times 0.2\% = 32$


Therefore the range of the accuracy will become (8,000-32) to (8,000+32) = 7,968 to 8,032 when using 5 V input.

(2) Accuracy when using 10 V input $16,000 \times 0.2\% = 32$

Therefore the range of the accuracy will become (16,000-32) to (16,000+32) = 15,968 to 16,032 when using 10 V input.

13.4.2 Output Accuracy

Accuracy of digital output value does not changed even if input range is changed. When digital input range is selected with unsigned value, accuracy is $\pm 0.2\%$ (Ambient temperature of 25 $\pm 5\%$).

(1) Accuracy when using -10 to 10 V output $16000 \times 0.2\% = 32$

Accuracy range when using -10 V output will become (-10 V - 32 \times 1.25 $\,$ mV) \sim (-10 V + 32 \times 1.25 $\,$ mV) = -10.04 \sim -9.96 V, Accuracy range when using 10V output will become (10 V - 32 \times 1.25 $\,$ mV) \sim (10 V + 32 \times 1.25 $\,$ mV) = 9.96 \sim 10.04 V

(2) Accuracy when using 1 to 5 V output $16000 \times 0.2\% = 32$

Accuracy range when using 1 V output will become (1 V - 32 \times 0.25 mV) \sim (1 V + 32 \times 0.25 mV) = 0.992 V \sim 1.008 V, Accuracy range when using 10V output will become (5 V - 32 \times 0.25 mV) \sim (5 V + 32 \times 0.25 mV) = 4.992 V \sim 5.008 V

13.5 Built-in Analog functions

Functions of embedded analog module are as described below.

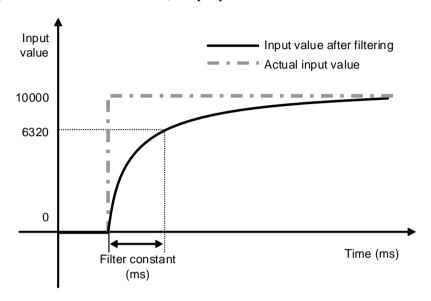
Function	Description
Channel Run/Stop setting	 Specify Run/Stop of the channel to execute A/D, D/A conversion. If the unused channel is set to Stop, whole Run time can be reduced.
Input / output voltage/current range setting	 Specify analog input / output range to be used. Select range in parameter setting after selecting Voltage/Current input / output according to the wiring properly. Embedded analog module provides two kinds of current input / output ranges (4 to 20 mA, 0 to 20 mA) and four kinds of voltage input / output ranges (1 to 5 V, 0 to 5 V, 0 to 10 V,-10 to 10 V)
Input / output data format setting	 Specify digital input / output type. 4 data formats are provided in this module. (Unsigned value, Signed value, Precise value, Percentile value)
A/D conversion methods	 Sampling processing Sampling process will be performed if A/D conversion type is not specified. Filter processing Used to delay the sudden change of input value. Average processing Outputs average A/D conversion value based on time or count. Detection alarm (Input disconnection) After detecting whether disconnection of the input circuit, the alarm is displayed by a single flag.(Input signal range: 4 to 20 mA, 1 to 5 V) Maintenance function of valid conversion value. When valid conversion value is exceeded, whether conversion value retains will be able to set. Alarm function When exceeding valid input range, alarm and maximum /minimum flag will be generated.
D/A output status setting	 Set the output status of channel when changing 'Run' to 'Stop'. The four kinds of output statuses (Previous, Min, Mid, Max value) are provided.
Interpolation method setting	Set linear interpolation, S-type interpolation method.

13.5.1 Sampling Processing

It collects analog input sign through general A/D conversion processing at a specific interval to convert to digital. The time required for A/D conversion of analog input sign till saved on the memory depends on the number of channels used.

(Processing time) = (Number of channels used) x (Conversion speed)

(i.e.) If the number of channels used is 3, its process time will be $3 \times 0.5 \text{ ms} = 1.5 \text{ ms}$

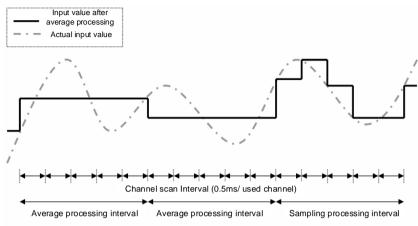

Sampling is to calculate the sampling value of continuous analog sign at a specific interval.

13.5.2 Filter Processing

Pre-filter input value and specified channel are calculated as below.

 $Filtered Value = \frac{(Pre - Filtered Input Value \times Filter Constant) + (Current Input Value \times 0.5 \ ms \times Number \ of \ used \ channels)}{(Pre - Filtered Input Value \times Filter Constant)} + (Current Input Value \times 0.5 \ ms \times Number \ of \ used \ channels)}$ Filter Constant + $(0.5 ms \times Number of used channels)$

Setting range of Filter constant = 4 to 64,000 [ms]



As the above graph, if the input value rapidly decreases from 0 to 10,000, the input value will be filtered. Specified time with filter constant is that the input value is the time to change by 63.2% of actual time constant.

13.5.3 Average Processing

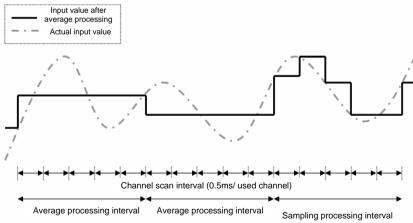
(1) Time Average

Input value of specified channel accumulates during setting time and then the average value of the sum is shown with digital data.

Setting range = 4 to 16,000 [ms]

In case of the time average, the average processing count is calculated by depending on the number of used channels.

$$Average processing count = \frac{Average time}{Number of used channels \times 0.5 ms}$$

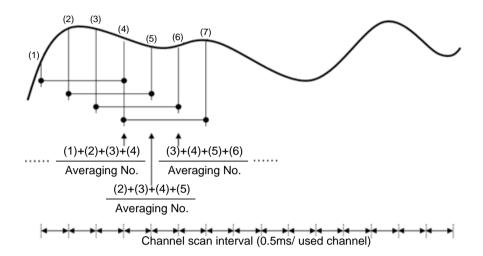

Time average is converted to count average in A/D conversion module internally, and then processed. In this case, remainder can be generated when dividing average time by (number of used channels X 0.5 ms). The remainder is rounded down.

(i.e.) If the number of channels used is 4 and setting time is 151 ms,

Average processing count = 151 ms \div (4 x 0.5 ms) = 75 counts····remainder 1 \rightarrow 75 counts

(2) Count Average

Input value of specified channel accumulates during setting numbers and then the average value of the sum is shown with digital data


Setting range = 2 to 64,000 [times]

In case of count average, the average processing interval is calculated by depending on used channels.

Average processing interval [ms] = Number of average count × Number of used channels × 0.5 ms

(3) Moving Average

The inputs into the designated channel are accumulated for the presser number, and its average is calculated and outputted in digital data. However, in moving average method, each scan provides its average value.

(4) Weighted Average

Weighted average function processes transition of input data gradually by filter (delay) of input sampling data.

Setting range: 1 to 99 (%)

$$F[n] = (1 - \alpha) \times A[n] + \alpha \times F[n - 1]$$

[F[n]: Current Weighted average output

A[n]: Current A/D Conversion value

F[n-1]: Former Weighted average output

 α : Weighted average constant

(0.01 to 0.99: Weighted value of former value)

Cotting value		Filter out	tput value		Description
Setting value	-	Scan 1	Scan 2	Scan 3	Description
No Setting	0	8000	8000	8000	Not process weighted average
1	0	7920	7999	7999	Apply 1% of former value
50	0	4000	6000	7000	Apply 50% of former value
99	0	80	159	237	Apply 99% of former value

Notes

- 1. In case of the time/number of average, every conversion time input value is not outputted. And precondition is retained until the average time/number is arrived.
- 2. Four kinds of average functions and introduced filtering functions that are above are able to deal with at the same time. When those are chosen at the same time, the top priority is filter function in the processing sequence. And then the chosen average function is adapted. Finally, digital dat a is outputted. At that time digital data value is outputted as the final processing value.
- 3. Number of used channel include input/output channel.

13.5.4 Detection Alarm (Input Disconnection)

In case that Input voltage (1 to 5 VDC) or Input current (4 to 20 mADC) is chosen with analog input range, the analog input module has diagnostic function by checking disconnection and showing. If the module shows disconnection, that means the parts of connections in the wiring connection are faulty. If so, check and take action.

(1) Detection conditions

When input signal range of 4 to 20 mA and 1 to 5 V is used, disconnection of input circuit can be detected. The detection conditions of each input signal range are as below.

Input signal range	Voltage/Current recognized as a disconnection
4 to 20 mA	0.8 mA or less
1 to 5 V	0.2 V or less

(2) When between used wiring and module is disconnected, the LED will be turned on/off 1s intervals.

(3) Each channel can detect disconnection. However, Disconnection is only displayed for specified operation channel. The LED can commonly use the channel from 0 to 1. If one or more channel is disconnected, LED will be turned on/off.

Input connections	Channel operation	AD LED condition	Disconnection flag
Normal	Operation	On	Off
Nomiai	Stop	On	Off
Input wiring is disconnected or Input is not connected.	Operation	Flickering (1s intervals)	On
input is not connected.	Stop	On	Off

(4) In case of disconnection, disconnection flag of relevant channel will turn on and In case of connection, disconnection flag of relevant channel will turn off.

Disconnection flag	Description	Condition
%UX0.1.72	Channel 0 disconnection	Off: Normal
%UX0.1.73	Channel 1 disconnection	On: Disconnection

(5) In case of disconnection, the input value displays the lowest value among each input range.

13.5.5 Hold Last Value Function

When input signal exceeds the effective range, last input value is held. This function can be set for each channel by I/O parameter setting or user program.

(1) Used input range

In the channels that allow the hold last value function, the actual ranges provided within each digital conversion value are shown. For example, in case of operating output data type of unsigned value, original digital output value is shown from -192 to 16,191. However, if this function is allowed, it will be shown from 0 to 16,000. It is recommended that the function should be setting when the input value is in the actual range.

(a) Digital output value depending on input range (unsigned value, signed value, percentile value)

Classification	Unsigned value	Signed value	Precise value	Percentile value
Function disabled	-192 to 16,191	-8,192 to 8,191	(2) Reference	-120 to 10,119
Function enabled	0 to 16,000	-8,000 to 8,000	(2) Releience	0 to 10,000

(b) Digital output value depending on input range (Precise value)

Analog input range	Classification	Precise value
4 to 20 mA	Function disabled	3,808 to 2,191
4 10 20 111/1	Function enabled	4,000 to 20,000
0 to 20 mA	Function disabled	-240 to 20,239
0 to 20 m/	Function enabled	0 to 20,000
1 to 5 V	Function disabled	952 to 5,047
	Function enabled	1,000 to 5,000
0 to 5 V	Function disabled	-60 to 5,059
	Function enabled	0 to 5,000
0 to 10 V	Function disabled	-120 to 10,119
	Function enabled	0 to 10,000
-10 to 10 V	Function disabled	-10,240 to 10,239
	Function enabled	-10,000 to 10,000

(2) Operation

When operating with 4 to 20 mA while being enabled this function, output value for input value change of the moment is as follows (Output data type: In case of 0 to 16,000).

Input current (mA)	12 mA	3 mA	4 mA	12 mA	21 mA	20 mA
Digital output value	8,000	8,000	0	8,000	8,000	16,000
Remarks	-	Hold last value	-	-	Hold last value	-

13.5.6 Alarm Function

When the input signal is exceeded from valid value, the alarm will be shown through alarm flag of relevant channel.

(1) Input detection condition

Detection condition for each input signal range is as follows.

Analog input range	Signal difference	Permission range	Lower limit	Upper limit
4 to 20 mA	16 mA		3.808 mA	20.192 mA
0 to 20 mA	20 mA		-0.24 mA	20.24 mA
1 to 5 V	4 V	1.2%	0.952 V	5.048 V
0 to 5 V	5 V	1.270	-0.06 V	5.06 V
0 to 10 V	10 V		-0.12 V	10.12 V
-10 to 10 V	20 V		-10.24 V	10.24 V

(2) Alarm indication for each channel

Alarm detection signal is shown on U01.08 and U01.09. If input signal returns to the within of effective range, alarm detection signal also returns to the normal status automatically.

(a) Upper limit alarm

Device Name	Device assignment	Description	Status description
_01_AD0_HOOR	%UX0.1.48	CH0 upper limit alarm	Off: Normal On: Maximum alarm
_01_AD1_HOOR	%UX0.1.49	CH1 upper limit alarm	occurrence

(b) Lower limit alarm

Device Name	Device assignment	Description	Status description
_01_AD0_LOOR	%UX0.1.56	CH0 upper limit alarm	Off: Normal On: Maximum alarm
_01_AD1_LOOR	%UX0.1.57	CH1 upper limit alarm	occurrence

Notes

The channel conversion data will be 0 and Lower limit alarm flag will be ON if the input signal is out of the effective range as below when the input channel is enabled and hold last value function is enabled.

Analog input range	Hold last value function	Input signal	Lower limit alarm	Channel conversion value
4 to 20 mA	On	3.808 mA to 4 mA	On	0
4 to 20 IIIA	Oli	20 mA to 20.192 mA	On	0
0 to 20 mA	On	-0.24 mA to 0 mA	On	0
U IO ZU MA	On	20 mA to 20.24 mA	On	
1 to 5 V	On	0.952 V to 1 V	On	0
1103 V	On	5 V to 5.048 V		
0 to 5 V	On	-0.06 V to 0 V	On	0
0 10 5 V	On	5 V to 5.06 V	On	
0 to 10 \/	On	-0.12 V to 0 V	On	0
0 to 10 V	On	10 V to 10.12 V		
40 to 40 V	On	-10.24 V to -10 V	On	0
-10 to 10 V		10 V to 10.24 V		

13.5.7 Setting Function of Channel Output Status

Set the output against stop and abnormal condition of PLC.

(1) Function

When initialization of module and error of XMC system are happened, use to prevent abnormal output.

(2) Type

You can set an output status of channel among Previous, Min, Mid, Max value.

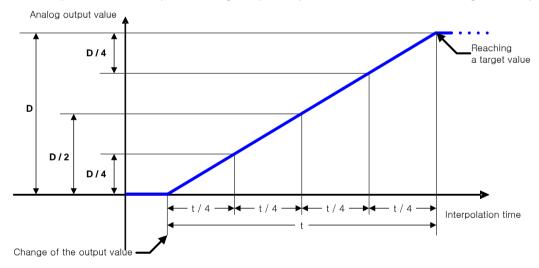
- (a) Previous value: The last output operated normally is retained.
- (b) Min: The Min value of each range is outputted.
- (c) Mid: The Mid value of each range is outputted.
- (d) Max: The Max value of each range is outputted.

(3) Example

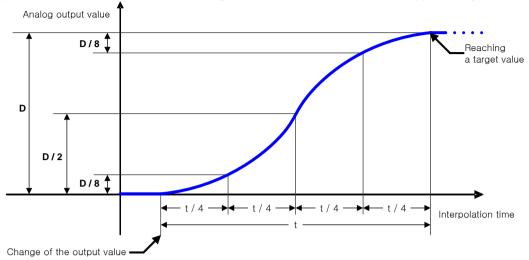
When the range of output channel is set by 4 to 20 mA and the output is 10 mA, and then if the system is changed from 'Run' to 'Stop', the output will be as follows depending on setting data of channel output status.

- (a) Previous value: 10 mA which is previous output value is retained.
- (b) Min value: 4 mA which is min value of relevant range is outputted.
- (c) Mid value: 12 mA which is mid value of relevant range is outputted
- (d) Max value: 20 mA which is max value of relevant range is outputted.

13.5.8 Interpolation Method Setting


(1) Functions

The output signal of module is used in order to execute interpolation output depending on set interpolation time. When the voltage and current is outputted, it can be used to prevent transient response of load system as a suddenly changed output.


(2) Interpolation method setting

Interpolation method can set the one among interpolation prohibition, linear interpolation S-type interpolation.

- (a) Interpolation prohibition: It doesn't execute interpolation operation. And it outputs digital input value intact.
- (b) Linear interpolation: The output is changed up to objective value with linear during the interpolation time.

(3) Interpolation time setting

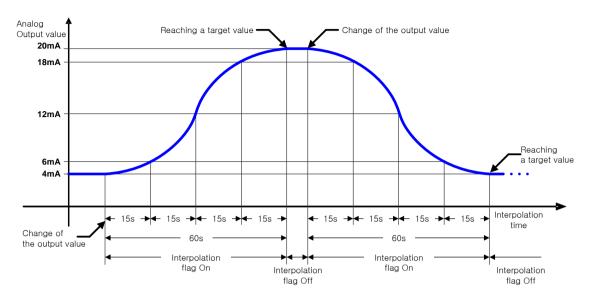
The interpolation time can be set with the one among 10[ms], 100[ms], 1[s], 60[s].

The output is changed depending on interpolation method setting during the set interpolation time.

(4) Interpolation output value

The interpolation operation value that is currently being outputted can check in parameter area while using interpolation function.

Variable Name	Address of interpolation output value	Details
_01_DA0_INTPVAL	%UW0.1.25	Channel 0 interpolation operation value
_01_DA1_INTPVAL	%UW0.1.26	Channel 1 interpolation operation value


(5) Interpolation flag turns on while the interpolation is outputted. And when the interpolation output value is reached at objective value, it will turn off.

Variable Name	Interpolation flag	Details
_01_DA0_INTP	%UX0.1.64	Channel 0 interpolation output in operation
_01_DA1_INTP	%UX0.1.65	Channel 1 interpolation output in operation

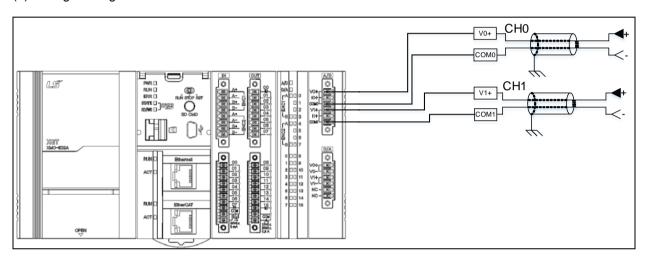
X Interpolation flag can be monitored when interpolation time is set to 1[s] or 60[s].

(6) Example

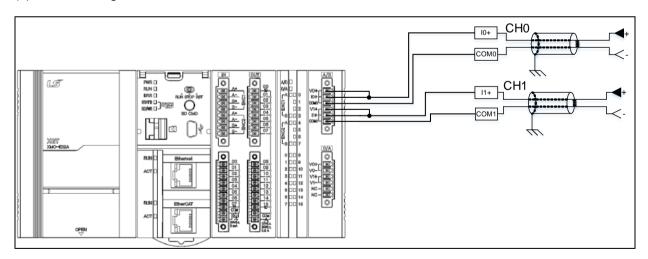
The interpolation method is set to S-type interpolation and interpolation time is set to 60s. If the output is changed from 4 \pm 10 20 \pm 10 mA, and then changed to 4 \pm 10 again when it is reached to 20 \pm 10 mA, the output is as graph below.

Notes

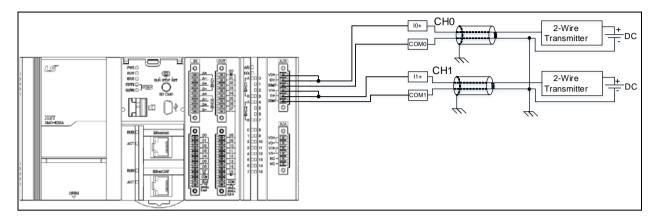
- 1. During the interpolation output, If the internal parameter is changed, the interpolation operation will be temporarily stopped and the output can be immediately changed to objective value.
- 2. If the change of internal parameter is needed, change the parameter during interpolation output after the flag turns off when the analog output value is not changed.

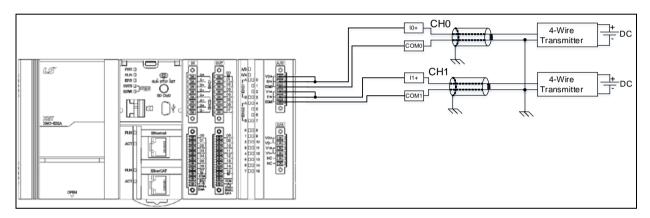

13.6 Wiring

13.6.1 Example for Wiring Analog Input

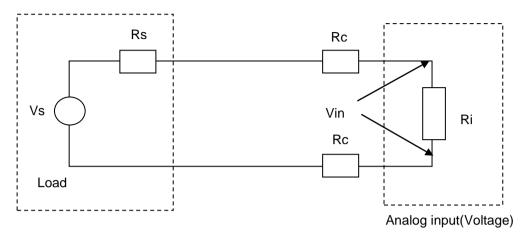

- (1) The input resistance of current input circuit is 250 Ω (typ.).
- (2) The input resistance of voltage input circuit is 1 M Ω or more.
- (3) Set the operation mode only if you want to use channels.
- (4) Example for analog input wiring

When inputting the voltage, relevant channel V+ and COM terminal is used. When inputting the current, relevant channel V+ and COM terminal is used after connecting between V+ and I+ terminal.


(a) Voltage wiring


(b) Current wiring

(5) The example of analog input 2-Wire sensor/transmitter wiring (The current input) Use the I+ and COM terminal after connecting V+ with I+ terminal.



(6) The example of analog input 4-Wire sensor/transmitter wiring (The current input) Use the I+ and COM terminal after connecting V+ with I+ terminal.

Chapter13 Built-in Analog Function

- (7) Relationship between voltage input accuracy and wiring length
 - In voltage input, the wiring (cable) length between transmitter or sensor and module has an effect on digital-converted values of the module as specified below;

Where,

Rc: Resistance value due to line resistance of cable

Rs: Internal resistance value of transmitter or sensor

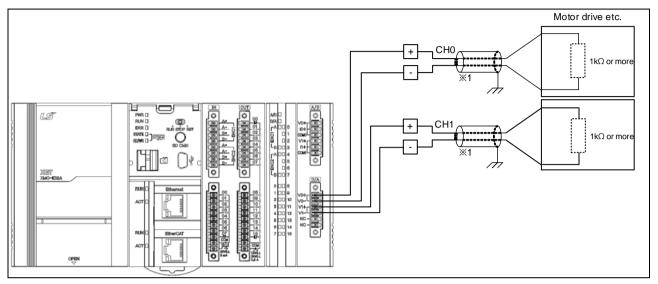
Ri: Internal resistance value (1 MΩ) of voltage input module

Vin: Voltage allowed to analog input module

% Vi: Tolerance of converted value (%) due to source and cable length in voltage input

$$Vin = \frac{Ri \times Vs}{\left[Rs + \left(2 \times Rc\right) + Ri\right]}$$

$$\%Vi = \left(1 - \frac{Vin}{Vs}\right) \times 100\%$$


Notes

While using a input voltage range among 1 to 5 V, 0 to 5 V, 0 to 10 V, -10 to 10 V

If the external wiring is disconnected, It will take a certain amount of time to display output data value of 0 V. If you want to reduce that time, connect the resistance about 0.1 $\,\mathrm{M}\Omega$ to 1 $\,\mathrm{M}\Omega$ between input channel V+ and COM.

13.6.2 Example for Wiring Analog Output

(1) Example for analog voltage -current output wiring

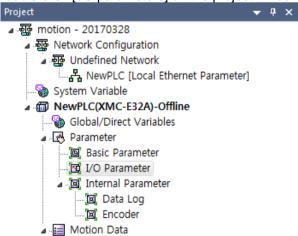
X1: A twisted two core shielded wire should be used as wire.

13.7 Operation Parameter Setting

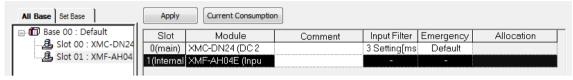
Built-in analog conversion module's operation parameters can be specified through XG5000's [I/O parameters].

(1) Settings

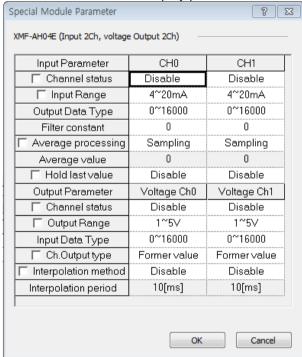
For the user's convenience of D/A conversion module, XG5000 provides GUI (Graphical User Interface) for parameters setting of D/A conversion module. Setting items available through [I/O parameters] on the XG5000 project window are as described below in the table.


Item	Details
[I/O parameter]	(a) Input parameter setting Specify the following setting items necessary for the module operation. 1) Channel Enable/Disable setting 2) Input voltage (current) range 3) Output data format setting 4) Filter constant setting 5) Average processing method setting 6) Average value setting 7) Hold last value setting (b) Output parameter setting Specify the following setting items necessary for the module operation. 1) Channel Enable/Disable setting 2) Output (voltage- current) range 3) Input data format setting 4) Channel output status setting 5) Interpolation method setting 6) Interpolation time (c) When the parameters set by user in XG5000 is downloaded, that data is saved in flash memory of motion controller.

(2) [I/O Parameter] Using method

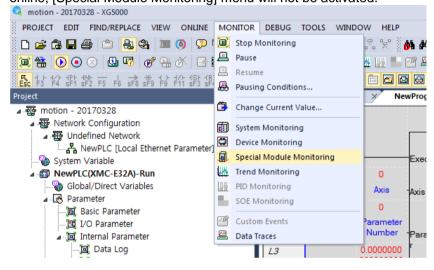

(a) Run XG5000 to create a project.

(Refer to XG5000 program manual for details on how to create the project)


(b) Double-click [I/O parameters] on the project window.

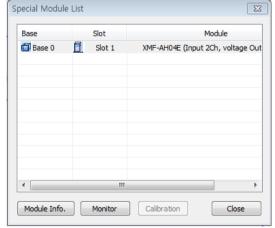
(c) [I/O Parameter setting] On the 'I/O Parameter setting' screen, find and clink the slot 1 (internal) which has embedded function.

- (d) Click the arrow button on the screen above to display the screen where an applicable module can be selected. Search and select the embedded analog input/output module to select.
- (e) A screen will be displayed for you to specify parameters for respective channels as below. Click a desired item to display parameters to set for respective items.

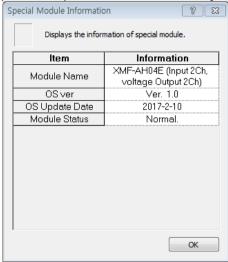


13.8 Special Module Monitoring Functions

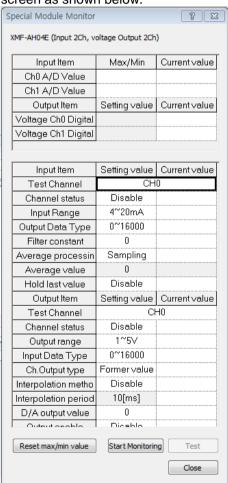
Functions of Special Module Monitoring are as described below.

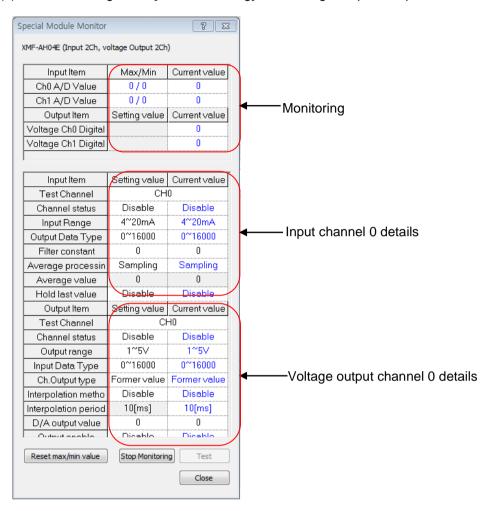

(1) Start of [Special Module Monitoring]

Go through [Online] → [Connect] and [Monitor] → [Special module Monitoring] to start. If the status is not online, [Special Module Monitoring] menu will not be activated.

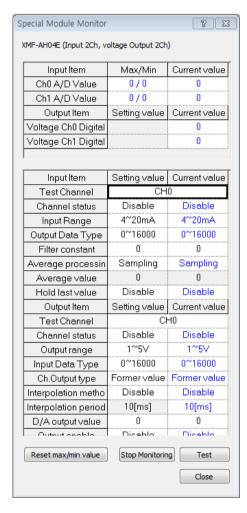


Notes


- 1. The screen may not normally be shown due to the lack of system resource. In this case, terminate all applications and try to start XG5000 again.
- 2. I/O parameter set in status of [Special Module Monitor] is temporally set to implement the test. So, If status of [Special Module Monitor] is ended, I/O parameter which is set becomes extinct.
- 3. The test of [Special Module Monitor] is an examination function to check operation of the analog Input/output module when the sequence program is not made up.
- (2) How to use special module monitoring
 - (a) With XG5000 connected to PLC CPU (on-line status), click [Monitor] -> [Special Module Monitoring] to display 'Special Module Select' screen as below showing base/slot information in addition to special module type. The module installed on the present PLC system will be displayed on the list dialog box.



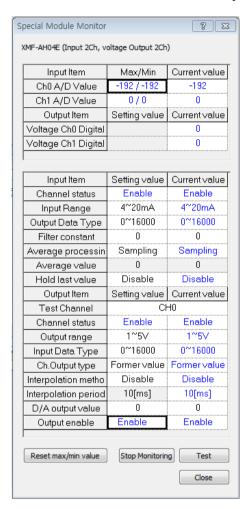
(c) Click [Monitor] on the "Special Module" screen in [Special Module List] to display [Special Module Monitoring] screen as shown below.



(d) Start Monitoring: Click [Start Monitoring] to show digital input / output data of current operated channel.

Execution screen of [Start Monitoring]

(e) Test: [Test] is a function to change the parameter of the embedded analog module which is presently set. In case of clicking the setting value in the bottom of the screen, you can change the parameter. [Test] is able to set only if operation status of motion controller is STOP.



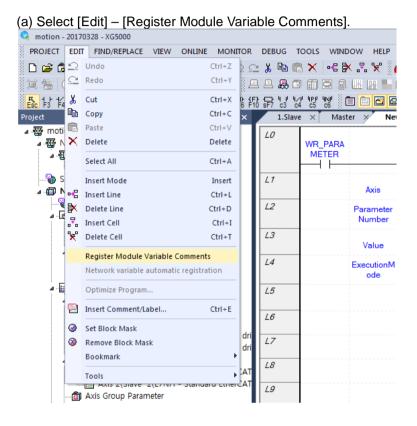
Execution screen of [Test]

(f) Max/Min Value Monitor

Max/Min value of input channel in operation can be monitored. However, visible Max/Min values are based on the present value.

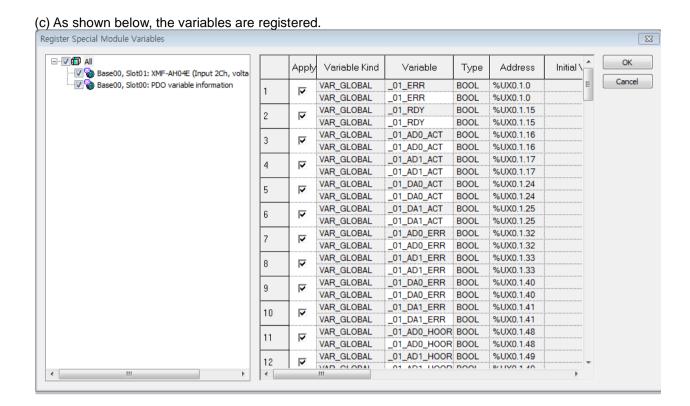
So Max/Min value is not saved when [Monitoring/Test Screen] is closed.

[Max/Min Value Monitor] execution screen

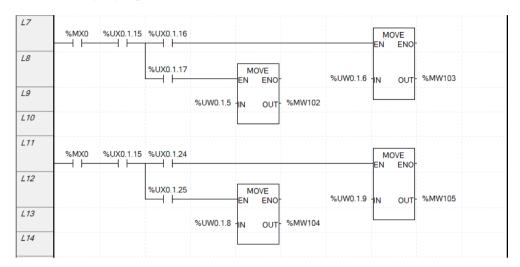

(g) Close

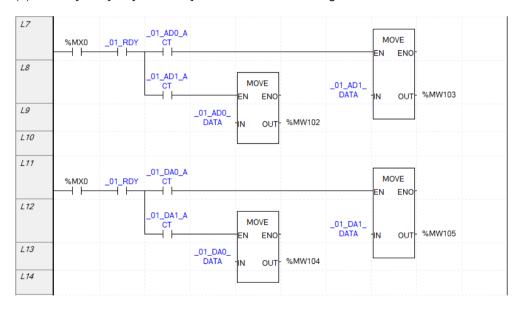
[Close]: [Close] is used to escape from the monitoring/test screen. When the monitoring/test screen is closed, the max value, the min. value and the present value will not be saved any more.

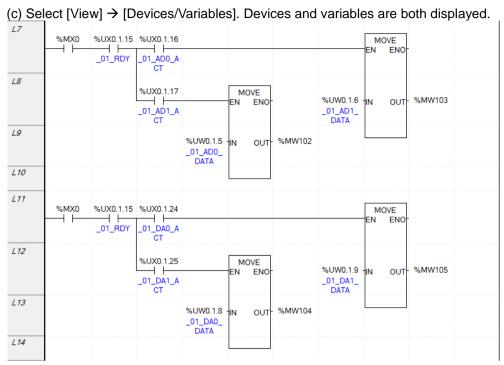
13.9 Automatic Register U Devices


Register the variables for each module referring to the special module information that is set in the I/O parameter. The user can modify the variables and comments.

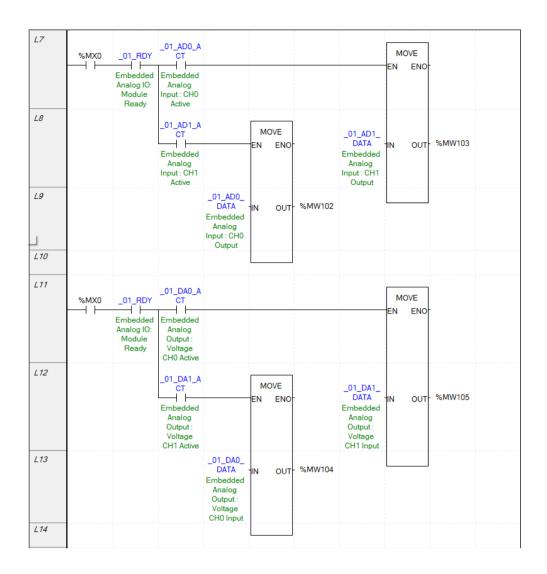
(1) Procedure




R



- (2) Save variables
 - (a) The contents of 'View Variable' can be saved as a text file.
 - (b) Select [Edit] → [Export to File].
 - (c) The contents of 'View variable' are saved as a text file.
 - (3) View variables in program
 - (a) The example program of XG5000 is as shown below.


(b) Select [View] → [Variables]. The devices are changed into variables.

(d) Select [View] -> [Device/Comments]. Devices and comments are both displayed. %UX0.1.15 %UX0.1.16 MOVE Embedded Embedded ENO Analog IO: Module Analog nput : CH0 Ready L8 %UX0.1.17 MOVE %UW0.1.6 Embedded %MW103 Embedded Analog Input : CH1 Analog Input: CH1 Output L9 %UW0.1.5 %MW102 OUT Embedded Analog Input : CH0 Output L10 L11 %MX0 %UX0.1.15 %UX0.1.24 MOVE ENO Embedded Embedded Analog IO: Module Analog Output Voltage CH0 Active L12 %UX0.1.25 MOVE Embedded %UW0.1.9 IN %MW105 Embedded Analog Output : Analog Output : Voltage CH1 Input L13 %UW0.1.8 %MW104 OUT Embedded Analog Output: Voltage CH0 Input L14

(e) Select [View] → [Variables/Comments]. Variables and comments are both displayed.

13.10 Configuration and Function of Internal Memory

13.10.1 I/O Area of Built-in Analog Data

I/O area of built-in analog data is as displayed in table

Built-in analog input

Variable name	Туре	Device	Comment
_01_AD0_ACT	BOOL	%UX0.1.16	Channel 0 Active
_01_AD0_AVGTYPE	BYTE	%UB0.1.34	Channel 0 Average type
_01_AD0_AVGVAL	WORD	%UW0.1.18	Channel 0 Average value
_01_AD0_DATA	WORD	%UW0.1.5	Channel 0 Output data
_01_AD0_DATATYPE	BYTE	%UB0.1.26	Channel 0 Output data type setting
_01_AD0_ERR	BOOL	%UX0.1.32	Channel 0 Error
_01_AD0_FILTCONST	WORD	%UW0.1.15	Channel 0 Filter constant
_01_AD0_HOLDVAL	BOOL	%UX0.1.320	Channel 0 Hold effective conversion value setting
_01_AD0_HOOR	BOOL	%UX0.1.48	Channel 0 Alarm (Upper Limit)
_01_AD0_IDD	BOOL	%UX0.1.72	Channel 0 Input disconnection flag
_01_AD0_LOOR	BOOL	%UX0.1.56	Channel 0 Alarm (Lower Limit)
_01_AD0_RANGE	BYTE	%UB0.1.22	Channel 0 Range setting
_01_AD0_RUN	BOOL	%UX0.1.160	Channel 0 Operation setting
_01_AD1_ACT	BOOL	%UX0.1.17	Channel 1 Active
_01_AD1_AVGTYPE	BYTE	%UB0.1.35	Channel 1 Average processing
_01_AD1_AVGVAL	WORD	%UW0.1.19	Channel 1 Average value setting
_01_AD1_DATA	WORD	%UW0.1.6	Channel 1 Output data
_01_AD1_DATATYPE	BYTE	%UB0.1.27	Channel 1 Output data type setting
_01_AD1_ERR	BOOL	%UX0.1.33	Channel 1 Error
_01_AD1_FILTCONST	WORD	%UW0.1.16	Channel 1 Filter constant
_01_AD1_HOLDVAL	BOOL	%UX0.1.321	Channel 1 Hold effective conversion value setting
_01_AD1_HOOR	BOOL	%UX0.1.49	Channel 1 Alarm (Upper Limit)
_01_AD1_IDD	BOOL	%UX0.1.73	Channel 1 Input disconnection flag
_01_AD1_LOOR	BOOL	%UX0.1.57	Channel 1 Alarm (Lower Limit)
_01_AD1_RANGE	BYTE	%UB0.1.23	Channel 1 Range setting
_01_AD1_RUN	BOOL	%UX0.1.161	Channel 1 Operation setting
_01_AD_ACT_ARY	ARRAY[01] OF BOOL	%UX0.1.16	Active per channel (Array)
_01_AD_AVGTYPE_ARY	ARRAY[01] OF BYTE	%UB0.1.32	Average type per channel (Array)
_01_AD_AVGVAL_ARY	ARRAY[01] OF WORD	%UW0.1.18	Average value per channel (Array)
01_AD_DATATYPE_ARY	ARRAY[01] OF BYTE	%UB0.1.26	data type setting per channel (Array)
_01_AD_ERR_ARY	ARRAY[01] OF BOOL	%UX0.1.32	Error per channel (Array)
_01_AD_FILTCONST_ARY	ARRAY[01] OF WORD	%UW0.1.15	Filter constant per channel (Array)
_01_AD_HOLDVAL_ARY	ARRAY[01] OF BOOL	%UX0.1.320	Hold effective conversion value per channel (Array) setting
_01_AD_HOOR_ARY	ARRAY[01] OF BOOL	%UX0.1.48	Alarm (Upper Limit) per channel (Array)
_01_AD_IDD_ARY	ARRAY[01] OF BOOL	%UX0.1.72	Input Disconnection Flag per channel (Array)
_01_AD_LOOR_ARY	ARRAY[01] OF BOOL	%UX0.1.56	Alarm (Lower Limit) per channel (Array)
_01_AD_RANGE_ARY	ARRAY[01] OF BYTE	%UB0.1.22	Range setting per channel (Array)
_01_AD_RUN_ARY	ARRAY[01] OF BOOL	%UX0.1.160	Operation setting per channel (Array)

Built-in analog output

Built-in analog output		Device	
Variable name	Туре	assigned	Comment
_01_DA0_ACT	BOOL	%UX0.1.24	Channel 0(Voltage) Active
_01_DA0_DATA	WORD	%UW0.1.8	Channel 0(Voltage) Input data
_01_DA0_DATATYPE	BYTE	%UB0.1.28	Channel 0(Voltage) Input data type
_01_DA0_ERR	BOOL	%UX0.1.40	Channel 0(Voltage) Error
_01_DA0_INTP	BOOL	%UX0.1.64	Channel 0(Voltage) Interpolation Enabled
_01_DA0_INTPMTHD	BYTE	%UB0.1.46	Channel 0(Voltage) Interpolation method
_01_DA0_INTPTIME	BYTE	%UB0.1.48	Channel 0(Voltage) Interpolation time setting
_01_DA0_INTPVAL	WORD	%UW0.1.25	Channel 0(Voltage) Interpolation value
_01_DA0_OUTEN	BOOL	%UX0.1.112	Channel 0(Voltage) Output Enable
_01_DA0_OUTSTAT	WORD	%UW0.1.21	Channel 0(Voltage) Output status setting
_01_DA0_RANGE	BYTE	%UB0.1.24	Channel 0(Voltage) Range setting
_01_DA0_RUN	BOOL	%UX0.1.168	Channel 0(Voltage) Operation setting
_01_DA1_ACT	BOOL	%UX0.1.25	Channel 1(Voltage) Active
_01_DA1_DATA	WORD	%UW0.1.9	Channel 1(Voltage) Input
_01_DA1_DATATYPE	BYTE	%UB0.1.29	Channel 1(Voltage) Input data type setting
_01_DA1_ERR	BOOL	%UX0.1.41	Channel 1(Voltage) Error
_01_DA1_INTP	BOOL	%UX0.1.65	Channel 1(Voltage) Interpolation Enabled
_01_DA1_INTPMTHD	BYTE	%UB0.1.47	Channel 1(Voltage) Interpolation method
_01_DA1_INTPTIME	BYTE	%UB0.1.49	Channel 1(Voltage) Interpolation time setting
_01_DA1_INTPVAL	WORD	%UW0.1.26	Channel 1(Voltage) Interpolation value
_01_DA1_OUTEN	BOOL	%UX0.1.113	Channel 1(Voltage) Output Enable
_01_DA1_OUTSTAT	WORD	%UW0.1.22	Channel 1(Voltage) Output status setting
_01_DA1_RANGE	BYTE	%UB0.1.25	Channel 1(Voltage) Range setting
_01_DA1_RUN	BOOL	%UX0.1.169	Channel 1(Voltage) Operation setting
_01_DA_ACT_ARY	ARRAY[01] OF BOOL	%UX0.1.24	Active stats per channel (Array)
_01_DA_DATATYPE_ARY	ARRAY[01] OF BYTE	%UB0.1.28	Input data type per channel (Array)
_01_DA_DATA_ARY	ARRAY[01] OF WORD	%UW0.1.8	Input data per channel (Array)
_01_DA_ERR_ARY	ARRAY[01] OF BOOL	%UX0.1.40	Error per channel (Array)
_01_DA_INTPMTHD_ARY	ARRAY[01] OF BYTE	%UB0.1.46	Interpolation method setting per channel (Array)
_01_DA_INTPTIME_ARY	ARRAY[01] OF BYTE	%UB0.1.48	Interpolation time setting per channel (Array)
_01_DA_INTPVAL_ARY	ARRAY[01] OF WORD	%UW0.1.25	Interpolation value per channel (Array)
_01_DA_INTP_ARY	ARRAY[01] OF BOOL	%UX0.1.64	Interpolation enabled per channel (Array)
_01_DA_OUTEN_ARY	ARRAY[01] OF BOOL	%UX0.1.112	Output enable setting per channel (Array)
_01_DA_OUTSTAT_ARY	ARRAY[01] OF WORD	%UW0.1.21	Output status setting per channel (Array)
_01_DA_RANGE_ARY	ARRAY[01] OF BYTE	%UB0.1.24	Range setting per channel (Array)
_01_DA_RUN_ARY	ARRAY[01] OF BOOL	%UX0.1.168	Operation setting per channel (Array)

Built-in analog common

Variable name	Туре	Device	Comment						
_01_ERR	BOOL	%UX0.1.0	Motion controller error						
_01_RDY	BOOL	%UX0.1.15	Motion controller ready						
_01_SETTINGERR	WORD	%UW0.1.27	Setting error information						

(1) Built-in analog module ready/error flag (_01_RDY/_01_ERR)

- (a) %UX0.1.15 : It will be ON when module is powered or reset with D/A conversion ready to process A/D conversion. (b) %UX0.1.0 : It is a flag to display the error status of built-in analog module

Chapter13 Built-in Analog Function

Bit0
Error
$ egin{array}{c} $
r nal
r

(2) Channel active information

(a) This area shows the channel being used.

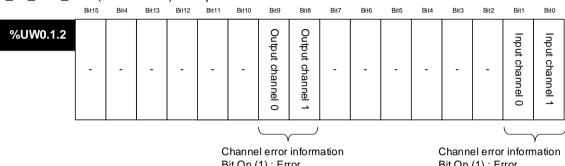
(b) _01_AD0_ACT(%UX0.1.16) : Input channel 0 active

_01_AD1_ACT(%UX0.1.17) : Input channel 1 active

_01_DA0_ACT(%UX0.1.24) : Output channel 0 active _01_DA1_ACT(%UX0.1.25) : Output channel 1 active

_* :::-:-	Bit15	Bit4	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
%UW0.1.1	-	-	-	ı	-	-	Output channel 0	Output channel 1	-	ı	-	-	-	-	Input channel 0	Input channel 1
	Active channel information Bit On (1): Active Bit Off (0): Inactive													channe (1) : Ac (0) : In:	ctive	mation

(3) Channel error information


(a) This area shows the channel error status.

(b) _01_AD0_ERR(%UX0.1.32) : Input channel 0 error

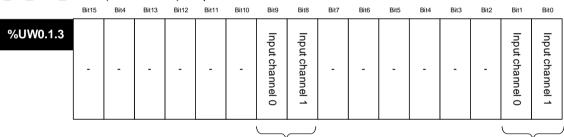
_01_AD1_ERR(%UX0.1.33): Input channel 1 error

_01_DA0_ERR(%UX0.1.40) : Output channel 0 error

_01_DA1_ERR(%UX0.1.41) : Output channel 1 error

Bit On (1): Error Bit Off (0): Normal Bit On (1): Error Bit Off (0): Normal

(4) Input alarm (upper/lower) flag


(a) This area shows upper/lower alarm per channel status.

(b) _01_AD0_HOOR(%UX0.1.48) : Input channel 0 upper alarm

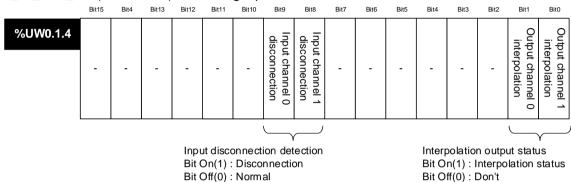
_01_AD1_HOOR(%UX0.1.49): Input channel 1 upper alarm

_01_AD0_LOOR(%UX0.1.56): Input channel 0 lower alarm

_01_AD1_LOOR(%UX0.1.57): Input channel 1 lower alarm

Lower alarm detection Bit On(1): Lower alarm status

Bit Off(0): Normal

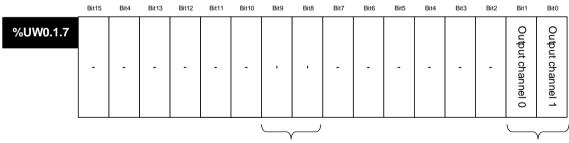

Upper alarm detection

Bit On(1): Upper alarm status

Bit Off(0): Normal

(5) Input disconnection / interpolation output status

- (a) This area shows the channel detecting input disconnection and being outputting interpolation.
- (b) _01_DA0_INTP(%UX0.1.64) : Output channel 0 outputting interpolation
 - _01_DA1_INTP(%UX0.1.65): Output channel 1 outputting interpolation.
 - 01 AD0 IDD(%UX0.1.72): Detecting Input channel 0 disconnection
 - _01_AD1_IDD(%UX0.1.73): Detecting Input channel 1 disconnection


(6) Digital output value.

- (a) This area shows converted(A/D) digital output value by channel in buffer memory (%UW0.1.5 ~%UW0.1.6)
- (b) Digital output value is stored in 16-bit binary number.
- (c) _01_AD0_DATA(%UW0.1.5) : Input channel 0 conversion value.
 - _01_AD1_DATA(%UW0.1.6) : Input channel 1 conversion value.

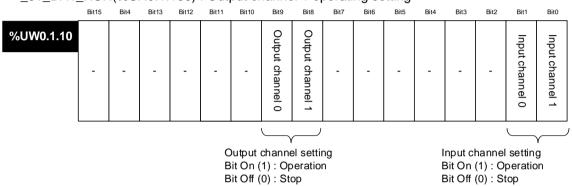
		Bit15	Bit4	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Г	%UW0.1.5						Inpu	ıt char	nnel 0	conver	sion v	alue					
%UW0.1.6 Input channel 1 conversion value																	

(7) Output permission setting

- (a) The output enable / disable for each channel can be set.
- (b) When the output permission is not set, the output of all channels will be prohibited
- (c) _01_DA0_OUTEN(%UX0.1.112) : Output channel 0 output enable
 - _01_DA1_OUTEN(%UX0.1.113): Output channel 1 output enable

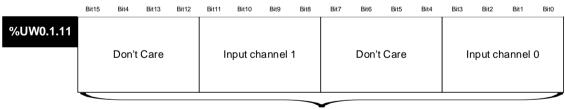
Output permission information Bit On(1): Permission Bit Off(0): Prohibition

(8) Digital input value


- (a) Unsigned value(-192 \sim 16,191 / 0 \sim 16,191), Signed value(-8,192 \sim 8,191 / -8,000 \sim 8,191), Precise value(-952 \sim 5,047 / -60 \sim 5,059 / -120 \sim 10,119 / -10,240 \sim 10,239 / 3,808 \sim 20,191 / 0 \sim 20,239), Percentile value(-120 \sim 10,119 / 0 \sim 10,119) can be used within these ranges depending on the setting of input data type.
- (b) If the digital input value is not set, it will be handled as '0'.

(c) _01_DA0_DATA(%UW0.1.8) : Output channel 0 input data _01_DA1_DATA(%UW0.1.9) : Output channel 1 input data

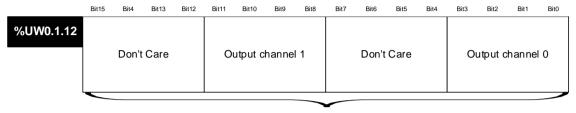
	Bit15	Bit4	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
- %UW0.1.8		Output channel 0 digital data														
- %UW0.1.9						С	utput	channe	el 1 dig	jital da	ta					


(9) Operating channel setting.

- (a) If the operating channel is not set, overall channel status is STOP.
- (b) 01 AD0 RUN(%UX0.1.160): Input channel 0 operating setting
 - 01 AD1 RUN(%UX0.1.161): Input channel 1 operating setting
 - _01_DA0_RUN(%UX0.1.168): Output channel 0 operating setting
 - _01_DA1_RUN(%UX0.1.169): Output channel 1 operating setting

(10) Input range setting

- (a) The ranges of analog input voltage are DC 1~5V, DC 0~5V, DC 0~10V, DC -10~10V, the ranges of analog current input are DC 4~20mA, DC 0~20mA.
- (b) _01_AD0_RANGE(%UB0.1.22) : Input channel 0 range setting.
 - _01_AD1_RANGE(%UB0.1.23): Input channel 1 range setting.



Input range setting (4 Bit per channel)

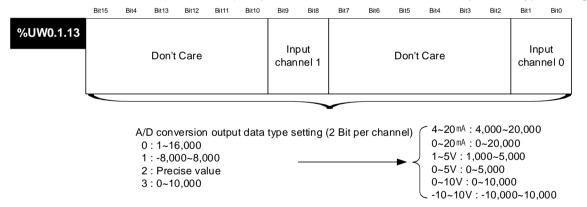
- 0:4~20 mA
- 1:0~20 mA
- 2:1~5V
- 3:0~5V
- 4:0~10V 5:-10~10V

(11) Output range setting

- (a) The ranges of analog output voltage are DC 1~5V, DC 0~5V, DC 0~10V, DC -10~10V.
 - (b) When the input range is not set or it is entered out of setting values, it is handled as range of DC 1~5V.
- (c) _01_DA0_RANGE(%UB0.1.24) : Output channel 0 range setting.
 - _01_DA1_RANGE(%UB0.1.25): Output channel 1 range setting.

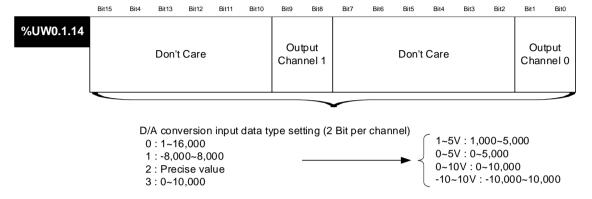
Output range setting (4 Bit per channel)

0:1~5V


1:0~5V

2:0~10V

3:-10~10V


(12) Built-in analog Input data type setting

- (a) The range of digital input data(A/D conversion) can be specified for respective channels.
 - (b) If the input data range is not specified, the range of all the channels will be set to 0 ~ 16000.
- (c) _01_AD0_DATATYPE(%UB0.1.26): Input channel 0 A/D Conversion output data type setting. _01_AD1_DATATYPE(%UB0.1.27): Input channel 1 A/D Conversion output data type setting.

(13) Built-in analog Output data type setting

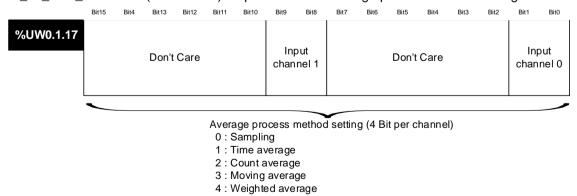
- (a) The range of digital input data(D/A conversion) can be specified for respective channels.
- (b) If the input data range is not specified, the range of all the channels will be set to 0 ~ 16000.
- (c) _01_DA0_DATATYPE(%UB0.1.28) : Output channel 0 D/A Conversion output data type setting. 01 DA1 DATATYPE(%UB0.1.29) : Output channel 1 D/A Conversion output data type setting.

(14) Filter constant setting

(a) When the filter constant is specified with 0, the filter will not be operated.

Bit10

(b) _01_AD0_FILCONST(%UW0.1.15) : Input channel 0 Filter constant

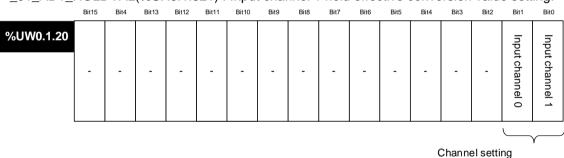

Bit4 Bit13 Bit12 Bit11

_01_AD1_FILCONST(%UW0.1.16): Input channel 1 Filter constant

%UW0.1.15	Input channel 0 filter constant(0 or 64,000ms)
%UW0.1.16	Input channel 1 filter constant(0 or 64,000ms)

(15) Average process method setting

- (a) When setting average process, the average process method is selected among time average, count average, moving average, or weighted average.
- (b) If setting average process is not specified, all channels will not handle the average process.
- (c) _01_AD0_AVGTYPE(%UB0.1.34) : Input channel 0 average process method setting.
 - _01_AD1_AVGTYPE(%UB0.1.35): Input channel 1 average process method setting.


(16) Average value setting

- (a) Set to range of 4 ~ 16,000 as time average value.
- (b) Set to range of 2 ~ 64,000 as count average value.
- (c) Set to range of 2 ~ 100 as moving average value.
- (d) Set to range of 1~99 as weighted average value.
- (e) If average process method is set to 0(sampling process) and average value is set to 0, the input channel will not do average process, and sampling value will be output.
- (f) _01_AD0_AVGVAL(%UW0.1.18) : Input channel 0 Average value.
 - _01_AD1_AVGVAL(%UW0.1.19): Input channel 1 Average value.

	Bit15	Bit4	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
%UW0.1.18		Input channel 0 average value														
%UW0.1.19						Inp	out cha	annel 1	l avera	age val	ue					

(17) Hold last value setting

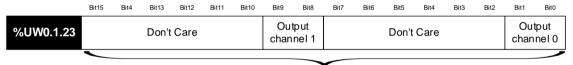
- (a) In case that hold last value function is set at the same time, if the invalid value is come, the late valid value will only be retained. For example, firstly, it is operated with 4~20mA. Secondly, 10mA comes in. Finally, the signal is immediately falling down to 3mA without falling down the current continually. In this case, relevant channels will retain the output value of 10mA.
- (b) When this function is set, digital output value related with actual range of analog input is only shown. Refer to the actual range of the analog from "chapter 13.3".
 - (c) For the detailed usage, refer to chapter 13.5.5 Hold Last Value Function.
 - (d) Setting of hold last value is as below.
 - _01_AD0_HOLDVAL(%UX0.1.320): Input channel 0 hold effective conversion value setting.
 - 01 AD1 HOLDVAL(%UX0.1.321): Input channel 1 hold effective conversion value setting.

Bit On (1): Permission Bit Off (0): Prohibition

(18) Output status setting

- (a) When the motion controller is stopped, set the analog output status
- (b) When the output status setting is not specified, output the previous value.

	Bit15	Bit4	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
%UW0.1.21		Don't care														nel 0 tus
%UW0.1.22		Don't care													Chan sta	nel 1 tus


Output channel status setting (2 Bit)

00 : Previous value 01 : Min value 02 : Mid value 03 : Max value

Variable	Device	Comment	Setting
_01_DA0_OUTSTAT	%UW0.1.21	Channel 0 output status setting	Input data type setting (bit) - 00 : Previous value - 01 : Min value
_01_DA1_OUTSTAT	%UW0.1.22	Channel 1 output status setting	- 10 : Mid value - 11 : Max value

(19) Interpolation method setting

- (a) Shows the setting of the interpolation method of each channel.
- (b) _01_DA0_INTPMTHD(%UB0.1.46): Output channel 0 interpolation method setting
 - _01_DA1_INTPMTHD(%UB0.1.47) : Output channel 1 interpolation method setting

Interpolation method setting (2 Bit per channel)

- 0 : Prohibition
- 1 : Linear
- 2 : S-Curve

(20) Interpolation period setting

- (a) Shows the setting of interpolation time of each channel.
- (b) _01_DA0_INTPTIME(%UB0.1.48) : Output channel 0 interpolation time setting.
 - _01_DA1_INTPTIME(%UB0.1.49): Output channel 1 interpolation time setting.

Interpolation time setting (2 Bit per channel)

- 0:10[ms]
- 1:100[ms]
- 2:1[s]
- 3:60[s]

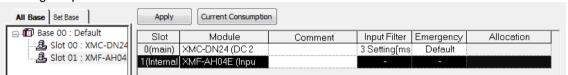
(21) Interpolation operation value

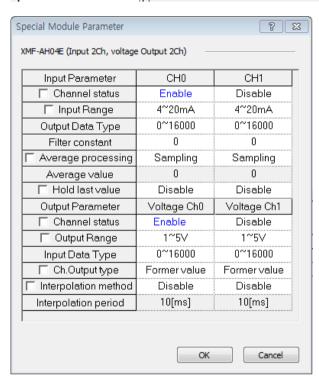
- (a) Shows the interpolation operation value of each channel.
- (b) _01_DA0_INTPVAL(%UW0.1.25) : Output channel 0 interpolation operation value. _01_DA1_INTPVAL(%UW0.1.26): Output channel 1 interpolation operation value.

	Bit15	Bit4	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit /	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bitto
%UW0.1.25		Input channel 0 operation value														
%UW0.1.26						Inp	ut cha	nnel 1	opera	tion va	lue					

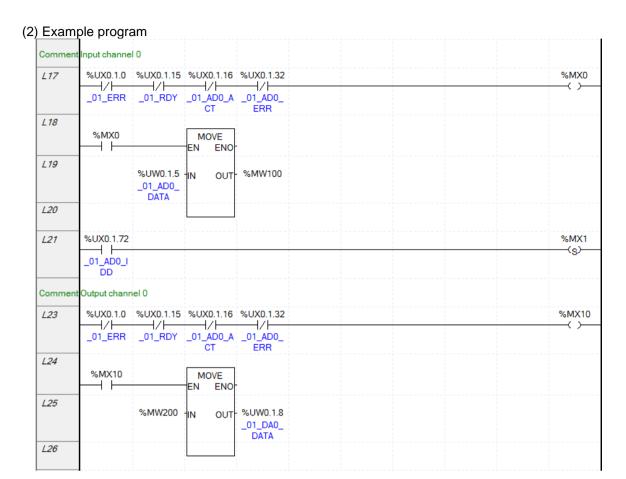
(22) Error code

- (a) Shows the error code of each channel.
- (b) If it is normal, the error code is 0.
- (c)_01_SETTINGERR(%UW0.1.27): Error information.


	Bit15	Bit4	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
%UW0.1.27							Settin	g erro	inforn	nation						


Туре	Error code (Decimal)	LED sign	Details	Priority of error code	Remarks for reference
	10#	AD 1 50	Setting error of input channel range	1	
	20#	AD LED Flickering 1s intervals DA LED Flickering 1s intervals	Setting error of input channel filter value		
Error	30#		Setting error of input channel average value	3	#:Channel
	40#		Setting error of output channel range		number (Channel0~1)
	50#		Setting error of output channel digital input value range	5	
	60#	ilitervais	Setting error of output channel interpolation method range	6	

(d) When errors of two or more are caused, the high priority error code is saved. And when the same error code is caused in channels of two or more, the error code of low channel number is saved preferentially. In case of that the errors are occurred at the same time in voltage output channel and current output channel, the error code of voltage output channel is saved preferentially.


13.11 Example Program

(1) Setting I/O parameter

- (a) The input channel 0 is set with operation channel and the range is set with 4~20mA.
- (b) The voltage output channel 0 is set with operation channel and the range is set with 1~5V.

(a) Example of input program

1) The '%MX0' is on while the module normally operates.

%UX0.1.0 (Module Error) = Off

%UX0.1.15 (Module Ready) = On

%UX0.1.16 (Channel 0 Run) = On

%UX0.1.32 (Channel 0 Error) = Off

- 2) When the '%MX0' is on, conversion value (%UW0.1.5) of CH0 is moved to the '%MW100'.
- 3) If the error is caused on CH0, %UX0.1.72 (CH0 disconnection) will be on and the '%MX1' will be on.

(b) Example of output program

1) The '%MX10' is on while the module normally operates.

%UX0.1.0 (Module Error) = Off

%UX0.1.15 (Module Ready) = On

%UX0.1.24 (Voltage Output Channel 0 Run) = On

%UX0.1.40 (Voltage Output Channel 0 Error) = Off

- 2) When the '%MX10' is on, voltage channel 0 output status (%UX0.1.112) is on, and the output is permitted.
- 3) If '%MX10' is on, '%MW200' data is moved to voltage channel 0 output value (%UW0.1.8) and then it is output.

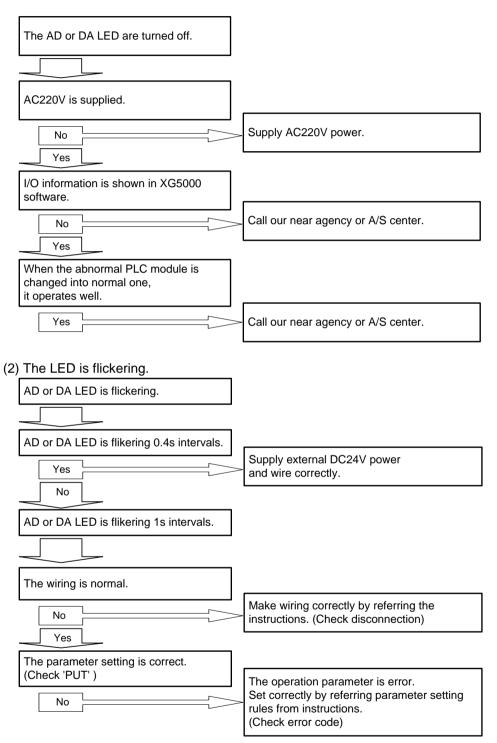
13.12 Troubleshooting

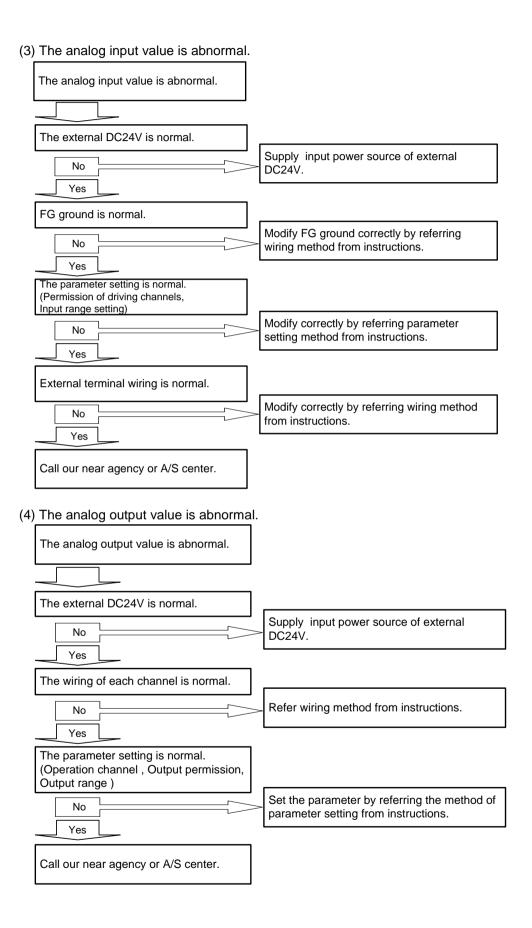
The chapter describes diagnostics and measures method in case of any trouble occurs during use of built-in analog module.

13.12.1 LED Indication by Errors

Built-in analog module has two LEDs and it is possible to check whether it had any error with the indication of LEDs.

Item	Normal status	When channel is disconnected	When parameter setting is error	
AD LED	On	Flickering 1s intervals	Flickering 1s intervals (Input parameter setting error)	
DA LED	On	Flickering 1s intervals (Output range 4 to 20mA or 0 to 20mA)	Flickering 1s interval (Output parameter setting error)	
Operation	Normal operation Operation of all functions	Operation of all functions Shows minimum input value	Operation of all functions with default parameter	
Measure	-	Check wiring	Check parameter	

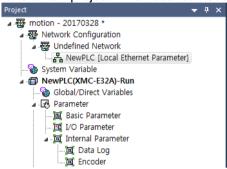

13.12.2 Check the Built-in Analog Module


The status of built-in analog module can be checked through the system monitor of XG5000.

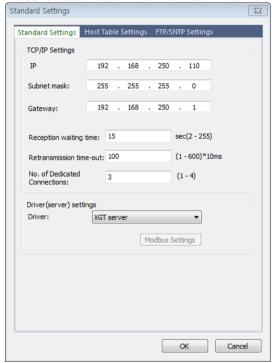
- (1) The order of execution
 - It can be implemented through one of the methods among next items.
 - (a) [Monitor] → [System Monitor] → Click the right button of mouse on the painting of module.
 - → [Module Information]
 - (b) [Monitor] → [System Monitor] → Double click the painting of module
 - (c) [Monitor] → [Special Module Monitor] → Built-in Analog Module Selection
 - → Click the module information
 - (d) [Online] \rightarrow [I/O Information] \rightarrow Built-in Analog Module Selection \rightarrow Click the details (e)[Online] \rightarrow [I/O Information] \rightarrow Built-in Analog Module Double click
- (2) Module information
 - (a) OS Version: OS version of module is shown.
 - (b) OS Update Date: The OS prepared date of module is shown.
 - (c) Module status: The present error code is shown.

13.12.3 Troubleshooting

(1) The AD or DA LED is turned off.


Chapter 14 Local Ethernet Function

14.1 Local Ethernet Function


Motion controller can carry out the functions of Ethernet server using internal local Ethernet function.

14.1.1 Local Ethernet Parameter Settings

Make a new project. Then user can see Local Ethernet Parameters as shown below figure.

If user selects Local Ethernet Parameter item, Local Ethernet Parameter setting window will be displayed.

To use the Local Ethernet function, user should set the parameters.

(1) TCP/IP Setting

Classification	Description
IP address	Specify the IP Address of the applicable motion controller.
Subnet mask	Value necessary to check if destination station is on the same network of the applicable station.
Gateway	IP address of Gateway or Router to transmit/receive data through the public network or a network different from the network where the applicable FEnet module is included.
Reception waiting time	If there is no request during the specified time from the host PC or HMI(Human Machine Interface) connected for dedicated communication, it will end the dedicated service connection regardless of normal ending procedures supposing that the higher level system is with error. This time is used in dedicated service to reset the channel when any error occurs on the destination station or the cable is disconnected. (available range is 2 ~ 255 sec)
Retransmission time-out	It is the time it takes CPU to send a data to the destination station if the destination station does not answer the data sent by applicable station during setting time. (Applicable station considers it as a data missing.) (available range is 10 ms ~ 6000 ms) * Note: Retransmission time-out should be set depending on the network situation.
(10 110)	If the setting time is too long, it takes a long time to resend a data in case of data missing. This will deteriorate the network performance. But if the setting time is too short, there is a chance to make a frequent disconnection or increase the load to the network.
Number of dedicated connections	Number of TCP dedicated services accessible at a time. (Max.4)

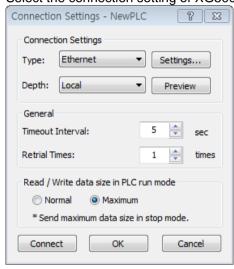
(2) Driver(Server) setting

Classification	Description					
XGT server	Set when operated as dedicated communication server (slave)					
Modbus TCP/IP server	Set when operated as Modbus server driver (slave)					

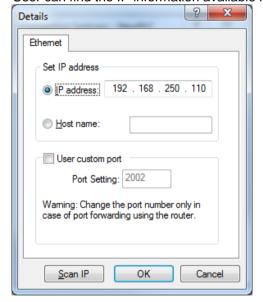
Classification	Description
Enable host table	Access allowed to applicable module of IP address registered in host table
	(unregistered client(IP address) is prohibited from connection when enabled)

(4) Available Device address

Device	Address	Size(Word)	Description
I	%IW0.0.0 ~ %IW127.15.3	8192	Available Read/Write/Monitor
Q	%QW0.0.0 ~ %QW127.15.3	8192	Available Read/Write/Monitor
М	%MW0 ~ %MW1048575	1048576	Available Read/Write/Monitor
U	%UW0 ~ %UW0.15.31	512	Available Read/Write/Monitor
F	%FW0 ~ %FW65535	65536	Available Read/Monitor
K	%KW0~%KW9125	9126	Available Read/Monitor

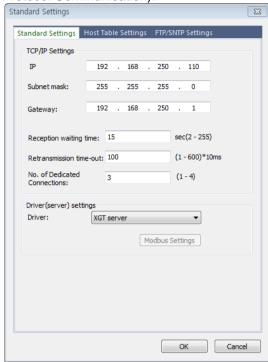

14.1.2 Local Ethernet Connection with XG5000

After finishing Local Ethernet Parameter settings, download the settings to the motion controller, then user can connect to XG5000.

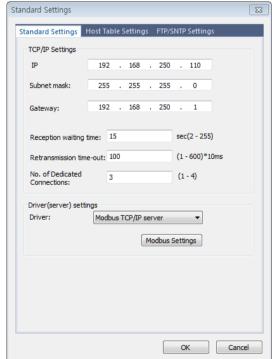

Select Online Settings and set the options as shown below figure.

(Notice: Motion controller's Ethernet port does not support the relay function about remote connection. Then, motion controller doesn't support the remote connection.)

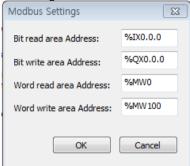
Select the connection setting of XG5000. Then, select the options of connection option as below.



Click the setting button to specify Ethernet IP. Click OK after specify the Ethernet IP set before. User can find the IP information available now.


14.1.3 Local Ethernet Connection with XGT Server

Set the Local Ethernet Parameters as shown below figure. User can use it as a XGT Server (LS ELECTRIC dedicated Protocol Communication).

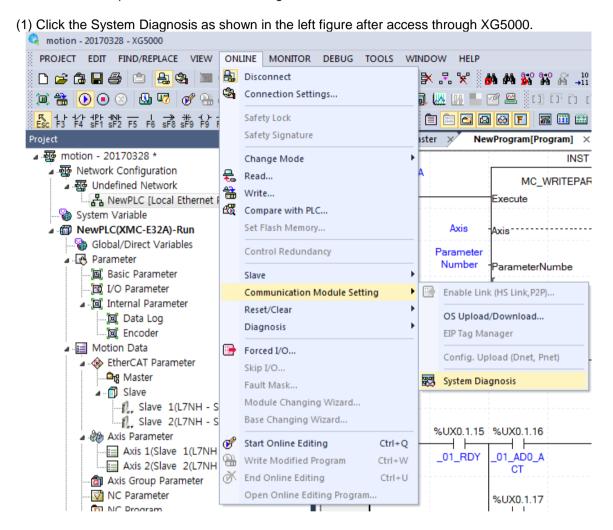


14.1.4 Local Ethernet Connection with TCP/IP Server

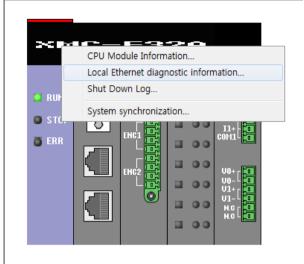
Set the Local Ethernet Parameters as shown below figure. User can use it as a Modbus server.

Below figure is about Modbus settings. .

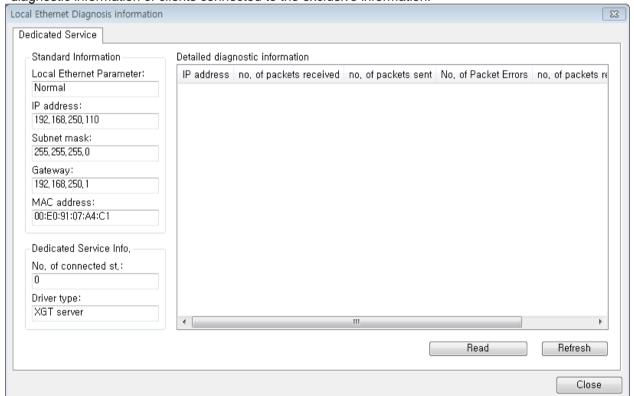
Note


- 1) Modbus TCP/IP server connection function allows RST packet transmission depending on the network condition.(TCP/IP protocol)
 - So the user devices connecting to CPU module should have RST packet process.
- 2) Connection to user devices can be disconnected for retransmission time-out.

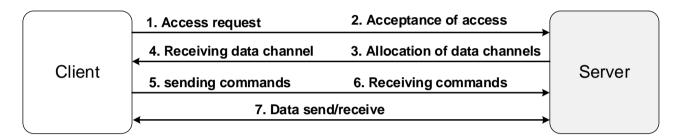
 For the retransmission timeout period, the connection is terminated after waiting twice as long as the previous waiting time after retransmission time setting value set by the user in the local Ethernet parameter(default value: 100)X10ms), the number of retransmissions(three times, twice the previous waiting time) and three transmissions.


 Retransmission time-out = retransmission time-out value(set in the Local Ethernet Parameter window) x 30ms
- 3) Too much Network loads can affect a scan time. So user should consider appropriate network loads for CPU scan time.

14.1.5 Local Ethernet Diagnosis Information Function


Motion controller provides local Ethernet diagnosis information function to monitor the status of local Ethernet.

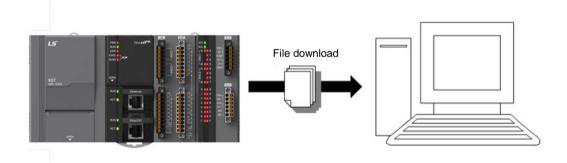
(2) Then, the current system is displayed as shown in the below figure. Put the mouse on the figure of the module and click the right mouse button.


(3) If you click the loca1I Etnernet diagnostic information among the menus that occur when clicking the right mouse button, the local Etnernet diagnostic information window will be created as shown below. Through the local Ethernet information window, you can monitor the Ethernet basic information, exclusive service information and detailed diagnostic information of clients connected to the exclusive information.

14.2 FTP Server Functions

14.2.1 Outline

Motion controller supports the Transfer Protocol (File Transfer Protocol) to download the data log file from a remote site through built-in Ethernet port. The File Transfer Protocol is TCP/IP based protocol to be designed for file transfer and you can manage files in a remote site by using the File Transfer Protocol. The File Transfer Protocol that is divided into the server and the client transmits or receives files.

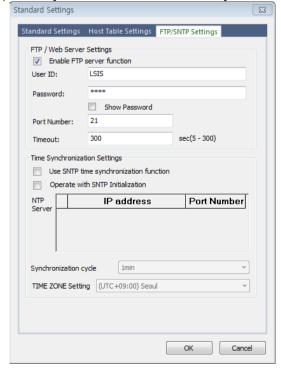


14.2.2 Support Functions

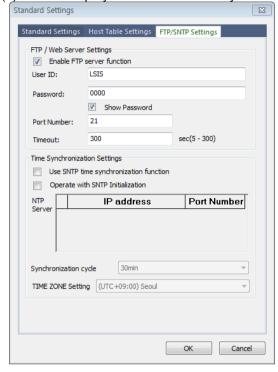
You can access to motion controller built-in FTP server through FTP client. After access, you can copy the data log file saved in the micro-SD card to the user's PC where FTP client is installed or other devices. However, in terms of the FTP function, only the download function is provided to prevent arbitrary modification or changes of data log files through FTP.

(1) Read File (File download)

It is the function to import and save files to the devices with FTP client or PC (Personal Computer) from motion controller's FTP server. The files are saved to the designated directory path of the devices with FTP client or PC.


14.2.3 Setting FTP Server Parameters

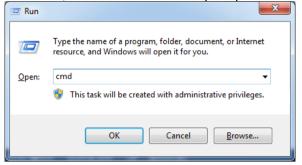
You need to set parameters through XG5000 to use the FTP server function.

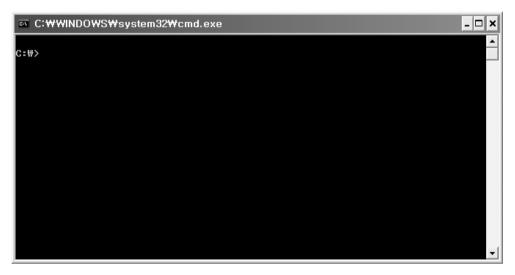

- (1) Input the "TCP/IP setting" parameters in the window for setting FEnet basic.
 - Input the IP address, subnet mask, gateway, DNS server address.
 - This address is commonly used for XGT server, Modbus TCP/IP server, SNTP service, FTP service.

(2) Check [Activate FTP server function] as shown below figure.

- (3) Enter the user ID and password to be used to access the FTP server.
 - You can change the user ID and password through XG5000 only.
- (4) Check 'Display Password' and verify whether the entered password is correct.

- (5) Enter the port number. (Default: 21)
- (6) Enter the timeout (Default: 20 sec)
 - The timeout is the time required to disconneted automatically, if you do not use after connecting to the FTP server.
- (7) If you press the OK button, setting the parameters to use FTP is completed.
- (8) When you execute [Online] → [Write Parameter], the parameters are written in the motion controller.

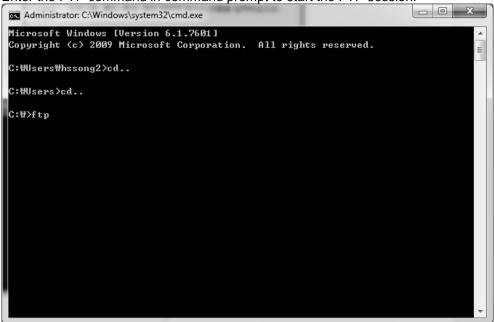

Note


- 1. Unless you set the user ID and password, basic ID and password will be set initially
 - Default setting ID: LSIS
 - Default password: 0000
- 2. Rules for applying the user ID and password
 - You can enter the user ID and password that are composed of alphabetical characters and numbers but special characters are not available.
 - They must be case-sensitive and must not exceed the maximum of 8 digits.

14.2.4 How to Access to the FTP Server

Just one user can access to the FTP server at a time so using Windows FTP client is recommended.

- (1) How to use WINDOWS command prompt
 - (a) First of all, execute the command prompt in Windows



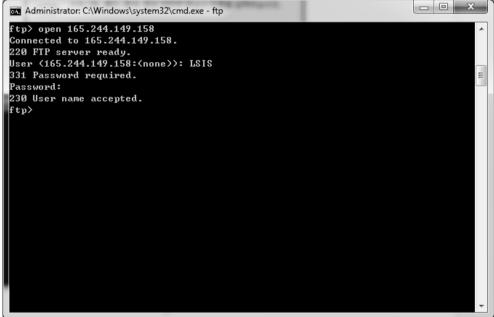
Note

- 1. The compatibility with other commercial client programs other than Windows FTP client is not
- 2. It is not support the multiple sessions, only one user can access at the same time.
- 3. To execute the command prompt window, enter 'cmd' to the window or press [Start] → [All Programs] → [Auxiliary Programs] → [Command Prompt]. For more details on execution of command prompt, refer to the Windows manual.

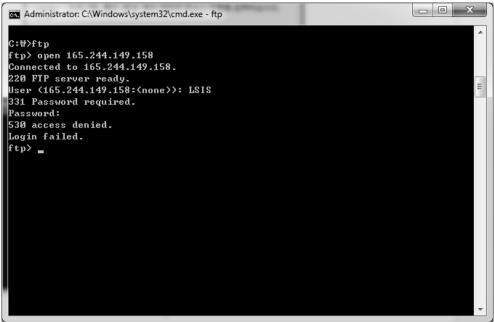
(b) Enter the FTP command in command prompt to start the FTP session.

(c) Enter the 'open [IP address]'to access to the FTP server

- You can enter the FTP [IP address] in the command prompt instead of using the open command.

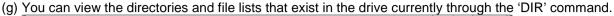

```
Administrator: C:\Windows\system32\cmd.exe - ftp
Microsoft Windows [Version 6.1.7601]
Copyright (c) 2009 Microsoft Corporation. All rights reserved.
C:₩Users₩hssong2>cd..
C:₩Users>cd..
C:₩>ftp
ftp> open 165.244.149.158_
```

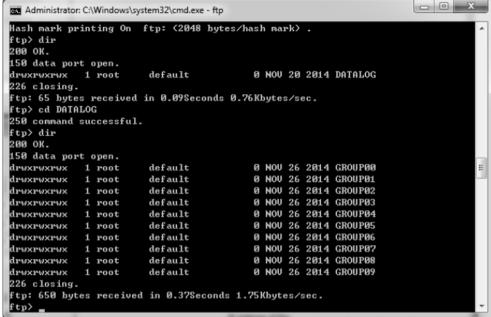
(d) Enter the user ID and password to access to the FTP server.


- It is normal that the password is not displayed on the screen.

```
- - X
Administrator: C:\Windows\system32\cmd.exe - ftp
Microsoft Windows [Version 6.1.7601]
Copyright (c) 2009 Microsoft Corporation. All rights reserved.
C:₩Users₩hssong2>cd..
C:₩Users>cd..
C:₩>ftp
ftp> open 165.244.149.158
Connected to 165.244.149.158.
220 FTP server ready.
User (165.244.149.158:(none)): LSIS
331 Password required.
Password:
```

(e) When login is completed successfully, the message will be displayed; "User name accepted."

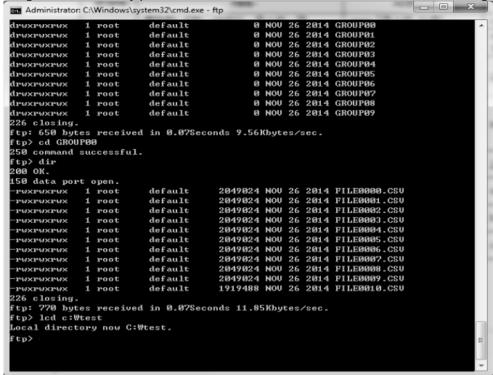

[Completion of FTP server access and login]

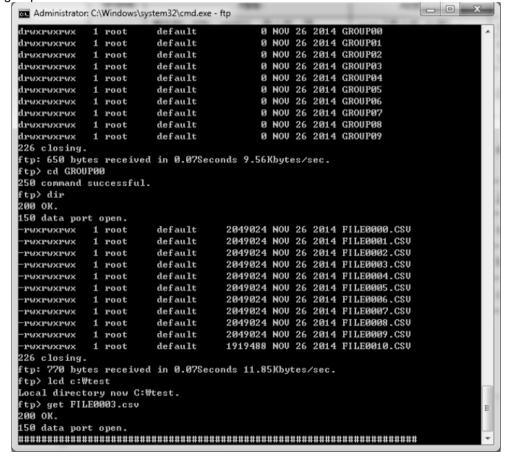


[Failure of FTP server login]

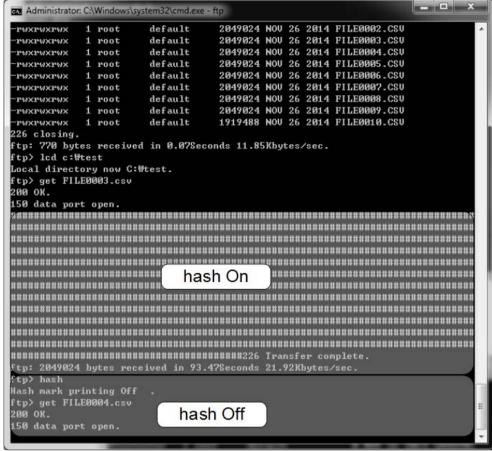
(f) In case you access to the FTP server through windows command prompts, you cannot see the progress status of file download. Accordingly, you can check the current progress of file download by activating the HASH function.

```
Administrator: C:\Windows\system32\cmd.exe - ftp
C:₩>ftp
C:\}ftp
ftp> open 165.244.149.158
Connected to 165.244.149.158.
220 FTP server ready.
User (165.244.149.158:(none)): LSIS
331 Password required.
Password:
530 access denied.
Login failed.
ftp> quit
221 Goodbye.
C:#>ftp
ftp> open 165.244.149.158
ftp> open 165.244.149.158
Connected to 165.244.149.158.
220 FTP server ready.
User (165.244.149.158:(none)): LSIS
331 Password required.
Password:
230 User name accepted.
ftp> hash
Hash mark printing On ftp: (2048 bytes/hash mark) .
ftp>
```




(h) You can go into the lower folder through the 'cd [Folder name]' command. If you execute the 'DIR' command again after going into the lower folder, only the files ahasnd folder lists that exist in the lower folder will be displayed.

```
_ D X
  Administrator: C:\Windows\system32\cmd.exe - ftp
the content of the co
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           2014 GROUP00
2014 GROUP01
2014 GROUP02
2014 GROUP03
2014 GROUP04
2014 GROUP06
2014 GROUP06
2014 GROUP08
2014 GROUP08
2014 GROUP08
2014 GROUP09
                                            NOW 26 201:
Xrwxrwx 1 root default 0 NOW 26 201:
closing.:
650 bytes received in 0.07Seconds 9.56Kbytes/sec.
cd GROUP00
command successful.
dir
OK.
data port open.
Xrwxrwx 1 root default 2049024 NOW 26 201:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                26
26
26
26
26
26
26
26
26
26
                                                                     losing.
770 bytes
                                                                                                                                                                                             received in 0.07Seconds 11.85Kbytes/sec.
```


(i) Designate the directory path of the FTP client side that will download the file through the 'lcd' command.

(j) Select the file to be imported through the 'get' command and download it. At this time, the file is located in the subgroup folder in DATALOG.

(2) FTP server command list

The windows FTP provides the below commands basically. You can check the further commands through '?' commands. There are also unserviceable functions to protect data log files so refer to the below list.

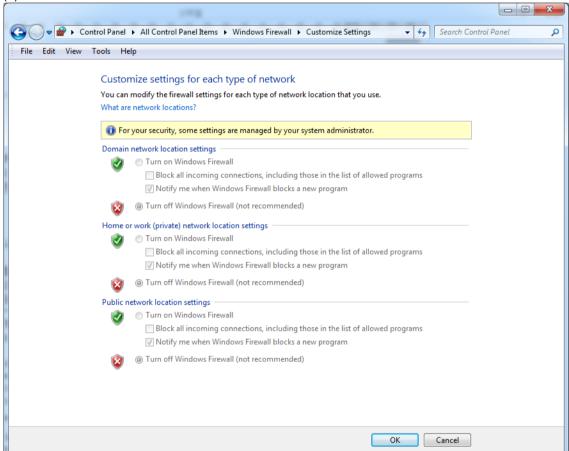
Commands	Operations	Commands	Operations
?	Displaying the available commands	trace	Setup/cancellation of packet trace
bye	Termination and end of the ftp session	type	Setting the file transfer type
cd	Changing remote working directory	user	Transmission of the new user information
close	Termination of the ftp session	verbose	Setup/cancellation of verbose mode
open	Connection to the remote ftp	quote	Sending random ftp commands
prompt	Executing interactive questions to multiple commands	recv	Receiving files
put	Sending one file (Not available)	dir	Enumerate the contents of remote directories
pwd	Printing the remote computer's working directory	disconnect	Termination of the ftp session
quit	Termination and end of the ftp session	get	Receiving files
lcd	Changing the local working directory	glob	Setup/cancellation of meta character extension of local file names
literal	Sending random ftp commands	hash	Setup/cancellation of '#' printing for the transmitted buffer
ls	Enumerate the contents of remote directories	help	Printing the local HELP information
status	Viewing the current status	cd	Move to the upper directory
rmdir	Remove the remote computer's directory (Not available)	mkdir	Make the remote computer's directory (Not available)
rename	Change file name (Not available)	delete	Delete the remote computer's file (Not available)
send	Send a file (Not available)		

(3) Command Usage

Commands	Description	Operations	Example
	Attempting to access to the server by	open [host name]	open LSISHOST
open	entering the specific FTP server's host name or IP.	open [IP address]	open 166.0.1.254
dir	Showing the whole files saved to the basic unit's SD card with the file information	dir [drive volume:\]	dir B:\
get	Reading the specific file from the basic unit's SD card	get [File path and file name to be read from the server]	get LSIS.CSV
ls	Showing only the names of files saved the SD card of the basic unit	Is [drive volume:\]	Is B:\
quit	Braking and disconnecting the FTP server and FTP session	quit	quit
bye	Braking and disconnecting the FTP server and FTP session	Bye	bye
cd	Moving to the upper directory from the current one.	cd	cd

Note

- 1. You need to distinguish ASCII from Binary command depending on the file extension. If you transmit the file with a wrong mode, the file will not work properly.
 - (a) File extension names using ASCII: html, htm, txt, cgi, pl, php, phtml, php3, sql, c, ph, py, etc.
 - (b) File extension names using Binary: gif, jpg, swf, png, exe, asf, wmv, zip, rar, gzip, tar, gz, etc.
- 2. If you download the network setting parameters when accessing to the FTP server, the current download will stop and serious errors may occur in the relevant file so you cannot open it in the PC. Accordingly, if possible, you are recommended to disconnect the FTP server when downloading the network setting parameters.

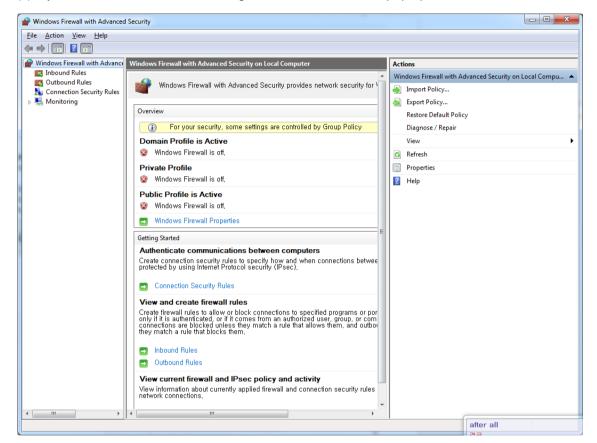

(4) FTP response code list

Response codes	Description
150	File status okay; about to open data connection
200	Command okay
202	Command not implemented, superfluous at this site
211	Type: ASCII, Structure: FILE, Mode: Stream
215	UNIX Type: L8 Version: Nucleus-ftpd
220	Nucleus FTP Server (Version 1.7) ready
221	Service closing control connection. Logged out if appropriate.
226	Closing data connection. Requested file action successful.
230	User logged in, proceed
250	Requested file action okay, completed.
331	User name okay, need password
500	Syntax error, command unrecognized.
502	Command not implemented. The server does not support this command.

14.2.5 Firewall Setting

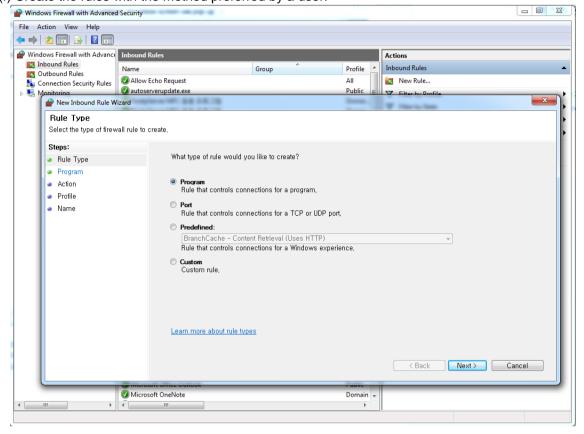
When you access to the FTP server through Windows command prompts, FTP access may not be smooth since the FTP access is applied. When you have bad access, cancel a firewall or apply exception handling. If the FTP access is not smooth, refer to the below.

- (1) Cancellation of a firewall Clear the window's own firewall.
 - (a) Execute the control panel.
 - (b) Execute the Windows Firewall.
 - (c) Execute setup or clear of the Windows Firewall.
 - (d) Clear all firewalls as below.


Note

If you clear the Windows Firewall, you may be exposed to various external intrusions so you are recommended to register the exceptional rules to a firewall.

(2) Registration of exceptional rules

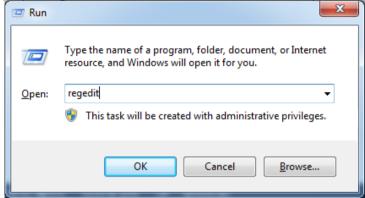

You can refer to the following procedures to register exceptional rules to a firewall.

- (a) Execute the control panel.
- (b) Execute the Windows Firewall.
- (c) If you execute the advanced settings, the below screen will pop up.

Chapter14 Local Ethernet Function

- (d) Choose the inbound rules.
- (e) Choose 'New Rules' at the top of the right side.
- (f) Create the rules with the method preferred by a user.

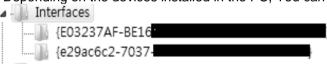
Note

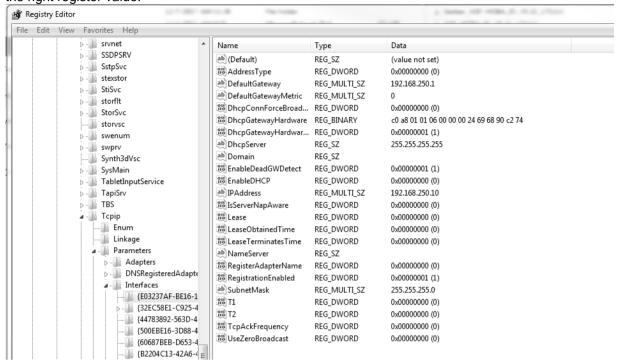

For registering exceptional rules, refer to the window manual.

14.2.6 Speed up of FTP

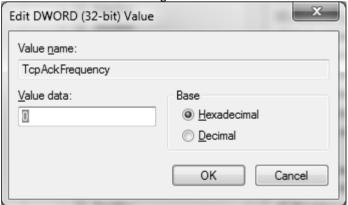
Motion controller's built-in FTP server is supposed to send one data packet per one scan to minimize the influence on the scan time. In this structure, if the response to the transmitted data packet is not received immediately, the next packet will not be sent until the response is obtained. However, windows is usually supposed to send the response after waiting until 2 packets are received or after 200ms, instead of responding all when receiving the data packet. Accordingly, you are recommended to set that ACK is sent whenever the TCP/IP of windows receives one packet through a register as below.

(1) Select the [Start] button of Windows for execution.(Shortcut key /Windows key + R)




(3) Check the below path.

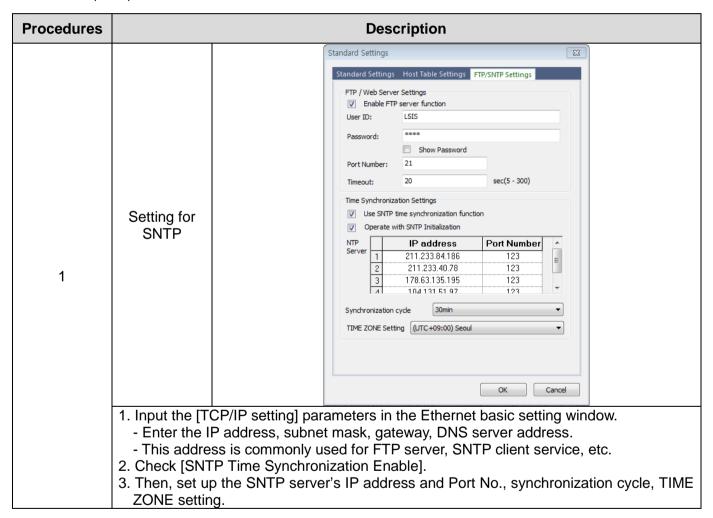
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\Tcpip\Parameters\Interfaces

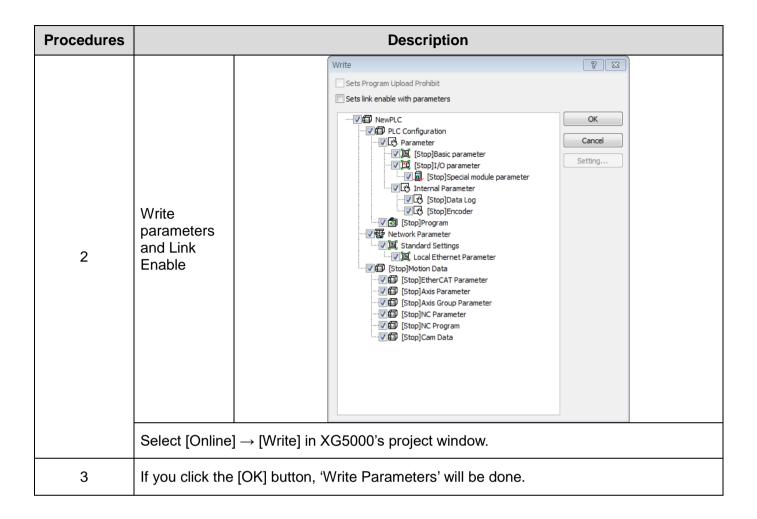

(4) Depending on the devices installed in the PC, You can see the folders are created

(5) If there are several register folders, select one by one and find the folder where the current PC's IP address is set in the right register value.

- (6) Click with the right mouse button on the right screen of the relevant folder and select New]→ [DWORD(32bit) value].
- (7) Enter the value name as shown below.
 - Value name: TcpAckFrequency (It should be case-sensitive.)
- (8) Double-click the created register and enter 1 to the value data.

(9) Reboot the computer.


14.3 SNTP Client Functions


14.3.1 Outline of the Time Synchronization Protocol

Motion controller supports the NTP(Network Time Protocol) that obtains the time information by accessing to the SNTP(Simple Network Time Protocol)server and synchronizes time. The NTP is the protocol to synchronize the time of the PLC connected to the network.

14.3.2 SNTP Parameter Setting

You can set up the parameters to use the SNTP server function as shown below.

Note

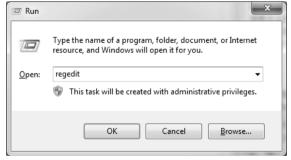
1. When parameter setting is done, the PLC reads periodically the time value from the SNTP server.

2. The SNTP server IP address is initially set as follows.

IP	Port				
211.233.84.186	123				
211.233.40.78	123				
178.63.135.195	123				
104.131.51.97	123				

Note

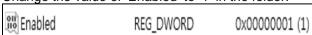
3. If you want to use other SNTP servers, change the IP address and port No. of the SNTP server before input. Below is an example of public NTP server and port.


Server address	IP	Port	Support
time.apple.com	17.253.6.243	123	Apple
time.asia.apple.com	17.83.253.7	123	Apple
time.euro.apple.com	17.72.148.52	123	Apple
ntp.kornet.net	168.126.3.6	123	KT(Korea)
time.kriss.re.kr	210.98.16.100	123	KRISS(Korea)
time.nuri.net	211.115.194.21	123	inethosting(Korea)
time.nist.gov	132.163.4.102	123	NIST(Korea)
time.windows.com	191.233.81.105	123	MS
1.kr.pool.ntp.org	211.233.40.78	123	Navyism(Korea)
1.asia.pool.ntp.org	125.62.193.121	123	Navyism(Korea)
2.asia.pool.ntp.org	82.200.209.236	123	Navyism(Korea)
3.asia.pool.ntp.org	218.189.210.4	123	Navyism(Korea)

⁽⁴⁾ If you cannot use a public NTP server, Please setup a local NTP server refer to '14.3.3 How to setup a local NTP server'.

14.3.3 How to Setup a Local NTP Server

If you cannot use a public NTP server, Please setup a local NTP server as follows:

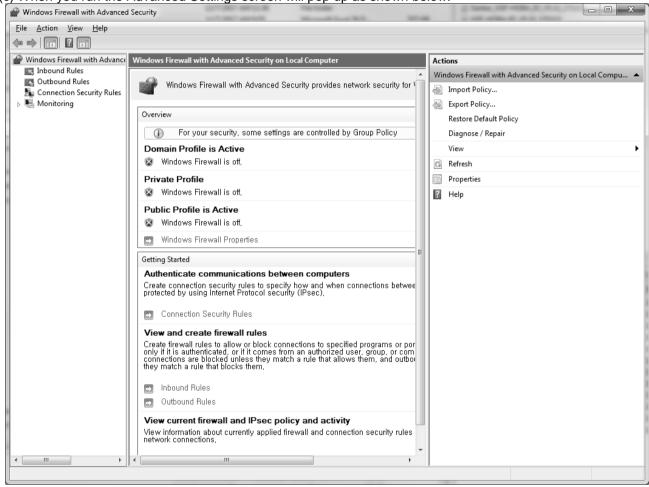

- (1) Select the [Start] button of Windows for execution.(Shortcut key /Windows key + R)
- (2) Input 'regedit' to the execution window and run the process.

(3) Check the below path.

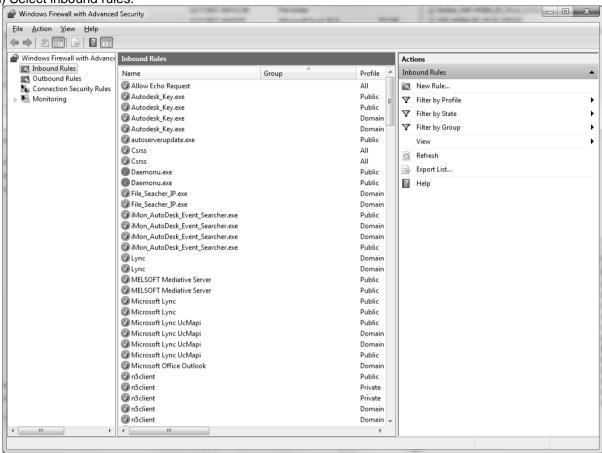
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W32Time\TimeProviders\NtpServer

(4) Change the value of 'Enabled' to '1' in the folder.

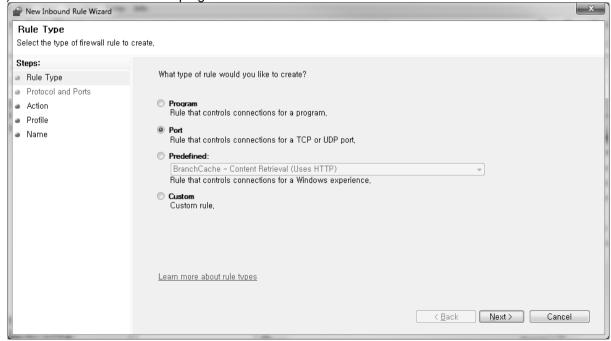
(5) Check the below path.


HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W32Time\Config

(6) Change the value of 'AnnounceFlags' to '5' in the folder.



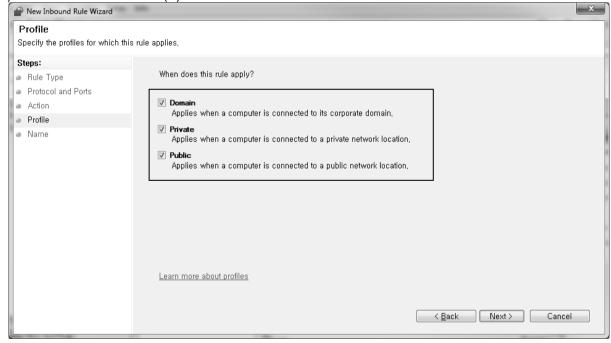
- (7) Reboot the computer.
- (8) Setup inbound firewall rules.
 - (a) Run the Control Panel.
 - (b) Run the Window Firewall

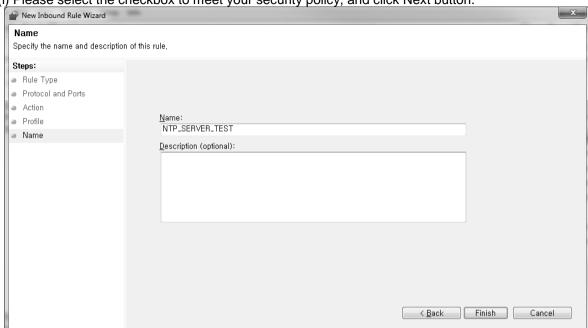

(c) When you run the Advanced Settings screen will pop up as shown below.

(d) Select inbound rules.



(e) Select the new rule in the top right.




(f) Select the port and click Next button.

(g) Select UDP(U) and Special local port(S). Input '123' and click Next button.

(h) Select Allow connections(A) and click Next button.

(i) Please select the checkbox to meet your security policy, and click Next button.

- (j) Input the server name(anything) and description and click Finish button.
- (k) Select the [Start] button of Windows for execution (Shortcut Key /Windowskey + R)
- (I) Enter 'CMD' and click Confirm.(Administrator)
- (m) In the command window, Input 'net stop w32time'and press Enter key. And then, also input 'net start w32time'and press Enter key.
- (n) Input 'ipconfig' and press Enter key in the command window to find out the IP address of NTP server.
- (o) Setting the parameters using IP address of NTP server.(refer to '14.3.2 SNTP server parameter setting')

Chapter 15 Built-in Cnet Communications

15.1 Overview

Cnet with built-in motion controllers is a serial communication device that supports RS-232C and RS-485 protocols and has the following characteristics.

15.1.1 Characteristics

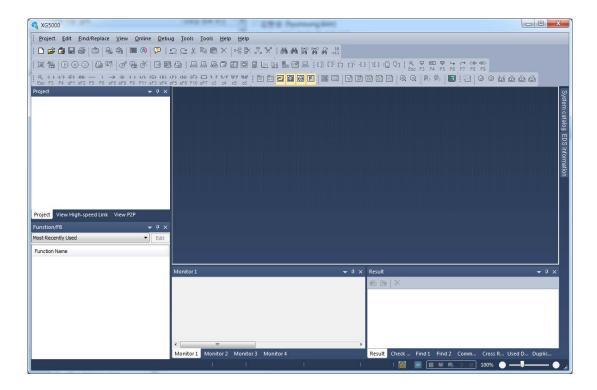
Cnet I/F is a serial communication device supporting RS-232C and RS-485 protocols and has the following characteristics.

- 1) It offers a user-friendly experience and is easy to connect with the products of other companies.
- 2) Using the XG5000 that operates in the Windows environment, a user can directly write communication speed and communication mode (protocol), and it seasy to connect with the products of other companies.
- 3) It provides the Cnetl/F of RS-232C 1 port/ RS-485.
- 4) Read/write variable is possible using a dedicated protocol.
- 5) It provides a dedicated communication function for multi-drop configuration that con connect up to 32 units when RS-485 is used.
- 6) Various communication speed settings are possible.
 - RS-232C: 1200bps ~ 115,200bps / RS-485: 1200bps ~ 115,200bps available
- 7) 1:1/1: N communication is possible.
- 8) It supports full-duplex (RS-232C) and half-duplex (RS-485) communication methods.
- 9) It provides dedicated communication (user defined communication and XGT client/server communication), and Modbus client/server functions.
- 10) It provides a client mode (LS bus) for communication dedicated for LS Industrial Systems Inverter.
- 11) Smart server automatically recognizes the protocol (LS ELECTRIC dedicated protocol, Modbus RTU/ASCII) and works.
- 12) It provides a repeater mode to convert RS-232C into RS-485 or uses it as an isolated repeater.
- 13) It has a built-in termination resistor, and thus termination can be set in the default parameter when the termination resistance is needed.

Notice

The serial communication function is supported only for communication type products. (XMC-E32C)

15.2 Confirm before product check.


To use the serial communication of the stand-alone motion controller, you need to prepare some things in advance. Please check below for the correct use of the product.

15.2.1 Advance Preparation

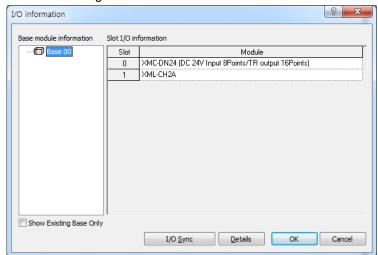
- (1) Please download the XG5000 from LS Industrial Systems website below. Internet web address: http://www.lselectric.co.kr/
- (2) Please download the XG5000 from LS Industrial Systems website below. The model name of the cable is as follows.
- □ USB: USB-301A, □ RS-232C: K1C-050A

15.2.2 Install the XG5000

XG5000 is dedicated software for setting of basic parameter, writing of frame and diagnosis of all communication module including the Cnet I/F module. The following figure is initial screen of XG5000.

15.2.3 Check the product version

Before using the Cnet module, check the version of module.


1) Check through XG5000

Here describes on how to read communication module information by online connection to communication module. If interface with CPU is normal, it is available to get the following information.

- (a) Execute the XG5000
- (b) Connect with XMC through online connection.
- (c) If connection with XMC is established, execute the system diagnosis.

Execute the Communication module information in the system diagnosis screen.

Software information shows at the right bottom of screen.

- (d) When click the XML-CH2A module for which you want to check the stand-alone motion controller product information, [Serial Communication Module Information] screen appears.
- (e) Check the product version at the bottom right of this screen..

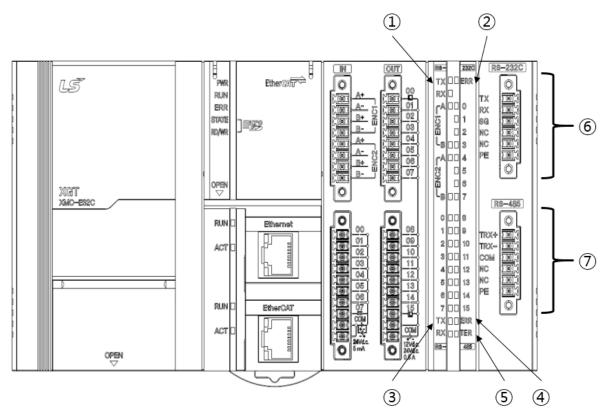
2) Check version written on the case label of the product

Each communication module has the product information label on the case. If online check is not possible, see the label on the case after removing it from base.

Label is in the back of the case and type name of product and version information is indicated.

15.3 Specifications

15.3.1 Performance Specifications


ltem			Specifi	cations	
	ıte	m	Channel 1	Channel 2	
Seria	Serial communication method		RS-232C RS-485		
Modem	conne	ection function	-	-	
Operation P2P mode(define operation for		P2P	Operates as a communication client - XGT dedicated protocol client - Modbus ASCII/RTU client - User defined communication - LS bus client Note 1)		
each cha	each channel) Server		- XGT dedicated protocol server - Modbus ASCII/RTU server		
Doto		Data bit	7 or 8		
Data		Stop bit	1 or 2		
type		Parity	Even/Odd/None		
Sync	hrono	us method	Asynchronous method		
Transn	nissior	speed(bps)	1,200/2,400/4,800/9,600/19,200/38,400/57,600/115,200 bps can be selected		
Station No. setting		o. setting	Setting range: 0~255 ^{Note 2)} Maximum number of stations: 32		
Trans	Transmission distance		Max. 15m Max. 1200m		
Diagnosis function		s function	 Check operation according to LED state XG5000 Diagnosis Service: Frame model PLC history. 		

Notice

Note 1) It means a dedicated protocol with LS Inverter.

Note 2) In the client/server configuration, up to 32 stations can be set, and the station number setting ranges from 0 to 255.

15.3.2 Names and Roles of Built-in Cnet Components

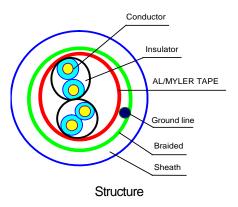
Num ber	Name	Contents
1	TX LED RX LED	RS-232C data LED ON/OFF: Transmitting/receiving communication data OFF: Standby for communication
2	ERR LED	RS-232C error LED ON/OFF: Communication error OFF: No communication error
3	TX LED RX LED	RS-485 data LED ON/OFF: Transmitting/receiving communication data OFF: Standby for communication
4	ERR LED	RS-485 error LED ON/OFF: Communication error OFF: No communication error
(5)	TER LED	Termination resistor LED ON: Termination resistor ON OFF: Termination resistor OFF
6	RS-232C communication connector	Connector for connecting RS-232C communication signals
7	RS-485 communication connector	Connector for connecting RS-485 communication signals

15.3.3 Cable Specifications

When communication is done using the RS-485 channel, a twisted pair cable for RS-422 should be used for excellent signal transmission and control characteristics.

The following shows the recommended cable specifications.

• Item name: Low-capacity LAN interface cable


• Model name: LIREV-AMESB

Specification: 2P X 22AWG (D/0.254 TA)
Manufacturer: LS Industrial Systems

	Test item	Unit	Characteristics	Test conditions
	Conductor resistance Ω/km 59		room temp.	
□lo otrio	Withstanding voltage(DC)	V/1min	Withstands for 1 min. at 500V	In air
Electric characteristics	Insulation resistance	MΩ-km	1,000	room temp
characteristics	Static electricity capacity	pF/M	45 or less	1kHz
	Characteristics	Ω	120 ± 12	10MHz
	impedance	22	120 ± 12	TOWINZ

	Item			Single Cable
	Conductor	Cores	Pair	2
Characteristics of		Size	AWG	22
Characteristics of		Composition	NO./mm	1/0.643
appearance.		Outer dia.	mm	0.643
		Thickness	mm	0.59
		Outer dia.	mm	1.94

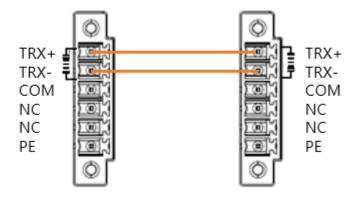
Standard of Twisted Pair Cable

15.3.4 Termination Resistor

When communication is done via the RS-485 channel with built-in motion controller, a termination resistor should be connected from the outside.

The termination resistor is used to prevent signal distortion due to the reflected wave of the cable when use for long distance communication, the resistance (120Ω ,1/2W) equal to the characteristic impedance value of the cable should be connected to the end of the network.

When using the recommended cable, connect the termination resistor to both ends of the line.


Even when using cables other than the recommended cable, connect a resistor with the same value as the characteristic impedance value to both ends of the line.

Recommended termination resistance: 1/2W, 120Ω, 5% error

1) Enabling fundamental parameter termination resistor

2) Disabling fundamental parameter termination resistor

[Termination reistor connection diagram in the RS-485 interface]

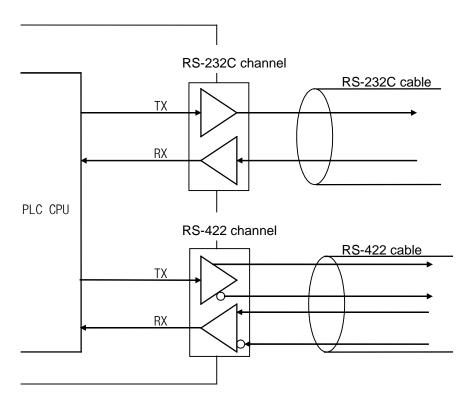
15.4 Perfomance Specifications

15.4.1 Operation Mode Setting

The operation mode of Cnet is decided by the standard setting parameters. It operates separately from each communication port with the operation modes available as described below.

1) Server Mode

Operates as a server in the network. XGT server and Modbus server are optional.


- (1) XGT server: dedicated communication protocol supported, memory Read, Write available.
- (2) Modbus server: Modbus protocol supported, RTU/ASCII type optional.
- (3) Setting necessary for conversion between Modbus protocol memory area and XGT memory area.
- (4) Smart server: Smart server automatically analyzes the protocol(XGT, Modbus ASCII/RTU) automatically and operates as analyzed server.

2) P2P (Client) Mode

- (1) Operates as a client in the network.
- (2) Support dedicated communication protocol, Modbus protocol and LS inverter dedicated communication (LS BUS client).
- (3) Up to 64 communication blocks can be specified for 1 Cnet module to define the independent operation.

15.4.2 Operation by Channel

Each communication port operates independently to allow simultaneous TX, RX in separate transmission specifications. Therefore, transmission specifications can be set per RS-232C and RS-485 channel, and the operation is started and stopped according to channels. Data flow of each channel is as below.

Notes

[Note 1] While in operation, mode change is not available. In order to change the mode, download the standard communication parameters and reset the communication module.

[Note 2] Although do not Reset the PLC separately, the changed mode will be applied when the download is completed.

15.4.3 Channel Operation in Repeater Mode

1) Repeater Mode

Repeater mode is a function that transmits data received from each channel to another channel.

- (1) Repeater mode of Cnet is not offers Auto Speed
- (2) Communication setting is equal to each channels and modern type is fixed to null modern.
- (3) While in operation, mode change is not available. If you want to change the mode, download the standard communication parameter and RESET the module.

15.4.4 Serial Connection Methods

1) Connection method when using built-in RS-232C

Three-wire system is used for connection, as shown below.

Cnet			Computer/communication device	
Pin number	Name	Pin number and signal direction	Name	
1	TX	—	TXD	
2	RX		RXD	
3	SG		SG	

2) Connection method when using built-in RS-485

Pin number	Name	Pin number and signal direction	External communication device
1	TRX+	←	485+
2	TRX-	←	485-
3	СОМ		COM

15.5 Installation and operation

15.5.1 Parameter information for communication mode

Communication functions available in Cnet with built-in motion controller can be classified into several types, as shown below.

1) Default setting parameters

This is the part that sets the media information, hardware information and basic protocol information of serial communication of Standalone Motion Controller

Paramet	Sub-	Cotting itom	Setting range	Possibility of	of settings	Notice
er	menu	Setting item	Setting range	Client	Server	Nouce
		Communication type	RS-232C RS-485	Possible	Possible	-
	Connec	Communication speed(bps)	1200 ~ 115,200	Possible	Possible	-
	tion settings	Termination resistance	Enabled/Disabled	Possible	Possible	
Default settings	Settii igs	Station number	XGT communication: 0~255 Modbus: 0~255	Possible	Possible	Station number is not significant when setting client
		P2P used		Possible	-	-
		XGT server	One made is	-	Possible	-
	Operati	Modbus ASCII server	One mode is	-	Possible	-
	on	Modbus RTU server	selectable	-	Possible	-
	mode	Smart server		ı	Possible	
	mode	Repeater mode	Enabled/Disabled	-	-	All services are stopped when repeater mode is set
	Connec	Data bit	7,8	Possible	Possible	In Modbus ASCII, the number of data bits is 7.
	Connec tion	Stop bit	1, 2	Possible	Possible	*Note 5)
	settings	Parity bit	NONE,ODD,EVEN	Possible	Possible	-
Advance d settings	seurigs	Parity reception error *Note 4)	Allowed/ Not allowed	Possible	Possible	-
		Modem type	Null modem	Possible	Possible	-
	Time	Response waiting time	0~50 (x 100ms)	Possible	-	*Note 1)
		Delay time	0~255 (x 10ms)	Possible	Possible	*Note 2)
	settings	Inter-character waiting time	0~255 (x 10ms)	Possible	Possible	*Note 3)

Notice

- 1) Response waiting time: It means the waiting time until the reception of response frame after the completion of frame transmission.
 - (1) Operation setting: It can e set when P2P is used in operation mode.
- (2) Response waiting time = Basic response waiting time + (response waiting time set value x 100ms) + intercharacter waiting time
 - (3) Basic response waiting time by communication speed
 - 1) 9,600~115,200bps: 100ms 2) 7,200~2,400bps: 200ms 3) 1,800~1,200bps: 400ms
- 2) Delay time setting: It means transmitting a frame after the delay time set by a user.
 - (1) Client operation setting: Client operation can be set when communication type is RS-485.
 - (2) Server operation setting: It is possible to transmit a frame after the delay time for the response of the server to be set.
- 3) Inter-character waiting time: It means the spacing between characters in one frame processed as one frame in case of a character that comes in the set time in one frame.
 - (1) Operation setting: It can be set regardless of operation mode.
- 4) Parity reception error: When [Accept] is selected, data can be received even if there is an error in the reception parity bit.
- 5) Stop bit: It means the end of a single packet and checks the stop bit set at the time of data transmission. If the stop bit of the received data is smaller than the set stop bit, data cannot be received normally. In order to receive data normally, the stop bit should be configured identically.
 - (1) When stop bit is set to 1, all frames can be received.
 - (2) Normal communication may not be possible in communication with equipment where stop bit is set to 2.
 - (3) When stop bit is set to 2, data of stop bit 1 cannot be received.
 - (4) The parameters should be set the same for normal communication.

2) P2P setting parameters

This is to set communication frames.

	Sub- menu	Setting item	Setting range and contents		Possibility of settings(client)				
Parameter				XGT	Modbus ASCII	Modbus RTU	Inverter Dedicated communic ation	User frame definition	
P2P	Communi	Base	0~7	Possible	Possible	Possible	Possible	Possible	
	cation module settings	Slot	0~11	Possible	Possible	Possible	Possible	Possible	
	P2P channel	P2P deriver	User frame definition	-	-	-	-	Possible	
			XGT client	Possible	1	-	-	-	
			Modbus ASCII Client	-	Possible	-	-	-	
			Modbus RTU Client	-	-	Possible	-	-	
			LS Bus client*Note 5)	-	1	-	Possible	-	
	P2P block	Channel	1, 2	Possible	Possible	Possible	Possible	Possible	
		P2P function	READ	Possible	Possible	Possible	Possible	-	
			WRITE	Possible	Possible	Possible	Possible	-	
			SEND	-	-	-	-	Possible	
			RECEIVE	-	-	-		Possible	
		Start condition*Note 1)		Possible	Possible	Possible	Possible	Possible	
		Method	Individual	Possible	Possible	Possible	-	-	
			Continuous	Possible	Possible	Possible	Possible	-	
		Data type	Bit	Possible	Possible	Possible	-	-	
			Word	Possible	Possible	Possible	Possible	-	
			1 bye	Possible	-	-	-	-	
			2 bytes	Possible	-	-	-	-	
			4 bytes	Possible	-	-	-	-	
			8 bytes	Possible	-	-	-	-	
		Number of variables*Note 2)		Possible	Possible	Possible	-	-	
		Data size*Note 2)		Possible	Possible	Possible	Possible	-	
		Partner station number		Possible	Possible	Possible	Possible	-	
		Frame		-	•	-	-	Possible	
		Settings*Note 3)		Possible	Possible	Possible	Possible	Possible	
	User frame definition	Add group	Group name	-	-	-	-		
			Frame type Transmission	า -	-	-	-	Possible	
			Reception	-	-	-	-	Possible	
	Frame*No.te 4	Edit group	Group name	-	-	-	-	Possible	
		Delete group	115.5	-	-	-	-	Possible	
		Add frame	HEAD	-	-	-	-	Possible	
			TAIL	-	-	-	-	Possible	
			BODY	-	-	_	_	Possible	

Notice

- 1) Start condition in user-defined frame communication is selectable only when the P2P function is SEND.
- 2) The number of variables and data size can be set only in the case of continuous mode in XGT client and Modbus ASCII/RTU client.
- 3) Settings in user-defined frame communication can be established only when the fixed size parameter or variable size parameter is selected.
- 4) Frame settings can be entered after the frame type and group name of the user frame definition are set.
- 5) LS Bus client is a function provided by the B type Cnet I/F module.

15.5.2 Device Information

1) Default settings

Commu nication type	Communica tion speed	Data bit	Stop bit	Parity bit	Modem type	Statio n numb er	Response waiting time	Delay time	Inter- character waiting time
RS- 232C	1200 ~115,200	7~8	1~2	NONE~ ODD	Null modem	0~255	0~50	0~255	0~255
RS-485	1200 ~115,200	7~8	1~2	NONE~ ODD	Null modem	0~255	0~50	0~255	0~255

2) Modbus settings

Modbus settings	,			
Channel	Modbus	Sottings	Item	XMC-E32Cdefault
Charlie	Used/unused	Settings	item	AIVIC-E32CUEIAUIL
	P2P used	Disable	-	-
	XGT server	Disable	-	-
			Bit Read Area Start Address:	%IX0.0.0
	Modbus	Enable	Bit write Area start Address:	%QX0.0.0
Channel 1	ASCII server	Enable	Word Read Area Start Address:	%MW0
Charlier			Word Write Area Start Address:	%MW100
			Bit Read Area Start Address:	%IX0.0.0
	Modbus RTU server	Fnoble	Bit Write Area Start Address:	%QX0.0.0
		Enable	Word Read Area Start Address:	%MW0
			Word Write Area Start Address:	%MW100
	P2P used Disable		-	-
	XGT server	Disable	-	-
			Bit Read Area Start Address:	%IX0.0.0
	Modbus	Enable	Bit Write Area Start Address:	%QX0.0.0
Channel 2	ASCII server	Enable	Word Read Area Start Address:	%MW0
Criai il lei Z			Word Write Area Start Address:	%MW100
			Bit Read Address Start Address:	%IX0.0.0
	Modbus	Enable	Bit Write Area Start Address:	%QX0.0.0
	RTU server	Ellanie	Word Read Area Start Address:	%MW0
			Word Write Area Start Address:	%MW100

3) P2P channel settings

Operation mode	P2P deriver	TCP/UDP	Client/ Server	Partner station port	Destination port IP address
XGT server	-	-	-	=	-
	XGT client	-	-	-	-
	User frame definition	-	-	-	-
P2P used	LS Bus client (CH2: RS-485)	-	-	-	-
	Modbus ASCII client				
	Modbus RTU client	-	-	-	-

4) P2P block settings

(4)	FZF DIOC	it ootai ig	, -					_														
Opera tion mode	P2P server	P2P function	Condition flag	Command type	Data type	Number of variables	Data size	Partner station numbe r	Read area	Storage area	Address											
XGT server	-	-	-	-	-	-	-	-	-	-	-											
				Individual	BIT	1~4																
		Read		Individual	B/W/D/L	1~4	Disable (blank)															
	XGT							Continuous	B/W/D/L (XGI)	Disable (1)	1 ~ 120		XGT									
	client			Individual	BIT	1~4	Diochlo		device													
		Write		Individual	B/W/D/L (XGI)	1~4	Disable (blank)			XGT												
				Continuous	B/W/D/L (XGI)		1 ~ 120			device												
				Individual	BIT		Disable		00000 ~ 19999													
		Read Modbus ASCII client			Individual	WORD		(blank)		30000 ~ 49999]											
	Modbus					Reau	Reau	Reau	Reau	Neau	Reau	Neau	Nodu	Reau		Continuous	BIT		1 ~ 976		00000 ~ 19999	
			VOT	Continuous	WORD		1 ~ 61		30000 ~ 49999													
		XGT device							Individual	BIT		Disable			00000 ~ 09999							
			device	Individual	WORD	Disable(1)	(blank)	0~63	XGT device	40000 ~ 49999	NI deside a											
P2P		vviile		Continuous	BIT		1~944			00000 ~ 09999	N device calculation											
used				Continuous	WORD	Disable(1)	1~59			40000 ~ 49999	method											
				Individual	BIT		Disable]	00000 ~ 19999												
		Read		Individual	WORD		(blank)		30000 ~ 49999	XGT												
	Modbus	rtoad		Continuous	BIT		1 ~ 2000		00000 ~ 19999	device												
	RTU client			Continuous	WORD		1 ~ 125		30000 ~ 49999													
				Individual	BIT		Disable			00000 ~ 09999												
		Write		Individual	WORD		(blank)		XGT	40000 ~ 49999												
	vvnte	VVIIIO		Continuous	BIT		1~1968		device	00000 ~ 09999												
				Continuous	WORD		1~123			40000 ~ 49999												
	User frame	SEND		Transmitting body	-	-	1 ~ 1024		XGT device variable size parameter	-												
	definition	RECEIV E	-	Receiving body	-	-	-		-	Memory specification												
	LS Bus	Read	XGT	·	WORD	1	1 0	0.255	Inverter address value	XGT device												
	client	Write	device	Continuous	WURD	1	1~8	0~255	XGT device	Inverter address value												

1) User definition frame

Group	Frame	Segment	Remarks
	HEAD	Numerical constant	Max. 10Byte 12345678901234567890
	ПЕАО	String constant	1234567890 (Internally registered as 313230)
		Numerical constant	Max. 10Byte 12345678901234567890
Transmission 1	TAIL	String constant	1234567890 (Internally registered as 313230)
		BCC	-
		Numerical constant	Max. 10Byte 12345678901234567890
	BODY	String constant	1234567890 (Internally registered as 313230)
		Variable size parameter	Up to 4 available
	LIEAD	Numerical constant	Max. 10Byte 12345678901234567890
	HEAD	String constant	1234567890 (Internally registered as 313230)
		Numerical constant	Max. 10Byte 1234567890
	TAIL	String constant	1234567890 (Internally registered as 313230)
Reception 1		BCC	-
		Numerical constant	Max. 10Byte 12345678901234567890
	BODY	String constant	1234567890 (Internally registered as 313230)
		Fixed size parameter	Up to 4 available
		Variable size parameter	Only one variable size parameter can be set. Therefore, segment cannot be added to the variable size parameter.
No restrictions or segments, except f		er of groups, frames and 00)	

15.5.3 Device Area Information

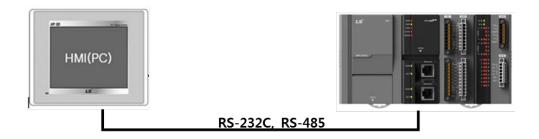
Area	Range	Size(Word)	Remarks	
М	MW0 – MW1048575	1048576	Read/Write/Monitor available	
K	KW0 - KW9215	9216	Read/Monitor available	
F	FW0-FW65535	65536	Read/Monitor available	
L	LW0 – LW11263	11264	Read/Write/Monitor available	
U	UW0.0.0- UW0.15.31	512	Read/Write/Monitor available	
I	IW0.0.0 –IW127.15.3	8192	Read/Write/Monitor available	
Q	QW0.0.0- QW127.15.3	8192	Read/Write/Monitor available	

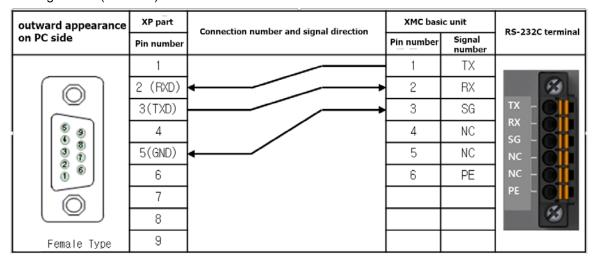
15.6 Cnet Communication System Configuration

If you use Cnet of motion controller, you can configure various types of communication networks by connecting with PLC and PC of its company and other companies. Below are some examples of network system configurations.

1:1 Connection to PC (HMI) (No Modem)

- (1) The basic units of PC (HMI) and motion controller are connected by RS-232C or RS-485 channel, and PC (HMI) and PLC are connected 1:1 without model in this system.
- (2) Most HMI(PC) operate as client stations, and XMC basic units act as server stations which respond to requests from HMI(PC).
- (3) Since there is no model, communication distance is up to 15m when it is through RS-232C channel and up to 1500m when it is through RS-485.

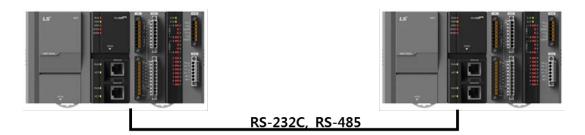

1) 1:1 connection with general-purpose PC


Wiring method

outward appearance	PC Part	Connection number and signal direction	XMC ba	asic unit	RS-232C terminal
on PC side	Pin number		Pin number	Signal name	
	1		1	TX	
	2 (RXD)	$\longleftarrow / \longrightarrow$	2	RX	3
	3(TXD)		3	SG	TX - III
5 9	4		4	NC	RX - III
0 0	5(GND)		5	NC	NC -
0 6	6		6	PE	NC -
	7				PE -
	8				3
Female Type	9				

2) 1:1 connection with monitoring devices such as XGT Panel

• Wiring method (RS-232C)

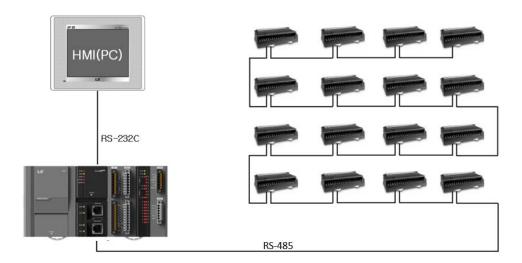


Note) In the case of PMU, 4 and 6, and 7 and 8 should be short-circuited for use.

• Wiring method (RS-485)

PMU side	Connection number and signal direction	XMC RS-485 terminal
485+	-	TRX+
485-		TRX-

3) 1:1 Connection to XMC Basic Unit


• Wiring method

RS-232C terminal	XMC basic unit Pin number Signal number		Connection number and	XMC bas	sic unit	DC 222C to musicus I
RS-232C terminal			signal direction	Pin number	Signal number	RS-232C terminal
	1	TX		1	TX	
3	2	RX	***	2	RX	89
TX - III	3	SG		3	SG	TX - RX -
SG -	4	NC		4	NC	SG - C
NC -	5	NC		5	NC	NC -
NC -	6	PE		6	PE	NC -
PE -						PE - OII
						23

RS-232C	nection	number (Connection number and	XMC ba	asic unit	RS-232C
terminal	Pin number	Signal number	signal direction	Pin number	Signal number	terminal
	1	TRX+		1	TRX+	
⊗ L	2	TRX-	←	2	TRX-	8
TRX+-	3	COM		3	COM	TRX+-
TRX COM -	4	NC		4	NC	TRX COM - COM -
NC -	5	NC		5	NC	NC -
NC -	6	PE		6	PE	NC -
PE - O						PE -
(X)						

4) HMI (PC), Dedicated Communication and RS-485 Communication

- Communication using HMI (PC) and RS-232C channel
- HMI (PC) operates as a client station, and Cnet I/F acts as a server station, when the module settings operate with RS-232C XGT server.
- RS-485 channel operates in P2P mode.
- GSL-TR4A(32 points of Smart I/O transistor output for Modbus) data transmission via RS-485 channel
- Reading data transmitted to GSL-TR4A in HMI (PC)

Tyroo		Module settings						
Туре	RS-232C	RS-485	Station number					
PLC Cnet #1 station	XGT server	P2P	1					

15.7 Communication parameter

15.7.1 **Summary**

Communication parameters can be divided into basic setting parameters and P2P setting parameters as shown below.

1) Default setting parameters

This is the part that sets the media information, hardware information and basic protocol information of serial communication of Standalone Motion Controller

Paramet	Sub-	Cotting item	Cotting range	Possibility (of settings	Notice
er	menu	Setting item	Setting range	Client	Server	Notice
		Communication type	RS-232C RS-485	Possible	Possible	-
	Connec	Communication speed(bps)	1200 ~ 115,200	Possible	Possible	-
	tion settings	Termination resistance	Enabled/Disabled	Possible	Possible	
Default settings	Settii igs	Station number	XGT communication: 0~255 Modbus: 0~255	Possible	Possible	Station number is not significant when setting client
		P2P used		Possible	-	-
		XGT server	One mode is	-	Possible	-
	Onereti	Modbus ASCII server	selectable	-	Possible	-
	Operati on	Modbus RTU server	Selectable	-	Possible	-
	mode	Smart server		-	Possible	
	mode	Repeater mode	Enabled/Disabled	-	-	All services are stopped when repeater mode is set
	0	Data bit	7,8	Possible	Possible	In Modbus ASCII, the number of data bits is 7.
	Connec tion	Stop bit	1, 2	Possible	Possible	*Note 5)
	settings	Parity bit	NONE,ODD,EVEN	Possible	Possible	-
Advance	Settings	Parity reception error *Note 4)	Allowed/ Not allowed	Possible	Possible	-
d settings		Modem type	Null modem	Possible	Possible	-
	Time	Response waiting time	0~50 (x 100ms)	Possible	-	*Note 1)
	settings	Delay time	0~255 (x 10ms)	Possible	Possible	*Note 2)
	seuriys	Inter-character waiting time	0~255 (x 10ms)	Possible	Possible	*Note 3)

- 1) Response waiting time: It means the waiting time until the reception of response frame after the completion of frame transmission.
 - (1) Operation setting: It can e set when P2P is used in operation mode.
- (2) Response waiting time = Basic response waiting time + (response waiting time set value x 100ms) + intercharacter waiting time
 - (3) Basic response waiting time by communication speed
 - 1) 9,600~115,200bps: 100ms 2) 7,200~2,400bps: 200ms 3) 1,800~1,200bps: 400ms
- 2) Delay time setting: It means transmitting a frame after the delay time set by a user.
 - (1) Client operation setting: Client operation can be set when communication type is RS-485.
 - (2) Server operation setting: It is possible to transmit a frame after the delay time for the response of the server to be set.
- 3) Inter-character waiting time: It means the spacing between characters in one frame processed as one frame in case of a character that comes in the set time in one frame.
 - (1) Operation setting: It can be set regardless of operation mode.
- 4) Parity reception error: When [Accept] is selected, data can be received even if there is an error in the reception parity bit.
- 5) Stop bit: It means the end of a single packet and checks the stop bit set at the time of data transmission. If the stop bit of the received data is smaller than the set stop bit, data cannot be received normally. In order to receive data normally, the stop bit should be configured identically.
 - (1) When stop bit is set to 1, all frames can be received.
 - (2) Normal communication may not be possible in communication with equipment where stop bit is set to 2.
 - (3) When stop bit is set to 2, data of stop bit 1 cannot be received.
 - (4) The parameters should be set the same for normal communication.
- (1) P2P service
 - (a) This service allows the Cnet I/F module to act as a client on the network.
 - (b) It can read or write the memory of the other station when a predetermined event occurs.
 - (it can operate as XGT client or Modbus client.)
 - (c) This is used in communication with the equipment of other companies that does not support XGT or Modbus protocol or in transmission/reception of a frame desired by a user.
 - (d) It can define up to 64 independent P2P blocks per channel.
- (2) Dedicated service(XGT server, Modbus ASCII server, Modbus RTU server)
 - (a) This service allows PC and peripheral devices to read and write information and data without the creation of a separate program in the PLC.
 - (b) It can operate as XGT server that support the XGT protocol and Modbus server that supports the Modbus RTU/ASCII protocol.

2) P2P setting parameters

This is to set communication frames.

	ils is to set communicatio			Possibility of settings(client)				
Parameter	Sub- menu	Setting item	Setting range and contents	XGT	Modbus ASCII	Modbus RTU	Inverter Dedicated communic ation	User frame definition
	Communi	Base	0~7	Possible	Possible	Possible	Possible	Possible
	cation module settings	Slot	0~11	Possible	Possible	Possible	Possible	Possible
	J		User frame definition	-	-	-	-	Possible
			XGT client	Possible	-	-	-	-
	P2P channel	P2P deriver	Modbus ASCII Client	-	Possible	-	-	-
	CHAITIE		Modbus RTU Client	-	-	Possible	-	-
			LS Bus client*Note 5)	-	-	-	Possible	-
		Channel	1, 2	Possible	Possible	Possible	Possible	Possible
			READ	Possible	Possible	Possible	Possible	-
		P2P function	WRITE	Possible	Possible	Possible	Possible	-
		1 21 1011011011	SEND	-	-	-	-	Possible
			RECEIVE	-	-	-		Possible
	P2P block	Start condition*Note 1)		Possible	Possible	Possible	Possible	Possible
		Method	Individual	Possible	Possible	Possible	-	-
			Continuous	Possible	Possible	Possible	Possible	-
P2P		ck Data type	Bit	Possible	Possible	Possible	-	-
1 - 2.			Word	Possible	Possible	Possible	Possible	-
			1 bye	Possible	-	-	-	-
			2 bytes	Possible	-	-	-	-
			4 bytes	Possible	-	-	-	-
			8 bytes	Possible	-	-	-	-
		Number of variables*Note 2)		Possible	Possible	Possible	-	-
		Data size*Note 2)		Possible	Possible	Possible	Possible	-
		Partner station number		Possible	Possible	Possible	Possible	-
		Frame		-	-	-	-	Possible
		Settings*Note 3)		Possible	Possible	Possible	Possible	Possible
	User		Group name	-	-	-	-	
	frame	Add group	Frame type Transmission	-	-	-	-	Possible
	definition		Reception	-	-	-	-	Possible
		Edit group	Group name	-	-	-	-	Possible
	Frame*No	Delete group	LIEAD	-	-	-	-	Possible
	te 4	Add frame	HEAD	-	-	-	-	Possible
			TAIL	-	-	-	-	Possible
			BODY	-	-		-	Possible

Notice

- 1) Start condition in user-defined frame communication is selectable only when the P2P function is SEND.
- 2) The number of variables and data size can be set only in the case of continuous mode in XGT client and Modbus ASCII/RTU client.
- 3) Settings in user-defined frame communication can be established only when the fixed size parameter or variable size parameter is selected.
- 4) Frame settings can be entered after the frame type and group name of the user frame definition are set.
- 5) LS Bus client is a function provided by the B type Cnet I/F module.

3) Transmission Standard

In order to use the Cnet I/F module, set the transmission standard like baud rate, data/stop bit. The basic setting item of Cnet I/F module should be same with transmission standard of system. The written basic setting values are saved in the XMC, those are kept regardless of power off until rewriting the values.

(1) Communication type

Check the Cnet I/F module and set the parameter about each channel accurately. If communication type set by parameter is different with channel type of mounted communication module, normal communication is impossible because CPU recognizes the channel type of mounted communication module.

(2) Parity bit

The Cnet I/F module defines three parity bit. Each parity bit has the following meaning like

Parity	Meaning	Reference
None	Not use parity bit	
Even	If the number of 1 is even in the one byte, it sends 0 at the parity bit.	
Odd	If the number of 1 is odd in the one byte, it sends 0 at the parity bit.	

(3) Operation mode

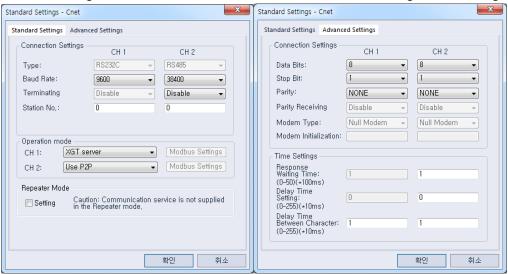
Each channel of Cnet I/F module operates as server or client, each channel operates independently.

Driver type	Meaning	Reference	
P2P	Relevant port acts as client and it communicates by P2P parameter setting.	Refer to P2P setting	
XGT server	Support the XGT dedicated communication and act as XGT server.		
Modbus ASCII server	Act as Modbus ASCII server	For dedicated	
Modus RTU server	Act as Modbus RTU server	service	
Smart server	After analyzes the protocol automatically, act as XGT/Modbus ASCII/Modbus RTU server		

If operation mode of Cnet channel is XGT server or Modbus, it supports the loader service with the dedicated service

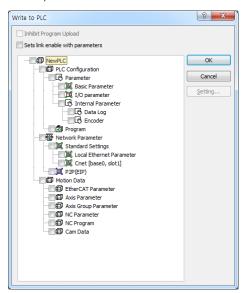
a) XGT Server

Support reading/writing memory of the dedicated service

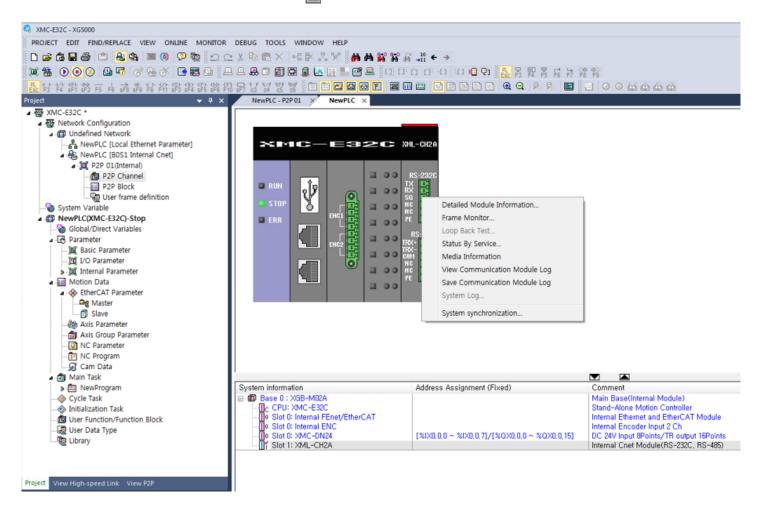

b) Modbus ASCII/RTU Server

- 1) This is used when network is configured with modbus protocol and Cnet I/F module acts as server.
- 2) Since modbus memory area is different with XGT memory area, memory mapping is necessary.

15.7.2 Downloading Parameters


To operate XMC-Cnet according to user-defined communication specification and mode, you should follow procedures below.

- 1) Communication setting contents
 - Channel 1:RS-232C, 9600Bps, 8/1/NONE, XGT server, station 1
 - Channel2: RS-485, 38400Bps, 8/1/ODD, P2P, station 2, response waiting time100ms Inter-character waiting time 0ms, XGT server
- 2) After Cnet module is registered, double click the Cnet module and the following default setting window appears.


3) Download the parameter

Select [Online -> Connection -> Write] menu and [Confirm the Parameter Download Window] to perform download. After the download is complete, the parameters are applied immediately after the download is complete. At this time, if [Link Enable Setting Together] is checked, Link Enable is also set.

4) Check the operation

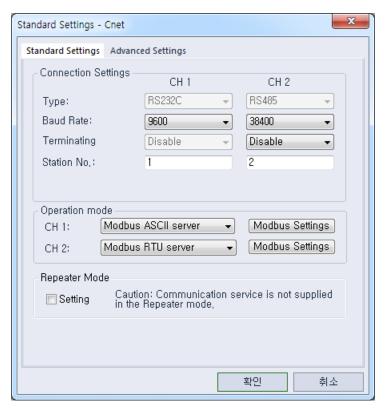
The status check and diagnostic method of the system and network through system diagnostics of XG5000 are as follows. Connect XG5000 to the basic unit and select "Online \rightarrow Communication Module Setting \rightarrow System Diagnostics" in the menu, or click the system diagnostics icon (\bowtie) and the following window appears.

15.7.3 Server Function and P2P Service

Server function is a built-in function in the built-in Cnet and enables PC and peripheral devices to read and write information and data in PLC without creating separate program in PLC.

It operates as a server in the communication network and responds when memory read and write requests that follow the XGT dedicated protocol or Modbus protocol are received from the external device or PC.

1) Server function

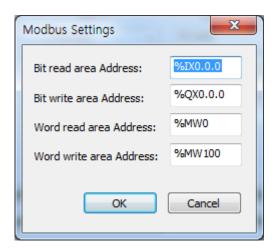

(1) XGT dedicated server

It is used in inter-company communication as its company-dedicated protocol service, and the characters used in all frames are composed of ASCII codes. When used in multi-drop mode, up to 32 stations can be connected for use. Make sure not to set duplicate station number on the same network, and the communication speed/stop bit/parity bit/data bit of all Cnet I/F modules on the network should be the same when used as multi-drop. Please refer to "15.6 XGT dedicated protocol" for details on the protocol.

(2) Modbus server

It is used when the target device for communication operates as a Modbus client.

It supports both RTU mode and ASCII mode of Modbus and can be defined in the default setting window operation mode.



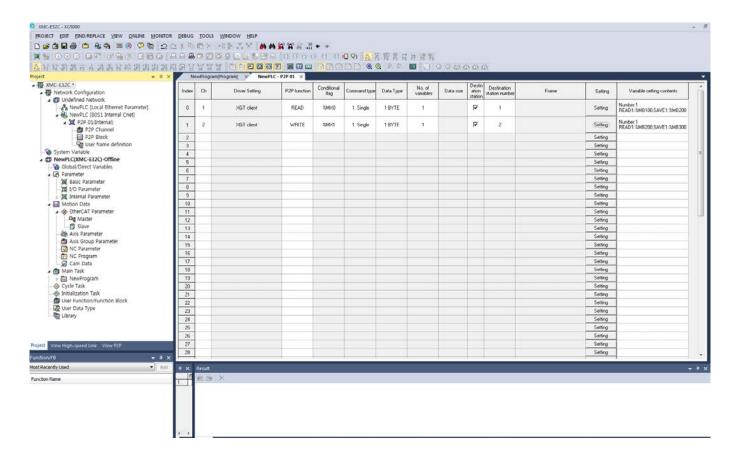
The maximum number of Modbus commands and response data supported by the Modbus RTU/ASCII driver is shown in the following table. The other client device should make requests only within the scope of the table below.

Code	Use	Address	Maximum number of response data
01	Read Coil Status	0XXXX	2000 Coils
02	Read Input Status	1XXXX	2000 Coils
03	Read Holding Registers	4XXXX	125 Registers
04	Read Input Registers	3XXXX	125 Registers
05	Force Single Coil	0XXXX	1 Coil
06	Preset Single Register	4XXXX	1 Register
15	Force Multiple Coils	0XXXX	1968 Coils
16	Preset Multiple Registers	4XXXX	120 Registers

[Modbus command code]

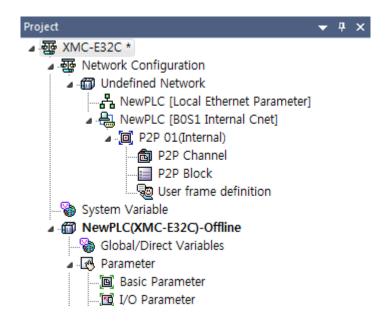
The area corresponding to the command code in the above table must be set in the Stand-alone Motion controller serial communication module memory. The [Modbus Settings] button becomes active when the Modbus ASCII server or Modbus RTU server is selected as the operation mode in the [Preferences] window. If you click on it, the [Modbus Settings] window will appear as shown below, and you can set the start address here.

[Modbus server memory setting]


Details of respective setting item are as follows

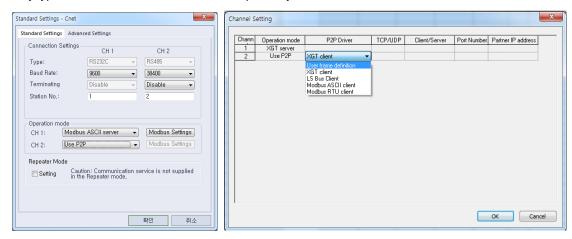
Item	Description	Remarks
Bit read area address	XGT address applicable to Bit input area	Bit address
Bit write area address	XGT address applicable to Bit output area	Bit address
Word read area address	XGT address applicable to Word input area	Word address
Word write area address	XGT address applicable to Word output area	Word address

[Details of Modbus Area]


1) P2P Service

P2P service performs the client operation of the communication module, and there are four commands available in Cnet: Read/Write/Send/Receive. The registration and editing of P2P service are done in XG5000, and each P2P parameters consist of up to 64 P2P blocks. The following figure shows an example of the P2P parameter setting window of XG5000.

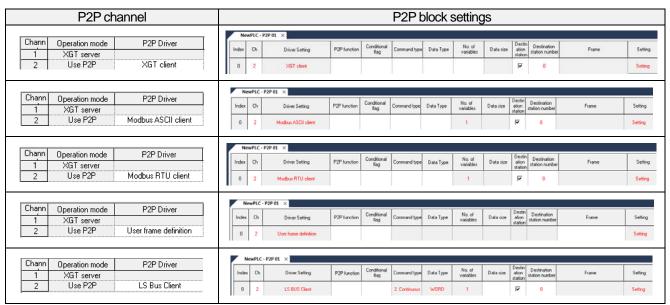
(1) P2P parameter configuration


In order to use P2P service, a user should perform settings for desired operation in P2P parameter window. The P2P parameter consists of three pieces of information as shown below.

Division	Contents		
P2P channel	 Set P2P channel to define the communication protocol of P2P service to perform XGT/Modbus available It is possible to set independently for each channel. It is applied only when the operation mode of the default settings is "Use P2P". 		
P2P block	Set 64 P2P blocks that operate independently		
User-defined frame registration	Set frame for user-defined communication		

(2) Channel settings

Built-in Cnet I/F function is fixed to P2P No. 1 and provides two fixed communication channels. In the built-in Cnet I/F, dry type for P2P service can be defined respectively.

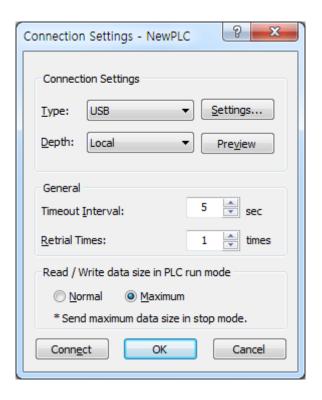

The following drivers can be selected when 'Enable P2P' is selected in the operation mode.

Driver	Meaning		
None	P2P service is not used		
User frame definition	Used when it sends/receives the desired user-defined frame		
XGT client	Selected when it performs memory read/write of XGT		
LS Bus client	Selected when it communicates with the inverter of its company		
Modbus ASCII client	Selected when it operates as a Modbus client and is used in ASCII mode		
Modbus RTU client	Selected when it operates as a Modbus client and is used in RTU mode		

User frame definition communication is possible only when P2P driver is set to user frame with respect to the communication channel.

(3) P2P block setting

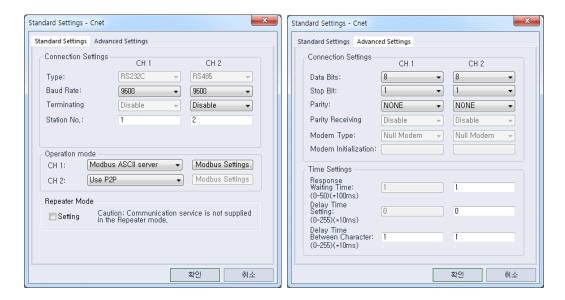
If you select the P2P block of the corresponding parameter in the [P2P Parameter Setting] window, the [P2P Block Setting] window appears. The block setting window of all protocols is as shown in the figure below. Depending on the protocol selected in the P2P channel, the active area is displayed differently.



P2P block settings

15.7.4 Start operation

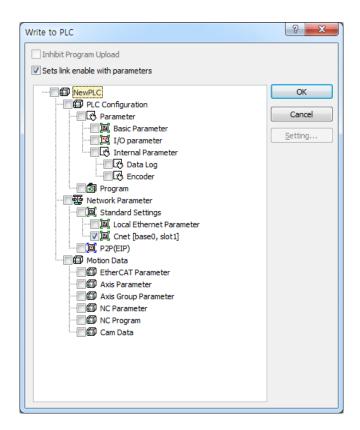
The operation mode of the serial communication of stand-alone motion controller can be roughly divided into P2P service and server function. To use each mode, follow the steps below.


- 1) When operating as a server
 - (1) Connection setup
 - (a) Select [Online] \rightarrow [Connection Settings] or click the icon ($^{\cite{3}}$).
 - (b) Set connection options for your environment and click [Connect].

(2) Default setting

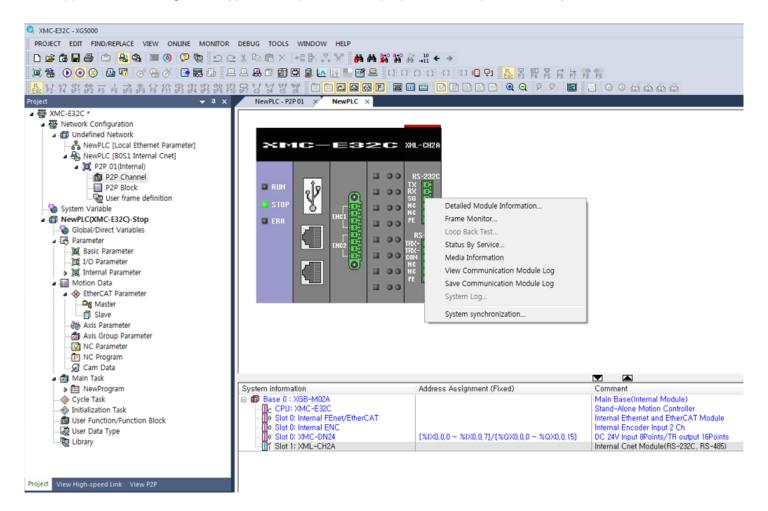
- (a) Double-click the serial communication module in the project window to launch the [Preferences] window and set the connection. Set the communication type, communication speed, data bit, stop bit, and station number in the menu.
- (b) The delay time can be set only when RS-485 is used, and the response wait time can be set only when using P2P as the operation mode in RS-485 communication.
- (c) Cnet's repeater mode does not support Auto Speed.

 When communicating via RS-485 channel, it is necessary to connect a terminating resistor from the outside.
 - When used as a Modbus ASCII server, the data bit is 7

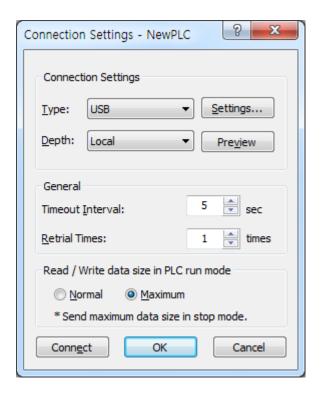


(3) Select operating mode

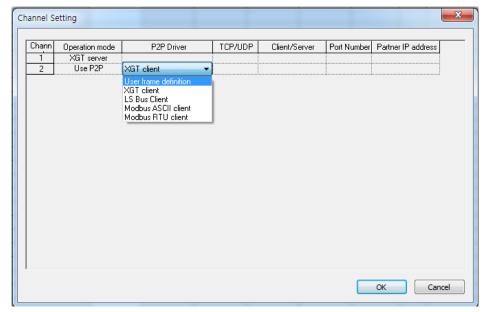
- (a) Select the operation mode of the server to be used.
- (b) Built-in Cnet supports XGT server, Modbus ASCII server, Modbus RTU server.


(4) Write parameters

- (a) Select [Online] \rightarrow [Write] or click the icon ($\stackrel{\clubsuit}{\Longrightarrow}$).
- (b) Check (✓) the module with the default settings and click [OK].
- (c) Click the [OK] button, and when the parameter writing finishes, reset each module.



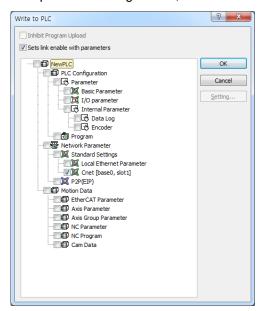
(5) Check operation


- (a) Select [Online] \rightarrow [Communication Module Settings] \rightarrow [System Diagnosis] or click the icon (\boxtimes).
- (b) Click the communication module whose status you want to diagnose and press the right mouse button.
- (c) When the following screen appears, click [Frame Monitor] or [Service Status] to check the operation status.

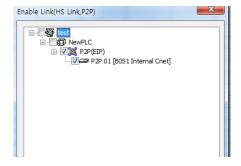
- 2) When operating as a P2P service (client)
 - (1) Connection setup
 - (a) Select [Online] \rightarrow [Connection Settings] or click the icon ($^{\textcircled{\$}}$).
 - (b) Set connection options for your environment and click [Connect].



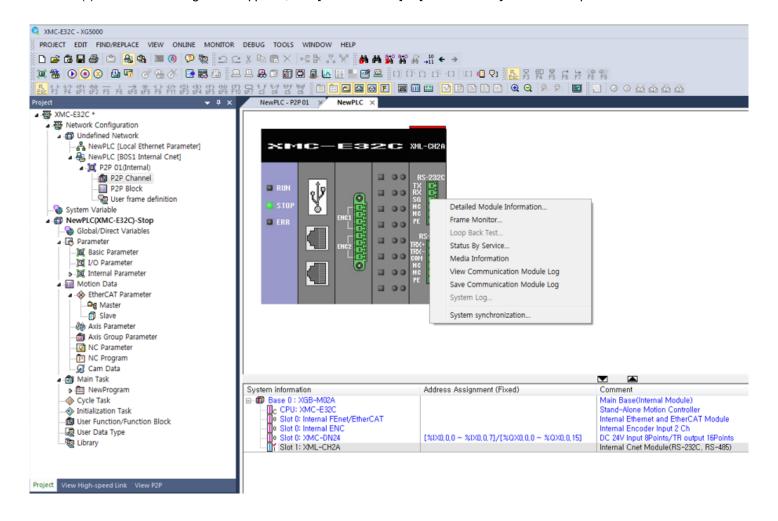
- (2) Channel setting
 - (a) In the [P2P Parameter Setting] window, double-click the P2P channel to select the protocol for each channel.
 - (b) The P2P driver supports user frame definition, XGT client, LS bus client, Modbus RTU client, and Modbus ASCII client.


(3) P2P block setting

- (a) Depending on the type of client selected in the channel setting, the P2P block setting value will be activated differently.
- (b) Creates the contents of the cell that is in the active state for the protocol type.
 - * In the case of user frame definition, the frame must be created in the user frame definition before it can be used.


(4) Write parameters

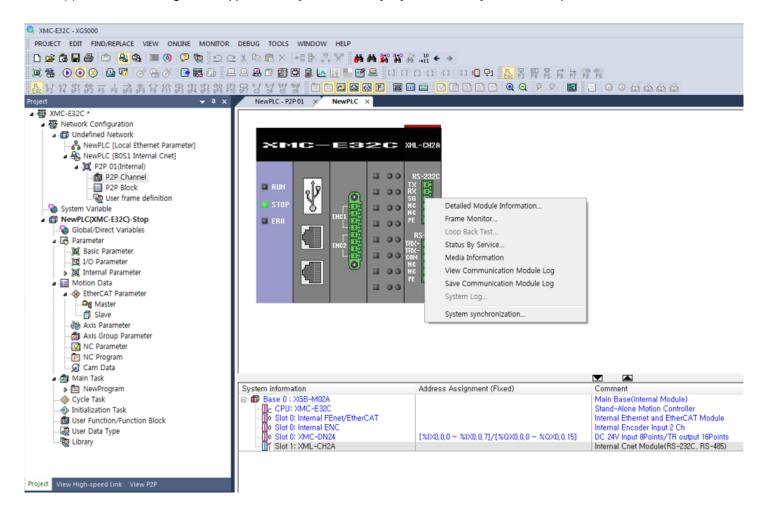
- (a) Select [Online] \rightarrow [Write] or click the icon ($\stackrel{\clubsuit}{\Longrightarrow}$).
- (b) Check (✓) the module with the default settings and click [OK].
- (c) Click the [OK] button, and when the parameter writing finishes, reset each module.



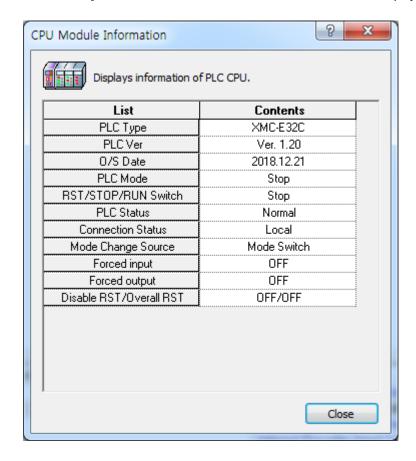
(5) Link enable

- (a) Select [Online] \rightarrow [Communication module settings] \rightarrow [Link Enable] or click the icon (\blacksquare)
- (b) Check (✓) the configured P2P and click [Write].

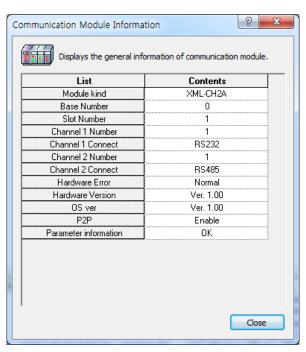
- (6) Check operation
 - (a) Select [Online] \rightarrow [Communication Module Settings] \rightarrow [System Diagnosis] or click the icon ($^{\boxtimes}$).
 - (b) Click the communication module whose status you want to diagnose and press the right mouse button.
 - (c) When the following screen appears, click [Frame Monitor] or [Service Status] to check the operation status.


15.7.5 Diagnostic Function of XG5000

1) Types of diagnostic functions

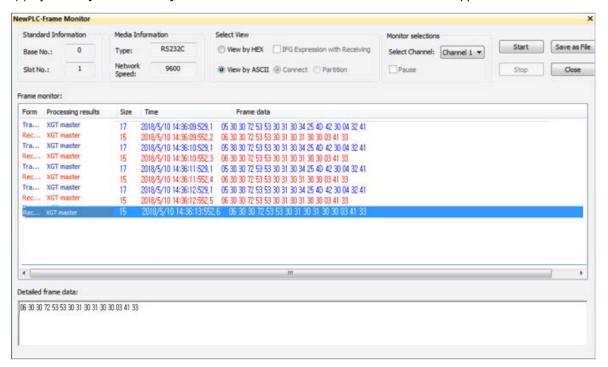

With XG5000, you can check/diagnose the status of network and various systems such as basic unit status, communication module information, service status information and frame monitor, etc.

The available diagnostic functions are as follows.


- XMC base unit status
- Communication module information
- Frame monitor
- Service status
- Media Information
- (a) Select [Online] \rightarrow [Communication Module Settings] \rightarrow [System Diagnosis] or click the icon (\boxtimes).
- (b) Click the communication module whose status you want to diagnose and press the right mouse button.
- (c) When the following screen appears, click [Frame Monitor] or [Service Status] to check the operation status.

- 2) Check the XMC base unit status
 - (1) XMC unit information
 - (a) Select [Online] \rightarrow [Communication Module Settings] \rightarrow [System Diagnosis] or click the icon (\boxtimes).
 - (b) Click the XMC base unit and then right-click.
 - (c) If you click [CPU Module Information], the screen to check the status of the CPU module is displayed as shown below.

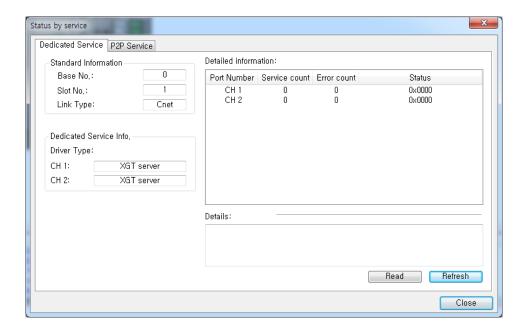
- 3) Communication module Information.
 - (a) Select [Online] \rightarrow [Communication Module Settings] \rightarrow [System Diagnosis] or click the icon (\boxtimes).
 - (b) Click the Cnet I / F module and click the right mouse button.
 - (c) If you click [Communication module information], the screen to check the status of communication module is displayed as below.


Items	Contents		
Communication module type	Indicate the type of the communication module currently being diagnosed.		
Base No.	Indicate the base information of the communication module currently being diagnosed. It is fixed to 0 and displayed in XGB PLC.		
Slot No.	Indicate the slot number of the communication module currently being diagnosed. It is fixed to 0 and displayed in built-in communication		
Station No.	Station number of the channel used in P2P and dedicated service		
Connection method	Information of the communication type (RS-232C, RS-485) of the corresponding channel		
Hardware error status	Indicate whether the hardware of the communication module is normal or not.		
Hardware version	Version of communication module hardware		
OS version	Indicate the version of the communication module OS		
P2P	Indicate the P2P communication is enabled/disabled		
System parameter information	Whether to download the default communication parameters Display the error information of default communication parameters		

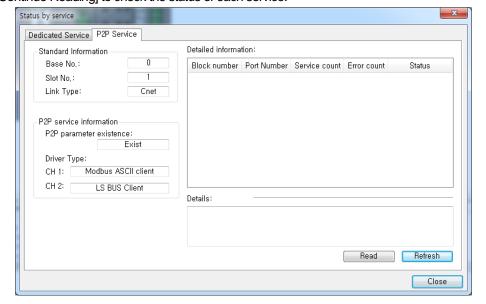
4) Frame monitor

The frame monitor of XG5000 allows you to check whether the frame transmitted/received through the Cnet I/F module is normal or not.

(1) Frame monitor


- (a) Select [Online] \rightarrow [Communication Module Settings] \rightarrow [System Diagnosis] or click the icon (\boxtimes).
- (b) Click the Cnet I / F module and click the right mouse button.
- (c) If you click [Frame Monitor], the screen to monitor the communication status will appear as shown below.

(2) Frame monitor details


Items		Contents		
Designinformation	Base No.	Base position of the communication module being monitored		
Basic information	Slot No.	Slot position of the communication module being monitored		
Monitor option	Channel selection	Select the channel to monitor		
	Type	Indicate the transmission frame and reception frame		
Frame monitor window	Processed results	Indicate the protocol type currently being used 1) XGT server 2) XGT client 3) Modbus server 4) Modbus client 5) User defined 6) Unknown: Frame that cannot be processed		
	Size	Length of the monitored frame		
	Time	Display the point of time for transmission/reception		
	Frame data	Display the data of transmitted/received frame		
View in I	HEX	Display the frame data with HEX values		
View in ASCII		Display the frame data with ASCII values		
Save file		Save the frame monitoring contents to a file		
Star	t	Start of the frame monitoring operation		
Stop)	Stop the monitoring status		
Clos	e	Close the frame monitor window		

- 5) Service status
 - (1) Dedicated service
 - (a) Select [Online] \rightarrow [Communication Module Settings] \rightarrow [System Diagnosis] or click the icon (\boxtimes).
 - (b) Click the built-in Cnet and then right-click.
 - (c) Click [Service Status] and select [Dedicated Service] in the following screen.
 - (d) Click [Continue Reading] to check the status of each service.

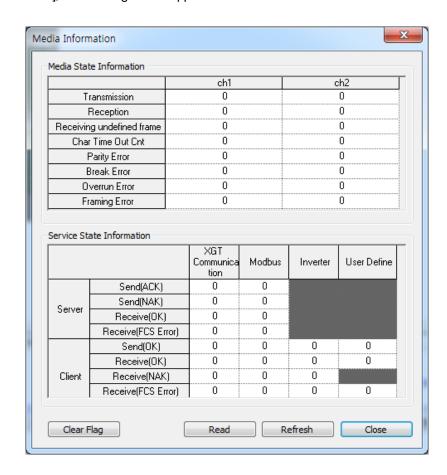
(2) P2P service

- (a) Select [Online] \rightarrow [Communication Module Settings] \rightarrow [System Diagnosis] or click the icon (\blacksquare).
- (b) Click the built-in Cnet and then right-click.
- (c) Click [Service Status] and select [P2P Service] in the following screen.
- (d) Click [Continue Reading] to check the status of each service.

(3) Service-specific details

Division	Item		Contents		
Continuous Read/	Contir	nuous Read	Check the dedicated service status information every second		
Redo		Redo	Check the dedicated service status information at the time of execution		
	Basic information	Base No. Base position of the module service			
	Dasic iriioirriatiori	Slot No. Slot position of the module using the			
		Link type	Type of the communication module being used		
Dedicated	Dedicated s	ervice information	Indicate the type of drives being used for each channel		
service		Port No.	Indicate the channel number		
Service	Detailed	Service count	Indicate the number of dedicated service communications		
	information window	Error count	Indicate the number of errors that occur during the dedicated service communication		
		Status	Display the dedicated service communication status		
	Basic information	Base No.	Base position of the module using the P2P service		
		Slot No.	Slot position of the module using the P2P service		
		Link type	Type of the communication module being used		
	P2P service information	Presence of P2P	Indicate whether the P2P parameter is downloaded or		
		parameters	not		
		Driver type	P2P driver setting information for each channel XGT client/MODBUS client/User definable		
P2P service		Block No.	Available from 0 to 63 Display only the currently registered block being operated		
		Port No.	Indicate the channel number		
	Detailed information	Status	Display service execution status information for each block		
		Service count	Indicate the number of times each block has been executed since the P2P service was performed		
		Error count	Indicate the number of errors that occur during the service		
Continuous	Contir	nuous Read	Check the P2P service status information every second		
Read/		Restart	Check the P2P service status information at the time of		
Redo	Г	าธอเสาเ	execution		

(4) Service status code


The status codes provided by the Service Status are used to determine whether Cnet I/F performs normal communication or not.

	Dedicated service	P2P service		
Status	Meaning	Status	Meaning	
0	Normal communication	0	Normal communication	
1	Reception frame header error (No ACK/NAK)	4	Maximum station setting error(when setting 0 to 255 stations or more)	
2	Reception frame tail error(No Tail)	5	Time out occurs	
3	Reception frame BCC error	FFFE	1.Modbus address error 2.When using commands other than Read/Write	
9	The station number of the received frame is different from the number of its station (Its station number=0)			
0A	No response is received from the CPU			
0B	The received frame is longer than the Modbus maximum frame		-	
0C	The received frame is not Modbus ASCII / Modbus RTU			
0D	HEX conversion error in Modbus occurs			

6) Media Information

It provides statistical value of media status and service status of built-in Cnet and is used to determine whether communication is normal or not.

- (a) Select [Online] \rightarrow [Communication Module Settings] \rightarrow [System Diagnosis] or click the icon (\boxtimes).
- (b) Click the built-in Cnet and then right-click.
- (c) If you click [Media Info], the following screen appears.

15.8 XGT Communication

15.8.1 XGT Protocol Overview

The XGT protocol is a Cnet I/F module dedicated protocol developed by LS Industrial Systems.

In addition, it can check the communication status by monitoring the actual protocol when communicating with the other device through the frame monitoring of XG5000. The XGT protocol is divided into an XGT client that requests the other device to read and write data and an XGT server that responds to the contents requested from the XGT client.

(1) Data Read/Write

The monitoring function and device area read/write function inside the CPU module of the XGT client/server can be used to easily construct a communication system intended by a user.

(2) Frame monitor

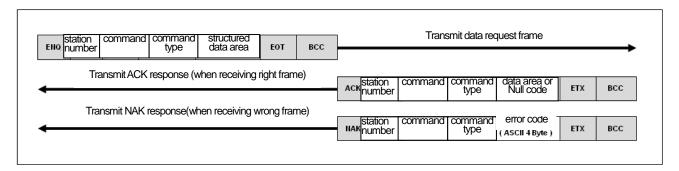
The frame monitoring function of XG5000 that sets parameters of Cnet I/F module can actually check the frame of XGT client and server when communicating with the other station, and it analyzes the data through frame monitoring, check the error code when the error occurs and can solve the problems that occur during communication.

(3) XGT client, server

In communication using the XGT protocol, the XGT client requests the other device to read or write data, and the XGT server analyzes the data received from the XGT client and processes the requested command along with the ACK response when receiving a frame that conforms to the XGT protocol specification but transmits the NAK response including the error code to the XGT client.

(4) Functions provided by Cnet when using XGT protocol

- (a) Operate the independent channel of RS-232C and RS-485
- (b) Device Individual/Continuous Write
- (c) Device Individual/Continuous Read
- (d) Monitor variable registration
- (e) Monitor execution
- (f) 1:1 connection(its own link) system configuration


15.8.2 P2P service

The frame of the XGT protocol is largely divided into a frame in which a communication device that operates as an XGT client makes a request to read/write data and a frame that responds to the request frame of the client.

1) Frame structure

(1) Command frame sequence

When the request frame that is standardized from the XGT client is transmitted to the server, the server analyzes the received request server frame and transmits the ACK response when receiving the frame that conforms to the predetermined protocol rule. Otherwise, it transits the NAK frame to which the error code is attached.

(2) Basic frame structure of the XGT protocol

(a) Request frame(Equipment operating as the XGT client)

Header (ENQ)	Partner station Conumber	command	Command type	Structured data area	Tail(EOT)	Frame check (BCC)
-----------------	--------------------------	---------	--------------	----------------------	-----------	----------------------

(b) Response frame(Equipment operating as the XGT server)

1) ACK response frame(Received frame that meet the rules of the XGT protocol)

		`		•	,	
Header	Its station	Command	Command	Structured data area	Toil/ETV\	Frame check
(ACK)	number	Command	type	or null code	Tail(ETX)	(BCC)

2) NAK response frame (Received frame that does not meet the rules of the XGT protocol)

Header	Its station	Command	Command	Error code	Tail(ETX)	Frame check
(NAK)	number	Command	type	(ASCII type 4 byte)	Tall(CTA)	(BCC)

- (3) Frame characteristics
 - (a) The numeric data of all frames is displayed in ASCII code for hexadecimal values unless otherwise specified.
 - (b) The items displayed in hexadecimal are as follows.
 - a) Station number
 - b) Command type in case command type is numeric (data type) when main command is R(r) or W(w)
 - c) All items that display all data sizes in the structured data area
 - d) Command registration number with respect to monitor registration and execution command
 - e) All contents of data
 - (c) In the case of hexadecimal data, 'h' is attached to the number as in h01, h12345, h34, h12 and h89AB, etc. to indicate that this data is hexadecimal.
 - (d) The maximum length of available frame is 256 bytes.
 - (e) The contents of control codes used are shown below.

Code	Hex	Name	Control contents		
ENQ	05	Enquire	Start code of request frame		
ACK	06	Acknowledge	Start code of ACK response frame		
NAK	15	Not Acknowledge	Start code of NAK response frame		
EOT	04	End of Text	ASCII code for ending request		
LOT	04	Life of Text	frame		
ETX	03	End Text	ASCII code for ending response		
-1^	03	LIIU IEAL	frame		

(f) If the command is composed of lowercase letters, the BCC value is added to the frame check. If it consists of capital letters, the BCC value is not added.

Example) Device read command R(r)

- Lowercase letter r: BCC is added

- Capital letter R: BCC is not added

2) XGT Communication Commands

(1) Types of commands

The types of commands used in the dedicated communication are summarized below.

			Com	mand		
14	Division		mmand	nmand Command type		Processing contents
Item		ASCII	Hex	ASCII	Hex	
Read	Individual read	r(R)	h72(h52)	SS	h5353	Read direct variables of bit and word type
device	Continuo us read	r(R)	h72(h52)	SB	h5342	Read direct variables of word type in block unit*Note 1)
Write	Individual write	w(W)	h77(h57)	SS	h5353	Write data to direct variables of bit and word type
device	Continuo write	w(W)	h77(h57)	SB	h5342	Write block units to direct variables of word type*Note 2)

		C	Command			
Division	Main command		Registration No.		Processing contents	
Item	Frame example	Hex	Registration No.	Hex	T Toodsoung Contonio	
Monitor variable registration	x(X)	h78(h58)	00 ~ 09	h3030 ~ 3039	Register variables to monitor	
Monitor execution	y(Y)	h79(h59)	00 ~ 09	h3030 ~ 3039	Execute monitor of registered variables	

(2) Data type

(Z) Data type		
Data type	Display frame example	Usage example
Bit	X(58h)	%MX000, %LX000, %KX000, %FX000, %IX0.0.0, %QX0.0.0, %UX0.0.0 , etc.
Byte	B(42h)	%MB000, %LB000, %KB000, %FB000, %IB0.0.0, %QB0.0.0, etc.
Word	W(57h)	%MW000, %LW000, %KW000, %FW000, %IW0.0.0, %QW0.0.0, %MW0, %RW0, %UW0.0, etc.
Double word*Note 3)	D(44h)	%MD000, %LD000, %KD000, %FD000, %ID0.0.0, %QD0.0.0, %MD0, etc.
Long word*Note 4)	L(4Ch)	%ML000, %LL000, %KL000, %FL000, %IL0.0.0, %QL0.0.0, %ML0, etc.

Notice

- Note 1) Bit continuous read is not allowed in the case of continuous read.
- Note 2) Bit continuous write is not allowed in the case of continuous write.
- Note 3) Double word: 1 double word is 4 byes when converted into byte.
- Note 4) Long word: 1 long word is 8 bytes when converted into byte

(3) Available device area

Area	Range	Size(Word)	Remarks
М	M MW0 – MW1048575 1048576		Read/Write/Monitor available
K	KW0 - KW9215	9216	Read/Monitor available
F	FW0 - FW65535	65536	Read/Monitor available
L	LW0-LW11263	11264	Read/Write/Monitor available
U	UW0.0.0- UW0.15.31	512	Read/Write/Monitor available
I	IW0.0.0 –IW127.15.3	8192	Read/Write/Monitor available
Q	QW0.0.0- QW127.15.3	8192	Read/Write/Monitor available

3) Individual writing of direct variables (W(w)SS)

This function is used to directly specify the PLC device memory to be used and write it according to the memory data type.

(1) Example of the individual write request frame of XGT client

Division	Head er	Statio n numb er	Comma nd	Comm and type	Numbe r of blocks	Varia ble length	Variable name	Data	 Tail	Frame check
Frame	ENQ	20	W(w)	SS	01	06	%MW1 00	00E2	 EOT	BCC
Hex	h05	h3230	h57(77)	h5353	h3031	h3036	h254D5 7 313030	h3030453 2	 h04	

(2) Example of the response frame of XGT server a)ACK response

Division	Header	Station number	Command	Command type	Tail	Frame check
Frame	ACK	20	W(w)	SS	ETX	BCC
Hex	h06	h3230	h57(77)	h5353	h03	

b) NAK response

Division	Header	Station number	Command	Command type	Error code (2 bytes)	Tail	Frame check
Frame	NAK	20	W(w)	SS	4252	ETX	BCC
Hex	h15	h3230	h57(77)	h5353	h34323532	h03	

c) Meanings of each item

Division	Descriptions
Number of blocks	 The number of blocks consisting of variable length + variable name Maximum setting: 16 blocks Setting range: 01(Hex value:3031) ~ 10(Hexl value:3130)
Variable length	 ► The number of characters in the variable name - Maximum setting: 16 - Setting range: 01(Hex value:3031) ~ 10(Hex value:3130) Example) If the variable name is %MW0, the variable length is h04 since the number of characters is 4. If the variable name is %MW000, the variable length is h06 since the number of characters is 6.
Variable name	 Address of write device Setting range: 12 characters or less Notice: Not allowed except for digits, upper/lower case frames, and '%'
Data	▶ If the value you want to write in the %MW100 area is h A, the format of the data should be h000A. -Usage example If the data type you want to write is word, and the data to be written is h1234, its ASCII code conversion value is 31323334, and this content should be contained in the data area. That is, the highest value is transmitted first, and the lowest value should be transmitted for the last time.
Frame check	 ▶ The BCC value is added if the command is a lowercase frame example (w), whereas the BCC value is not added if the command is an uppercase frame example (W). ▶ If the command is the lowercase frame example (w), values ranging from ENQ to EOT are converted into Hex values, and only 1 low-order byte of the result obtained by adding one byte is added to the BCC.

Notice

- (1) The device data type of each block should be the same.(2) If the data type is a bit, the data to be written should be represented by 1 byte in hexadecimal. That is, if bit value is 0, it should be h00(3030), and if it is 1, h01(3031).

(3) Usage example

This example supposes that 'hFF'is written in M0230 of station No. 1

a) Individual write request frame of XGT client

Division	Header	Station number	Comman d	Comman d type	Number of blocks	Variable length	Variable name	Data	Tail	Frame check
Frame	ENQ	01	W(w)	SS	01	06	%MW230	00FF	EOT	BCC
Hex	h05	h3031	h57(77)	h5353	h3031	h3036	h254D57 323330	h3030464 6	h04	

b) Response frame of XGT server

- ACK response

Division	Header	Station number	Command	Command type	Tail	Frame check
Frame	ACK	01	W(w)	SS	ETX	BCC
Hex	h06	h3031	h57(77)	h5353	h03	

- NAK response

Division	Header	Station number	Command	Command type	Error code	Tail	Frame check
Frame	NAK	01	W(w)	SS	Error code (2 bytes)	ETX	BCC
Hex	h15	h3031	h57(77)	h5353	Error code (4 bytes)	h03	

4) Individual reading of direct variables(R(r)SS)

This function is used to direct specify and read the PLC device according to the data type. It makes it possible to read 16 independent device memories at a time.

(1) Example of the individual read request frame of XGT client

Division	Header	Station number	Command	Command type	Number of blocks	Variable length	Variable name	 Tail	Frame check
Frame	ENQ	20	R(r)	SS	01	06	%MW100	 EOT	BCC
Hex	h05	h3230	h52(72)	h5353	h3031	h3036	h254D5731303 0	 h04	

(2) Example of the response frame of XGT server a)ACK response

Division	Header	Station number	Comma nd	Comma nd type	Number of blocks	Number of data	Data	 Tail	Frame check
Frame	ACK	20	R(r)	SS	01	02	A9F3	ETX	BCC
Hex	h06	h3230	h52(72)	h5353	h3031	h3032	h41394633	h03	

b) NAK response

Division	Header	Station number	Command	Command type	Error code (2 bytes)	Tail	Frame check
Frame	NAK	20	R(r)	SS	1132	ETX	BCC
Hex	h15	h3230	h52(72)	h5353	h31313332	h03	-

(3) Meanings of each item

Division	Descriptions
Number of blocks	► The number of blocks consisting of variable length + variable name ○ Maximum setting: 16 blocks ○ Setting range: 01(ASCII code:3031) ~ 10(ASCII code:3130)
Variable length	► The number of characters in the variable name
Variable name	► Address of write device ▷ Setting range: 12 characters or less ▷ Notice: Not allowed except for digits, upper/lowercase frames, and '%'

Division		Descriptions						
	 It means the number of bytes of Hex type and is converted into ASCII. The number is determined by the data type(X,B,W,D,L) contained in the direct variable name of the external communication device request format The number of data according to the variable type is shown below. 							
Number of data	Data type	Available direct variables	Number of data					
Number of data	Bit(X)	%(P,M,L,K,F,T,C,I,Q,W,R)X	1					
	Byte(B)	%(P,M,L,K,F,T,C,I,Q,W,R)B	1					
	Word(W)	%(P,M,L,K,F,T,C,I,Q,W,R)W	2					
	Double word(D)	%(P,M,L,K,F,T,C,I,Q,W,R)D	4					
	Long word(L)	%(P,M,L,K,F,T,C,I,Q,W,R)L	8					
Data	Usage example 1 If the number of da in the data. That is, 4 by Usage example 2 If the number of da "31 32 33 34 35 36 37 3	by converting the data of area hexadeta is h04 (ASCII code: h3034), it indictes of hexadecimal data is converted ata is h04, and the data is h123456 and this content is contained in the est number is transmitted for the last	cates that there are 4 bytes on the data. 78, its ASCII code conversione data area. That is, the high	of Hex data on value is				

Notice

1) If the data type is a bit, the read data is displayed in the form of a byte. That is, if bit value is 0, it is displayed as h00, and if it is 1, h01.

(4) Usage example

This example supposes that 1 word is read from M0001 and M0020 of station No. 1, (It is assumed that h1234 is contained in M0020, and M0001 contains h5678.)

a) Individual read request frame of XGT client

Division	Hea der	Statio n numb er	Comma	Comma nd type	Number of blocks	Variable length	Variable name	Variabl e length	Variable name	Tail	Frame check
Frame	ENQ	01	R(r)	SS	02	06	%MW02 0	06	%MW001	EOT	всс
Hex	h05	h3031	h52(72)	h5353	h3032	h3036	h254D57 303230	h3036	h254D573 0303031	h04	

b) Response frame of XGT server

- ACK response

Division	Hea der	Statio n numb er	Comma	Comma nd type	OT .	Number of data	Data	Number of data	Data	Tail	Frame check
Frame	ACK	01	R(r)	SS	02	02	1234	02	5678	ETX	BCC
Hex	h06	h3031	h52(72)	h5353	h3032	h3032	h3132333 4	h3032	h35363738	h03	

- NAK response

Division		Station number		Command type	Error code	Tail	Frame check
Frame	NAK	01	R(r)	SS	Error code(2 bytes)	ETX	BCC
Hex	h15	h3031	h52(72)	h5353	Error code(4 bytes)	h03	

5) Continuous writing of direct variables (W(w)SB)

This function is used to write the data of the specified length continuously from the specified address of the device.

(1) Example f the continuous write request frame of XGT client

Division	Head er	Station numbe r	Commo	Comman d type	Variabl e length	Variable name	Number of data	Data	Tail	Frame check
Frame	ENQ	10	W(w)	SB	06	%MW100	02	11112222	EOT	BCC
Hex	h05	h3130	h57(77)	h5342	h3036	h254D5731303 0	h3034	h31313131 32323232	h04	

(2) Example of the response frame of XGT server a)ACK response

Division	Header	Station number	Command	Command type	Tail	Frame check
Frame	ACK	10	W(w)	SB	ETX	BCC
Hex	h06	h3130	h57(77)	h5342	h03	

b) NAK response

Division	Header	Station number	Command	Command type	Error code (Hex 2 bytes)	Tail	Frame check
Frame	ENQ	10	W(w)	SB	1132	ETX	BCC
Hex	h05	h3130	h57(77)	h5342	h31313332	h03	

(3) Meanings of each item

Division	Descriptions
Variable name	It means the start address of the device to perform continuous write.
Number of data	The number of data specifies the number according to the type of direct variable. That is, if the device data type is word, the number of data is 5, it means that 5 words need to be written. The maximum number of data is 120 bytes for Hex, and it is 240 bytes when converted to ASCII value.

(4) Usage example

This example supposes that 2 bytes of hAA15 is written in M000 of station No. 1.

a) Continuous write request frame of XGT client

	,									
Division	Header	Station number	Command	Comman d type	Variable length	Variable name	Numbe r of data	Data	Tail	Frame check
Frame	ENQ	01	W(w)	SB	06	%MW000	01	AA15	EOT	BCC
Hex	h05	h3031	h57(77)	h5342	h3036	h254D5730 3030	h3031	h4141313 5	h04	

b) Response frame of XGT server

- ACK response

Format name	Header	Station number	Command	Command type	Tail	Frame check
Frame	ACK	01	W(w)	SB	ETX	BCC
Hex	h06	h3031	h57(77)	h5342	h03	

- NAK response

Format name	Header	Station number	Command	Command type	Error code	Tail	Frame check
Frame	NAK	01	W(w)	SB	Error code(2)	ETX	BCC
Hex	h15	h3031	h57(77)	h5342	Error code(4)	h03	

6) Continuous reading of direct variables(R(r)SB)

This function is to continuously read as much data as the specified amount from the designated address of the PLC device.

(1) Example of continuous read request frame of XGT client

Division	Header	Station number	Comma nd	Command type	Variable length	Variable name	Number of data (Up to 240 bytes)	Tail	Frame check
Frame	ENQ	10	R(r)	SB	06	%MW100	05	EOT	BCC
Hex	h05	h3130	h52(72)	h5342	h3036	h254D57313030	h3035	h04	

(2) Example of the response frame of XGT server a)ACK response

Division	Header	Station number	Command	Command type	Number of blocks	Number of data	Data	Tail	Frame check
Frame	ACK	10	R(r)	SB	01	02	1122	ETX	BCC
Hex	h06	h3130	h52(72)	h5342	h3031	h3032	h31313232	h03	

b) NAK response

Division	Head er	Station number	Command	Comman d type	Error code (Hex 2 byte)	Tail	Frame check
Frame	NAK	10	R(r)	SB	1132	ETX	BCC
Hex	h15	h3130	h52(72)	h5342	h31313332	h03	

(3) Meanings of each item

Division		Descriptions	
Number of data	► It means the number o ► The number indicates to Data type Bit(X) Byte(B) Word(W) Double word(D) Long word(L)	f bytes of Hex type and is converted the number of bytes. Available direct variables %(P,M,L,K,F,T,C,I,Q,W,R)X %(P,M,L,K,F,T,C,I,Q,W,R)B %(P,M,L,K,F,T,C,I,Q,W,R)W %(P,M,L,K,F,T,C,I,Q,W,R)D %(P,M,L,K,F,T,C,I,Q,W,R)L	to ASCII. Number of data 1 1 2 4 8
Data	 Usage example 1 If the memory type incluand the number of data data after executing the covalue 3036. Usage example 2 In the above example, i 	the value obtained by converting Honded in the direct variable name of the in the PC request format is 03, the command is h06(2*03 = 06 bytes)byte of the 3-word data contents are 1234 alue is 31323334 35363738 3941426	e PC request format is W(word), number of PLC ACK response es, and this value is ASCII code ,5678,9ABC in order, the actual

(4) Usage example

This example supposes that 2 words is read from M000 of station No. 10(h0A).

(It is assumed that the following data is contained in M000 and M001.)

M000 = h1234

M001 = h5678

a) Continuous read request frame of XGT client

Division	Head er	Station number	Command	Command type	Variable length	Variable name	Number of data	Tail	Frame check
Frame	ENQ	0A	R(r)	SB	06	%MW000	02	EOT	BCC
Hex	h05	h3041	h52(72)	h5342	h3036	h254D30 3030	h3032	h04	

b) Response frame of XGT server

- ACK response

Division	Head er	Station number	Command	Command type	Number of data	Data	Tail	Frame check
Frame	ACK	0A	R(r)	SB	04	12345678	ETX	BCC
Hex	h06	h3041	h52(72)	h5342	h3034	h3132333435363738	03	

- NAK response

Division	Head er	Station number	Command	Command type	Error code	Tail	BCC
Frame	NAK	0A	R(r)	SB	Error code(2 bytes)	ETX	BCC
Hex	h15	h3041	h52(72)	h5342	Error code(4 bytes)	h03	

7) Registration and Execution of Monitor Variables

(1) Registration of monitor variables(X##)

Monitor register can register up to 32 (0 to 31) variables individually in combination with the actual variable reading command, and execute what is registered by monitor command after registration.

(a) Example of the monitor variable registration frame of XGT client

_ (/	() 1												
Structure	Head er	Station numbe r	Comman d	Registration number	Registration format	Tail	Frame check						
Frame	ENQ	01	X(x)	09	Refer to registration format	EOT	BCC						
Hex	h05	h3031	h58(78)	h3039	*Note 1)	h04							

(b) Example of the monitor variable response frame of XGT server

a) ACK response

Structure	Heade r	Station number	Command	Registration number	Tail	Frame check
Frame	ACK	01	X(x)	09	ETX	BCC
Hex	h06	h3031	h58(78)	h3039	h03	

b) NAK response

Structure	Heade r	Station number	Comma nd	Registrat ion number	Error code (Hex 2 bytes)	Tail	Frame check
Frame	NAK	01	X(x)	09	h1132	ETX	BCC
Hex	h15	h3031	h58(78)	h3039	h31313332	h03	

(c) Meanings of each item

Division	Descriptions
Registration	Up to 32 numbers (0~31, h00~h1F) can be registered. If you register the already registered
number	number again, what is currently executed is registered.
Registration	It is used before EOT in the command among the device individual reading and continuous
format	reading formats.

Notice

Note1) Please be sure to select one of the following registration formats for request formats.

▶ Individual reading of device

RSS	Number of blocks(2 bytes)	Variable length(2 bytes)	Variable name(16 bytes)	:

1 block(Max. 16 blocks)

► Continuous reading of device

RSB	Variable length (2 bytes)	Variable name (16 bytes)	Number of data

(d) Usage example

This example supposes that the device M0000 of station No. 1 is registered as No. 01.

a) Monitor variable registration frame of XGT client

Division	Heade r	Station number	Comman d	Registrati on number	Comma nd type	Number	tion forma Variable length		Tail	Frame check
Frame	ENQ	01	X(x)	01	RSS	01	06	%MW000	EOT	BCC
Hex	h05	h3031	h58(78)	h3031	h52535 3	h30 31	h3036	h25545730 3030	h04	

b) Monitor variable response frame of XGT

- ACK response

Division	Header	Station number	Command	Registration number	Tail	Frame check
Frame	ACK	01	X(x)	01	ETX	BCC
Hex	h06	h3031	h58(78)	h3031	h03	

- NAK response

Division	Header	Station number	Command	Registration number	Error code	Tail	Frame check
Frame	NAK	01	X(x)	01	Error code(2)	ETX	BCC
Hex	h15	h3031	h58(78)	h3031	Error code(4)	h03	

(2) Monitor execution(Y##)

Monitor execution is a function to execute the reading of device registered by monitor register. It specifies the registered number and executes the reading of device registered by the number.

(a) Example of the monitor execution frame of XGT client

Division	Header	Station number	Command	Registration number	Tail	Frame check
Frame	ENQ	10	Y(y)	09	EOT	BCC
Hex	h05	h3130	h59(79)	h3039	h03	

(b) Example of the monitor execution response frame of XGT server

a) ACK response

- If the registration format of registration number is individual reading of device

Division	Heade r	Station number	Comman d	Registratio n number	Number of blocks	Numbe r of data	Data	Tail	Frame check
Frame	ACK	10	Y(y)	09	01	02	9183	ETX	BCC
Hex	h06	h3130	h59(79)	h3039	h3031	h3032	h3931383 3	h03	

-If the registration format of registration number is continuous reading of direct variable

Division	Header	Station number	Comman d	Registrati on number	Number of data	Data	Tail	Frame check
Frame	ACK	10	Y(y)	09	04	9183AABB	ETX	BCC
Hex	h06	h3130	h59(79)	h3039	h3034	h3931383341414242	h03	

b) NAK response

Division	Header	Station number	Command	Registration number	Error code (Hex 2 byte)	Tail	Frame check
Frame	NAK	10	Y(y)	09	1132	ETX	BCC
Hex	h15	h3130	h59(79)	h3039	h31313332	h03	

(c) Usage example

This example supposes that the reading of device registered as registration No. 1 in station No.1. It is assumed that what is registered is device M000, and its number of blocks is 1.

a) Monitor execution registration frame of XGT client

Division	Header	Station number	Command	Registration number	Tail	Frame check
Frame	ENQ	01	Y(y)	01	EOT	BCC
Hex	h05	h3031	h59(79)	h3031	h04	

b) Monitor execution response frame of XGT server

- ACK response

Division	Head er	Station numbe r	Comman d	Registratio n number	Number of blocks	Number of data	Data	Tail	Frame check
Frame	ACK	01	Y(y)	01	01	02	2342	ETX	BCC
Hex	h06	h3031	h59(79)	h3031	h3031	h3032	h32333432	h03	

- NAK response

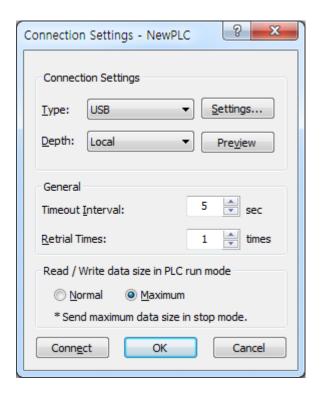
Division	Header	Station number	Command	Registration number	Error code	Tail	Frame check
Frame	NAK	01	Y(y)	01	Error code(2)	ETX	BCC
Hex	h15	h3031	h59(79)	h3031	Error code(4)	h03	

15.8.3 XGT communication function

1) Summary

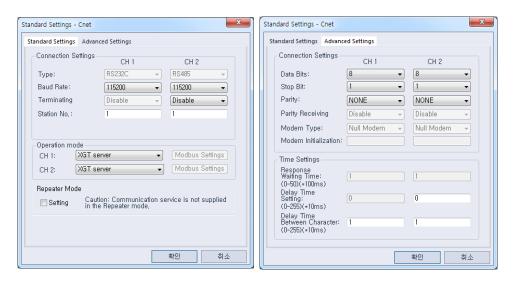
XGT communication operates as XGT server or P2P service depending on what setting of Cnet I / F module operation mode. Each mode must be set to XG5000.

(1) XGT Server

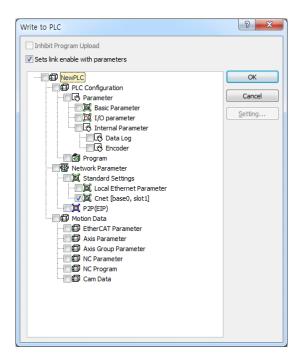

- (a) It makes it possible to read or write PLC information or data to PC or peripheral devices without writing a separate program in PLC.
- (b) The XGT client responds to frames requested.

(2) P2P Service

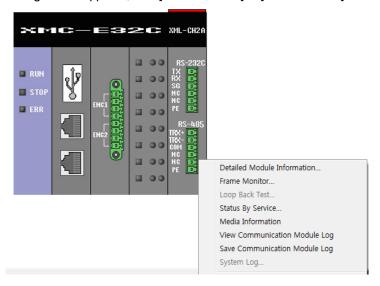
- (a) Cnet This service allows the I / F module to operate as a client on the network.
- (b) When a specified event occurs, the memory of the other station can be read or written.
- (c) Up to 64 independent P2P blocks can be defined per channel.


2) Setting parameter when using as XGT server

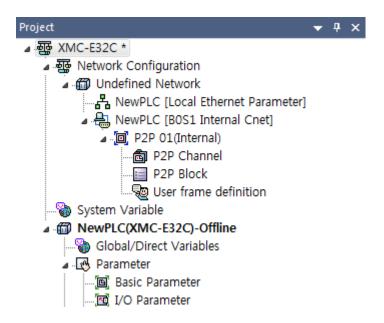
- (1) Connection setup
 - (a) Select [Online] → [Connection Settings].
 - (b) Set connection options for your environment and click [Connect].



(2) Basic setting

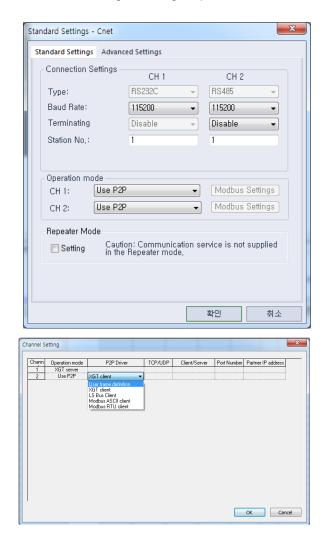

- (a) Double-click the corresponding XMC built-in Cnet to open the [Preferences] window and set the communication type, communication speed, modern type, data bit, stop bit and station number in the [Connection Settings] menu.
- (b) The modem function is not available.
- (c) The delay time can be set only when the communication type is RS485, and the response wait time can be set only when the communication type is RS485 and the operation mode is P2P.

- (3) Select operating mode Select the XGT server.
- (4) Write parameters
 - (a) Select [Online] \rightarrow [Write] or click the icon ($\stackrel{\clubsuit}{\Longrightarrow}$).
 - (b) Check (\checkmark) the module with the default settings and click [OK].
 - (c) Click the [OK] button, and when the parameter writing finishes, reset each module.


- (5) Check operation
 - (a) Select [Online] \rightarrow [Communication Module Settings] \rightarrow [System Diagnosis] or click the icon ($^{\boxtimes}$).
 - (b) Click the communication module whose status you want to diagnose and press the right mouse button.
 - (c) When the following screen appears, click [Frame Monitor] or [Service Status] to check the operation status.

3) Setting parameter when using as XGT client

(1) P2P parameter configuration


In order to use P2P service, a user should perform settings for desired operation in P2P parameter window. The P2P parameter consists of three pieces of information as shown below.

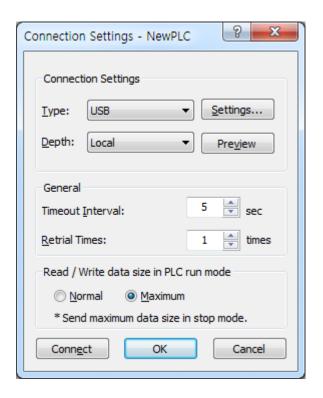
Division	Contents
P2P channel	 Set P2P channel to define the communication protocol of P2P service to perform XGT/Modbus available It is possible to set independently for each channel. It is applied only when the operation mode of the default settings is "Use P2P".
P2P block	Set 64 P2P blocks that operate independently
User-defined frame registration	Set frame for user-defined communication

(2) P2P channel setting

Cnet I / F module provides two independent communication channels. You can define the driver type to perform P2P service for each channel. However, for the P2P channel to function as a client, be sure to select 'Use P2P' in the [Preferences] window. P2P channel setting according to operation mode is as follows

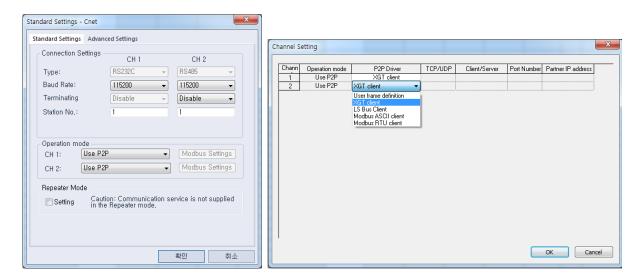
The following drivers can be selected when 'Enable P2P' is selected in the operation mode.

Driver	Meaning
None	P2P service is not used
User frame definition	Used when it sends/receives the desired user-defined frame
XGT client	Selected when it performs memory read/write of XGT
LS Bus client	Selected when it communicates with the inverter of its company
Modbus ASCII client	Selected when it operates as a Modbus client and is used in ASCII mode
Modbus RTU client	Selected when it operates as a Modbus client and is used in RTU mode


If the P2P driver is selected as XGT or Modbus, user frame definition can not be used.

(3) P2P block settings

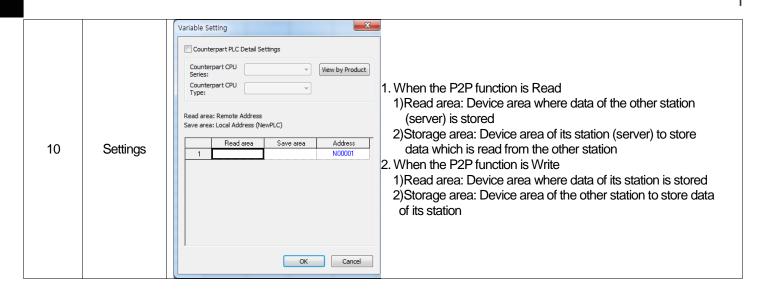
If you select the P2P block of the parameter in the P2P parameter setting window, P2P block setting window appears. The set contents for the P2P block vary depending on the channel status set by a user.


P2P channel	P2P block settings
Chann Operation mode P2P Driver 1 XGT server 2 Use P2P XGT client	NewPLC - P2P 01 × Index
Chann Operation mode P2P Driver 1 XGT server 2 Use P2P Modbus ASCII client	NewPLC - P2P 01 x
Chann Operation mode P2P Driver 1 XGT server 2 Use P2P Modbus RTU client	NewPtC - P2P 01 ×
Chann Operation mode P2P Driver 1 XGT server 2 Use P2P User frame definition	NewPLC-P3P 01 ×
Chann Operation mode P2P Driver 1 XGT server 2 Use P2P LS Bus Client	NewPLC - P2P 01 ×

- (4) Setting parameter when using as XGT server
 - 1) Connection setup
 - (a) Select [Online] → [Connection Settings].
 - (b) Set connection options for your environment and click [Connect].

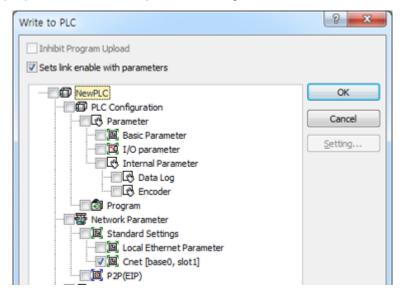
2) Basic setting

- (a) Double-click the corresponding XMC built-in Cnet to open the [Preferences] window and set the communication type, communication speed, modern type, data bit, stop bit and station number in the [Connection Settings] menu.
- (b) The modem function is not available.
- (c) The delay time can be set only when the communication type is RS485, and the response wait time can be set only when the communication type is RS485 and the operation mode is P2P.


3) Operation mode

Select 'Use P2P'.

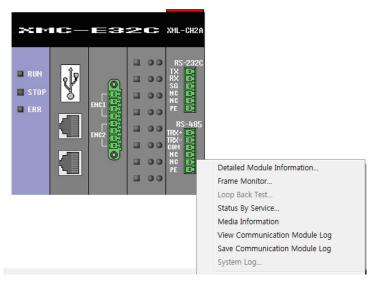
NewPLC - P2P 01 ×


(a) Setting P2P parameters

	Index Ch	Driver Setting	P2P function	Conditional flag	Command type	Data Type	No. of variables	Data size	Destin ation station	Destination station number	Frame	Setting
	0 1	XGT client							⊽	0		Setting
	1		2	3	4	(5)	6	7		8	9	10
Number	Classification		Block t	ype						Conten	nts	
1	Channel		Ch 1 1 2 2			The so	et drive I	name c	hang	jes acco	ording to the driver	set in P2P
2	P2P function		P2P fund READ WRITE	etion						•	a from the partner s a to the partner stati	
3	Start condition		Condition flag %MXC			trans	smitted a	and rece	ived		o select the time w %MX0(when MX0	
Number	Classification		Block t	уре		Conte	nts					
4	Mode		Command 1. Single 2. Continu	•		the oth 2.Conf	er statio	n(Exam Used to	ple: l	M01, M1 d or writ	lata of up to 4 mem 10, M20, M30) te continuous data	-
5	Data type		Data Ty BIT 1 BYTE 2 BYTE 4 BYTE 8 BYTE	pe ·		2 byte 2. Con	4 byte a	and 8 by mode: D	te. Oata t		livided into five type	•
6	Number of variables		No. of variable 1 1 2 3 4			sele is se Howe	cted, and elected. ever, the	d the nu maximu	mbe ım al	r of data Iowable	when the individu to be transmitted a number of data is f is fixed to 1.	and received
7	Data size		Data si	ze			ed, and it				when the continuo to 120 bytes when t	
8	Partner station		Destinati station								do not use the block will not work.	ock, click the
9	Partner station number		Destinat station nu 0			1) XG		ed com	muni	cation: A	e partner station. A total of 64 station r	numbers can

(b) Write parameters

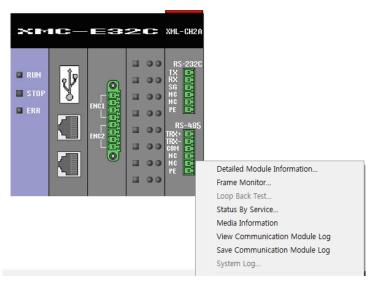
- 1) Select [Online] \rightarrow [Write] or click the icon ($\stackrel{\clubsuit}{\Longrightarrow}$).
- Check (✓) the module with the default settings and click [OK].
- 3) Click the [OK] button, and when the parameter writing finishes, reset each module.



(c) Link Enable

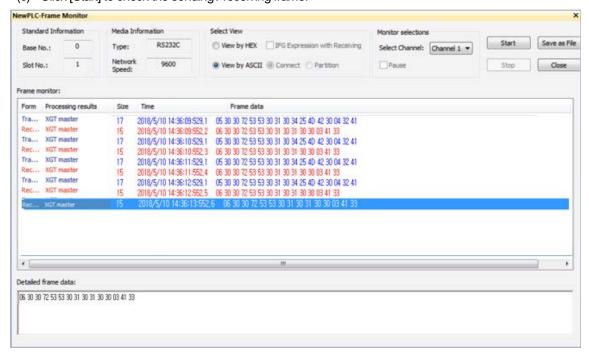
- 1) Select [Online] \rightarrow [Communication module settings] \rightarrow [Link enable].
- 2) Check the P2P block to be used and click [Write].

- (d) Check operation
 - 1) Select [Online] \rightarrow [Communication module settings] \rightarrow [System diagnostics].
 - 2) Click the communication module whose status you want to diagnose and press the right mouse button.
 - 3) When the following screen appears, click [Frame Monitor] or [Service Status] to check the operation status.



4) Frame monitor

With the frame monitoring function provided by XG5000, you can check the frame that the client and server exchange.


(1) Check operation

- a) Select [Online] → [Communication module settings] → [System diagnostics].
- Click the communication module whose status you want to diagnose and press the right mouse button.
- c) When the following screen appears, click [Frame Monitor] or [Service Status] to check the operation status.

(2) Frame monitor

- (a) Select the channel you want to monitor.
- (b) Since the XGT protocol is ASCII communication, select the view in ASCII mode.
- (c) Click [Start] to check the sending / receiving frame.

15.8.4 P2P Commands

1) P2PSN

Function block	Descriptions
P2PSN B00L — REQ DONE — B00L USINT — P_NUM STAT — B00L USINT — BL_NUM USINT — NUM	Input REQ :Function block execution request P_NUM : P2P number BL_NUM :Block number NUM :Station number Output DONE :Maintain 1 after initial operation STAT : Complete and ERR information

(1) Functions

- a) The use of P2PSN command makes it possible to change the station number of P2P service partner during the run.
- b) It changes BL_NUM block remote station number of P_NUM P2P to NUM.

(2) Errors

When an error occurs, the error number is displayed on STAT.

STAT_NUM	Contents	Details		
1	P2P number setting	Occurs when a value other than cP_NUM(1~8) is set		
2	Block number setting	Occurs when a value other than BL_NUM(0~63) is set		
4	Slot does not exist	-		
5	Module mismatch	Not a communication module		
6	Module mismatch	Communication module that cannot be used for the command		
7	Station number setting error	Occurs when a value other than NUM(0~63) is set		

2) P2PRD

Function block	Descriptions
P2PRD B00L — REQ DONE — BC USINT — P_NUM STAT — US USINT — BL_NUM USINT — VAL_NUM USINT — VAL_SIZE ANY_BIT — DEV	Input REQ :Function block execution request P_NUM : P2P number BL_NUM :Block number VAL_NUM :Variable number VAL_SIZE :Variable size DEV :Device(only direct variables can be entered) Output DONE :Maintain 1 after initial operation STAT : Complete and ERR information

ANY type variable description	Variable name	BOOL	BYTE	WORD	DWORD	LWORD	SINT	INT	DINT	LINT	USINT	TNIN	UDINT	NINT	REAL	LREAL	TIME	DATE	TOD	DT	STRING	
Goodiption	DEV	0	0	0	0	0																ĺ

(1) Functions

- a) The P2PRD command changes the variable size of the P2P parameter block and the READ device area. (Individual/continuous reading can be changed.)
- b) The P_NUM, BL_NUM and VAL_NUM are used to specify the P2P parameters, blocks and variables and change the variable size and device to VAL_SIZE(In the case of continuous reading, VAL_SIZE means variable size, and it is the size of variable type in the case of individual reading) and DEV, respectively. However, only direct variables can be entered for DEV. (e.g., %MW100)

(2) Errors If the setting is outside the allowable range of P2P parameter set in XG5000, the corresponding error code occurs.

STAT_	Contents	Details					
NUM							
1	P2P number setting error	Occurs when a value other than P_NUM(1~8) is set					
2	Block number setting error	Occurs when a value other than BL_NUM(0~63) is set					
3	Variable number setting error	Occurs when the variable number that is not allowed in the P2P parameter set in XG5000 is entered.					
4	Slot does not exist	-					
5	Module mismatch	Not a communication module					
6	Module mismatch	Communication module that cannot be used for the command					
10	Modbus setting error	Impossible to enter the offset of Modbus(e.g., 0x10000) because only direct variables can be entered for DEV					
11	Variable size setting error	Occurs when the variable size that is not allowed in the P2P parameter set in XG5000 is entered					
12	Data type setting error	Occurs when the variable type that is not allowed in the P2P parameter set in XG5000 is entered					

3) P2PWR

F	unction block		Descriptions
BOOL — USINT — USINT — USINT — USINT — ANY_BIT —	P2PWR REQ DONE P_NUM STAT BL_NUM VAL_NUM VAL_SIZE DEV	— BOOL — USINT	Input REQ: Function block execution request P_NUM: P2P number BL_NUM: Block number VAL_NUM: Variable number VAL_SIZE: Variable size DEV: Device(only direct variables can be entered) Output DONE: Maintain 1 after initial operation STAT: Complete and ERR information

ANY type variable description	Variable name	BOOL	BYTE	WORD	DWORD	LWORD	SINT	INT	DINT	LINT	USINT	TNIN	UDINT	ULINT	REAL	LREAL	TIME	DATE	TOD	DT	STRING
•	DEV	0	0	0	0	0															

(1) Functions

- a) The P2PWR command changes the variable size of the P2P parameter block and the WRITE device area. (Individual/continuous writing can be changed.)
- b) The P_NUM, BL_NUM and VAL_NUM are used to specify the P2P parameters, blocks and variables and change the variable size and device to VAL_SIZE(In the case of continuous writing, VAL_SIZE means variable size, and it is the size of variable type in the case of individual writing) and DEV, respectively. However, only direct variables can be entered for DEV. (e.g., %MW100)

(2) Errors

If the setting is outside the allowable range of P2P parameter set in XG5000, the corresponding error code occurs.

STAT_NUM	Contents	Details
1	P2P number setting error	Occurs when a value other than P_NUM(1~8) is set
2	Block number setting error	Occurs when a value other than BL_NUM(0~63) is set
3	Variable number setting error	Occurs when the variable number that is not allowed in the P2P parameter set in XG5000 is entered.
4	Slot does not exist	-
5	Module mismatch	Not a communication module
6	Module mismatch	Communication module that cannot be used for the command
10	Modbus setting error	Impossible to enter the offset of Modbus(e.g., 0x10000) because only direct variables can be entered for DEV
11	Variable size setting error	Occurs when the variable size that is not allowed in the P2P parameter set in XG5000 is entered
12	Data type setting error	Occurs when the variable type that is not allowed in the P2P parameter set in XG5000 is entered

15.9 LS Bus Protocol

15.9.1 LS Bus Protocol Architecture

LS Bus protocol communication is a protocol that is applied when communicating with the inverter of its company. The use of the data read/write function and monitoring function of various internal device areas makes it possible to easily construct a communication system intended by a user without settings specific to the inverter of its company.

LS Bus protocol functions provided by XMC are as follows.

- ◆ Continuous reading of device
- Continuous writing of device
- 1) Frame structure
 - (1) Basic structure
 - (a) Request frame (external communication device → Cnet)

	, ,	,	,		
Header	Statio	Command	Structured data area	Frame check	Tail
(ENQ)	n No.	Communa	Structured data area	(BCC)	(EOT)

(b) ACK response frame (Cnet → external communication device, when receiving data normally)

Header	Statio	Command	Ctructured data area	Frame check	Tail
(ACK)	n No.	Command	Structured data area	(BCC)	(EOT)

(c) NAK response frame (Cnet → external communication device, when receiving data abnormally)

Header	Statio	Command	Error code(ASCII 4 Byte)	Frame check	Tail
(NAK)	n No.	Command	Error code(ASCII 4 Byte)	(BCC)	(EOT)

Notice

- (1) The numeric data of all frames is displayed in ASCII code for hexadecimal values unless otherwise specified. The items displayed in hexadecimal are as follows.
 - Station number
 - The command type supports R(read) and W(write).
 - All contents of data
- (2) For hexadecimal data, 'H' is prefixed to the number in the frame, as in H01,H12345,H34,H12,H89AB and etc. to indicate that the data is hexadecimal.
- (3) The available frame length is up to 44 bytes.
- (4) The control codes used are summarized below.

Code	Hex value	Name	Control contents
ENQ	H05	Enquire	Start code of request frame
ACK	H06	Acknowledge	Start code of ACK response frame
NAK	H15	Not Acknowledge	Start code of NAK response frame
EOT	H04	End of Text	Frame end ASCII code for request

(2) Command frame sequence

Command request frame sequence

EN	Stati	Comma	Formatted data	всс	EOT
Q	No.				

Stati Comma ACK Formatted data BCC EOT on nd No.

(Inverter ACK response)

NAK	Station No.	Command	Formatted data	всс	EOT

(Inverter NAK response)

2) List of commands

The command types used in the LS bus protocol are as follows.

Division	Cor	nmand					
DIVISION	Comm	nand type	Processing contents				
Item	Symbol	ASCII code					
Continuous read	R	H52	Word-type inverter variables are read in word units.				
Continuous write	W	H57	Word-type inverter variables are written in word units.				

15.9.2 Command Details

1) Inverter continuous write (W)

This command is used to directly specify addresses in inverter and write them in word units.

(1) LS Bus client request format

Format name	Header	Station No.	Comman d	Data size	Inverter address	Data	 Frame check	Tail
Frame(exa mple)	ENQ	H20	W	H6	0100	H00E2	BCC	EOT
ASCII code	H05	H3230	H57	H36	H30313030	H30304532	`	H04

Division	Descriptions
BCC	Only one low-order byte of the value obtained by adding one byte each to the ASCII value excluding the values of ENQ and EOT is converted into ASCII and added to BCC.
Data size	The number of words to be written is specified. When converted to ASCII, it ranges from H01(ASCII value: 3031) to H08(ASCII value: 3038).
Inverter address	The inverter address to be read is entered. It should be ASCII value with 4 characters, and only numbers are allowed.
Data	If the value to be written in the inverter address 0100 area is H'A, the data format should be H000A.

• Usage example

If the data type to be written is WORD, and the data to be written is H1234, its ASCII code conversion value is 31323334, and this content should be contained in the data area. That is, the highest value is transmitted first, and the lowest value should be transmitted for the last time.

Notice

• Only word is supported as a device data type.

(2) Inverter response format(ACK response)

Format name	Header	Station No.	Comma nd	Data	Frame check	Tail
Frame(exampl e)	ACK	H20	W	H00E2	 BCC	EOT
ASCII value	H06	H3230	H57	H30304532		H04

Division	Descriptions
BCC	Only one low-order byte of the value obtained by adding one byte each to the ASCII value excluding the
ВСС	values of ENQ and EOT is converted into ASCII and added to BCC.

(3) Inverter response format(NAK response)

Format name	Header	Station No.	Command	Error code (ASC2 Byte)	Frame check	Tail
Frame(exam ple)	NAK	H20	W	H12	BCC	EOT
ACSII value	H15	H3230	H57	H3132		H04

Division	Descriptions
BCC	Only one low-order byte of the value obtained by adding one byte each to the ASCII value excluding the
ВСС	values of ENQ and EOT is converted into ASCII and added to BCC.
Error godo	The types of errors are indicated by the contents of 1Byte in Hex(2 Byte in ASCII code).
Error code	Please refer to the error code of the inverter for details.

(4) Usage example

This example supposes that "H00FF" is written in 1230 of inverter station No. 1.

(a) XMC request format (XMC \rightarrow inverter)

Format name	Header	Station No.	Comman d	Data length	Inverter address	Data	Frame check	Tail
Frame (example)	ENQ	H01	W	H1	1230	H00FF	BCC	EOT
ASCII value	H05	H3031	H57	H3031	H31323330	H30304646		H04

(b) ACK response after command execution (XMC \leftarrow inverter)

Format name	Header	Station No.	Command	Data	Frame check	Tail
Frame(example)	ACK	H01	W	H00FF	BCC	EOT
ASCII value	H06	H3031	H57	H30304646		H04

(c) NAK response after command execution (XMC ← inverter)

Format name	Header	Station No.	Command	Error code	Frame check	Tail
Frame(example)	NAK	H01	W	H12	BCC	EOT
ASCII value	H15	H3031	H57	Error code(2 Byte)		H04

2) Inverter continuous read(R)

This function is to continuously read as much data as the specified amount from the designated address of the PLC device.

(1) PC request format

Format name	Header	Station No.	Comman d	Inverter address	Number of data	Frame check	Tail
Frame (example)	ENQ	H10	R	0100	H5	BCC	EOT
ASCII value	H05	H3130	H52	H30313030	H35		H04

Division	Descriptions
BCC	Only one low-order byte of the value obtained by adding one byte each to the ASCII value excluding
BCC	the values of ENQ and EOT is converted into ASCII and added to BCC.
Data size	The number of words to be written is specified. When converted to ASCII, it ranges from H01(ASCII
Dala Size	value: 3031) to H08(ASCII value: 3038).
Inverter address	The inverter address to be read is entered. It should be ASCII value with 4 characters, and only
inverter address	numbers are allowed.

Notice

• Only word is supported as a device data type.

(2) Inverter response format(ACK response)

Format name	Header	Station No.	Command	Data	Frame check	Tail
Frame(example)	ACK	H20	R	H00E2	 BCC	EOT
ASCII value	H06	H3230	H52	H30304532		H04

Division	Descriptions
BCC	Only one low-order byte of the value obtained by adding one byte each to the ASCII value excluding the
	values of ENQ and EOT is converted into ASCII and added to BCC.

(3) Inverter response format(NAK response)

Format name	Header	Station No.	Command	Error code (ASC2 Byte)	Frame check	Tail
Frame(example)	NAK	H20	R	H12	BCC	EOT
ACSII value	H15	H3230	H52	H3132		H04

Division	Descriptions
BCC	Only one low-order byte of the value obtained by adding one byte each to the ASCII value excluding the
	values of ENQ and EOT is converted into ASCII and added to BCC.
Error code	The types of errors are indicated by the contents of 1Byte in Hex(2 Byte in ASCII code).
	Please refer to the error code of the inverter for details

(4) Usage example

This example supposes that data 1 word from 1230 of the inverter station No. 1 is read.

(a) XMC request format (XMC \rightarrow inverter)

Format name	Header	Station No.	Comman d	Inverter address	Data size	Frame check	Tail
Frame (example)	ENQ	H01	R	1230	H1	BCC	EOT
ASCII value	H05	H3031	H52	H31323330	H31		H04

(b) ACK response after command execution (XMC \leftarrow inverter)

Format name	Header	Station No.	Command	Data	Frame check	Tail
Frame(example)	ACK	H01	R	H1234	BCC	EOT
ASCII value	H06	H3031	H52	H31323334		H04

(c) NAK response after command execution (XMC ← inverter)

Format name	Header	Station No.	Command	Error code	Frame check	Tail
Frame(example)	NAK	H01	R	H12	BCC	EOT
ASCII value	H15	H3031	H52	H3132		H04

15.10 Modbus Protocol

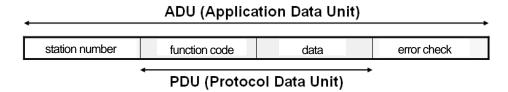
15.10.1 Modbus Communication Setting Procedures

Modbus protocol is a standardized open protocol used for communication between client and server, and it can read/write data according to function code. The inter-device communication using the Modbus protocol uses clientserver function that is processed by only one client

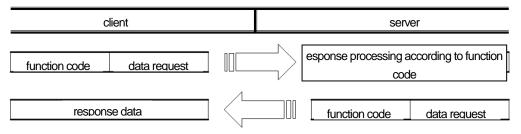
Procedures for sending/receiving data to/from communication devices by using Modbus communication are shown below.

Default Parameter Settings
P2P Channel Settings
P2P Parameter Settings
Writing P2P Parameters
Link Enable

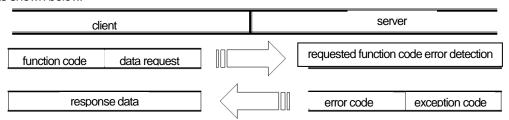
15.10.2 Modbus Protocol


1) Protocol type

The communication modes of Modbus are divided into ASCII mode and RTU mode.


Charac	teristics	ASCII mode	RTU mode	
Code system		ASCII code	8-bit binary code	
Number of	Start bit	1	1	
data per	Data bit	7	8	
character	Parity bit	Even, Odd, None	Even, Odd, None	
	Stop bit	1 or 2	1 or 2	
Error	check	LRC(Longitudinal Redundancy Check)	CRC (Cyclical Redundancy Check)	
Start o	of frame	Colon (:)	3.5 character no-response time	

2) Protocol configuration


Modbus protocol is largely composed of PDU consisting of function code and data and ADU with the partner station number and error check added to PDU.

The processing procedure for normal Modbus communication is shown below.

When a Modbus communication error occurs, the server sends a response that includes the error code to the client as shown below.

When an abnormal frame is received, the server sends an error code and an exception code to the client. The error code is represented by adding 80(Hex) value to the function code, and the exception code indicates the details of the error. The contents for each code are shown below.

Code	Code name	Meaning
01	Function code error	Function code error
02	Address error	Address allowable range excess error
03	Data setting error	Data value is not allowed
04	Server station error	Server(slave)station is in error state
05	Retransmission request	Requests the client to make a request again at a proper time because the content to be processed is too huge for the server to handle at the moment
06	Processing time delay	The server station takes time to process. The master should make a request again.

15.10.3 Frame Structure

1) Frame structure in ASCII mode

The frame structure in Modbus ASCII mode is shown below.

Division	Start	Station No.	Function code	Data	Error check	End
Size(byte)	1	2	2	N	2	2

(1) Characteristics of ASCII mode

- (a) In ASCII mode, the start of a frame distinguished by a colon (:), which is a 1-byte ASCII code, and the end of a frame by 'CRLF'.
- (b) It allows a maximum interval of 1 second between characters.
- (c) The error checking method uses LRC to convert ASCII by taking two's complement to the sum of a fame excluding the start/end of the frame to determine whether or not an error occurs.

(2) Address area

- (a) It consists of 2 bytes.
- (b) Station number can be set from 0 to 31 when using Cnet I/F.
- (c) Station No. 0 is used as the client station number.
- (d) The server responses with its own address in the response frame so that it can identify the client's response when it responds.

(3) Data area

- (a) Data is transmitted using ASCII data, and the structure of data is changed according to each function code.
- (b) It responds with response data in response to a normal frame
- (c) Error code is used to respond when an abnormal frame is received.

(4) Error check area

(a) The error checking method uses LRC to convert ASCII by taking two's complement to the sum of a fame excluding the start/end of the frame to determine whether or not an error occurs.

2) Frame structure in RTU mode

The frame structure in Modbus RTU mode is shown below.

Division	Start	Station No.	Function code	Data	Error check	End
Size(byte)	ldle time	1	1	N	2	Idle time

(1) Characteristics of RTU mode

- (a) It communicates using hexadecimal numbers.
- (b) The start character is the station number, and the end of a frame is distinguished by CRC error check.
- (c) The start and end of the frame is distinguished by adding 1-bit idle time to the start and end of the frame.
- (d) It has an interval of at least 3.5 character time between frames and recognizes the frame as an independent frame when 1.5 character time passes between characters.

(2) Address area

- (a) It consists of 1 byte.
- (b) Station number can be set from 0 to 31 when using XGT Cnet I/F module.
- (c) Station No. 0 is used as the client station number.
- (d) The server responses with its own address in the response frame so that it can identify the client's response when it responds.

(3) Data area

- (a) Data is transmitted using Hex data, and the data structure is changed according to each function code.
- (b) It responds with response data in response to a normal frame
- (c) Error code is used to respond when an abnormal frame is received.

(4) Error check area

(a) Two-byte CRC check method is used to determine whether the frame is normal or abnormal.

(5) Modbus address rule

(a) The address in the data starts from 0 and is equal to the value obtained by subtracting 1 from the Modbus memory. That is, Modbus address 2 is the same as the address 1 in the data.

3) Representation of data and address

The characteristics of representing the data and address of Modbus protocol are as follows.

- (1) Hexadecimal (Hex.) data is used as a default format.
- (2) Hex data is converted into ASCII code and used in ASCII mode.
- (3) Hex data is used in RTU mode.
- (4) The meanings for each function code are summarized below.

Code(Hex)	Use	Usage area	Address	Maximum response data
01	Bit individual/continuous write	Bit output	0XXXX	2000 bits
02	Bit individual/continuous read	Bit input	1XXXX	2000 bits
03	Word individual/continuous read	Word output	4XXXX	120 words
04	Word individual/continuous read	Word input	3XXXX	120 words
05	Bit individual write	Bit output	0XXXX	1 bit
06	Word individual write	Word output	4XXXX	1 word
0F	Bit continuous write	Bit output	0XXXX	1968 bits
10	Word continuous write	Word output	4XXXX	120 words

4) Reading data of bit format in bit output area (01)

(1) Reading bit of output area(function code: 01)

The structure of request and response frame when reading the data of bit format in output area is as follows. The tail of frame is applied only in ASCII code.

(a) Request frame

Frame	Station No.	Function code(01)	Address	Data size	Frame error check	Tail(CRLF)
Size(byte)	1	1	2	2	2	2

(b) Response frame (when receiving a normal frame)

Frame	Station No.	Function code(01)	Number of bytes	Data	Frame check error	Tail(CRLF)
Size(byte)	1	1	1	N	2	2

(c) Response frame (when receiving an abnormal frame)

Frame	Station No.	Error code	Exception code	Tail(CRLF)
Size(byte)	1	1	1	2

(2) Frame details

- (a) Station number: It means the station number of the slave to read the bits of output area.
- (b) Function code: '01' means bit continuous/individual reading of output area.
- (c) Address: It means the start address of data to be read and consists of 2 bytes, when the start address conforms to the Modbus address rule.
- (d) Data size: It is the size of data to read and consists of 2 bytes.
- (e) Frame error check: It uses LRC in the case of ASCII mode or CRC error check method in the case of STU mode and consists of 2 bytes.
- (f) Tail: It is applied only in the case of ASCII mode, and CRLF is added after LRC.
- (g) Number of bytes: It means the number of bytes of data that responds.
- (h) Data: It is sent in byte units with the address of request frame as the start address.
- (i) Error code: It is represented by adding 80 (Hex) values to the function code and transmitted in 81(Hex) for the bit reading of output area.
- (j) Exception code: It means the detailed error description and consists of 1 byte.

(3) Frame example

This is an example of reading bits from 20 to 38 in server station No. 1 that operates in Modbus RTU mode.

(a) Request frame

	Station	Function	Add	dress	Data	size	
Division	No.	code	High-order byte	Low-order byte	High-order byte	Low-order byte	Error check
Frame	01	01	00	13	00	13	CRC

(b) Response frame (when receiving a normal frame)

Division	Station No.	Functio n code	Number of bytes		Data		
Frame	01	01	03	12	31	05	CRC

Division	Division Station No.		Exception code	Error check	
Frame	01	81	02	CRC	

5) Reading data of bit type in bit input area (02)

(1) Bit reading of input area

The structures of request and response frames when reading the bit-type data of input area are as follows. The tail of the frame is applied only in the case of ASCII mode.

(a) Request frame

Division	Station No.	Function code(02)	Address	Data size	Frame error check	Tail(CRLF)
Size(byte)	1	1	2	2	2	2

(b) Response frame (when receiving a normal frame)

Division	Station No.	Function code(02)	Number of bytes	Data	Frame error check	Tail(CRLF)
Size(byte)	1	1	1	N	2	2

(c) Response frame (when receiving an abnormal frame)

Division	Station No.	Error code	Exception code	Tail(CRLF)
Size(byte)	1	1	1	2

(2) Frame details

- (a) Station number: It means the station number of the slave to read the bits of input area.
- (b) Function code: '02' means bit continuous/individual reading of input area.
- (c) Address: It means the start address of data to be read and consists of 2 bytes, when the start address conforms to the Modbus address rule.
- (d) Data size: It is the size of data to read and consists of 2 bytes.
- (e) Frame error check: It uses LRC in the case of ASCII mode or CRC error check method in the case of STU mode and consists of 2 bytes.
- (f) Tail: It is applied only in the case of ASCII mode, and CRLF is added after LRC.
- (g) Number of bytes: It means the number of bytes of data that responds.
- (h) Data: It is sent in byte units with the address of request frame as the start address.
- (i) Error code: It is represented by adding 80 (Hex) values to the function code and transmitted in 82(Hex) for the bit reading of output area.
- (j) Exception code: It means the detailed error description and consists of 1 byte.

(3) Frame example

This is an example of reading bits from 20 to 28 in server station No. 1 that operates in Modubus RTU mode.

(a) Request frame

	Stati	Functio	Address Data size				
Division	on No.	n code	High-order byte	Low-order byte	High-order byte	Low-order byte	Error check
Frame	01	02	00	13	00	13	CRC

(b) Response frame (when receiving a normal frame)

Division	Station No.	Function code	Number of bytes	Data E		Error check	
Frame	01	02	03	12	31	05	CRC

Division	Station No.	Function code	Exception code	Error check	
Frame	01	82	02	CRC	

6) Reading data of word type in word output area (03)

(1) Word reading of output area

The structures of request and response frames when reading the word-type data of the output area are as follows. The tail of the frame is applied only in the case of ASCII mode.

(a) Request frame

Divis	ion	Station No.	Function code(03)	Address	Data size	Frame error check	Tail(CRLF)
Size(b	yte)	1	1	2	2	2	2

(b) Response frame (when receiving a normal frame)

Division	Station No.	Function code(03)	Number of bytes	Data	Frame check error	Tail(CRLF)
Size(byte)	1	1	1	N*2	2	2

(c) Response frame (when receiving an abnormal frame)

Division	Station No.	Error code	Exception code	Tail(CRLF)
Size(byte)	1	1	1	2

(2) Frame details

- (a) Station number: It means the station number of the slave to read the word type data of output area.
- (b) Function code: '03' means word continuous/individual reading of input area.
- (c) Address: It means the start address of data to be read and consists of 2 bytes, when the start address conforms to the Modbus address rule.
- (d) Data size: It is the size of data to read and consists of 2 bytes.
- (e) Frame error check: It uses LRC in the case of ASCII mode or CRC error check method in the case of STU mode and consists of 2 bytes.
- (f) Tail: It is applied only in the case of ASCII mode, and CRLF is added after LRC.
- (g) Number of bytes: It means the number of bytes of data that responds.
- (h) Data: It is sent in byte units with the address of request frame as the start address, when the data is word type, so its size is the same as twice the number of bytes..
- (i) Error code: It is represented by adding 80 (Hex) values to the function code and transmitted in 83(Hex) for the bit reading of output area.
- (j) Exception code: It means the detailed error description and consists of 1 byte.

(3) Frame example

This is an example of reading the data of word type from 108 to 110 in server station No. 1 that operation in Modbus RTU mode.

(a) Request frame

	Station	Function	Ad	ldress	Data	size	
Division	No.	Function code	High-order byte	Low-order byte	High-order byte	Low-order byte	Error check
Frame	01	03	00	6B	00	03	CRC

(b) Response frame (when receiving a normal frame)

Division	Station No.	Function code	Number of bytes			Da	ata			Error check
Frame	01	03	06	13	12	3D	12	40	4F	CRC

Division	Station No.	Function code	Exception code	Error check
Frame	01	83	04	CRC

7) Reading data of word type in word input area (04)

(1) Word reading of input area

The structures of request and response frames when reading the word-type data of input area are as follows. The tail of the frame is applied only in the case of ASCII mode.

(a) Request frame

(,		-				
Division	Station No.	Function code(04)	Address	Data size	Frame error check	Tail(CRLF)
Size(byte)	1	1	2	2	2	2

(b) Response frame (when receiving a normal frame)

Division	Station No.	Function code(04)	Number of bytes	Data	Frame error check	Tail(CRLF)
Size(byte)	1	1	1	N*2	2	2

(c) Response frame (when receiving an abnormal frame)

Division Station No.		Error code	Exception code	Tail(CRLF)	
Size(byte)	1	1	1	2	

(2) Frame details

- (a) Station number: It means the station number of the slave to read the word type data of input area.
- (b) Function code: '04' means word continuous/individual reading of input area.
- (c) Address: It means the start address of data to be read and consists of 2 bytes, when the start address conforms to the Modbus address rule.
- (d) Data size: It is the size of data to read and consists of 2 bytes.
- (e) Frame error check: It uses LRC in the case of ASCII mode or CRC error check method in the case of STU mode and consists of 2 bytes.
- (f) Tail: It is applied only in the case of ASCII mode, and CRLF is added after LRC.
- (g) Number of bytes: It means the number of bytes of data that responds.
- (h) Data: It is sent in byte units with the address of request frame as the start address, when the data is word type, so its size is the same as twice the number of bytes.
- (i) Error code: It is represented by adding 80 (Hex) values to the function code and transmitted in 84(Hex) for the bit reading of output area.
- (j) Exception code: It means the detailed error description and consists of 1 byte

(3) Frame example

This is an example of reading the data of word type stored in the input area No. 9 of server No. 1 that operates in Modbus RTU mode.

(a) Request frame

	Stati Functio		Address		Data		
Division	on No.	n code	High-order byte	Low-order byte	High-order byte	Low-order byte	Error check
Frame	01	04	00	08	00	01	CRC

(b) Response frame (when receiving a normal frame)

Division	Station No.	Function code	Number of bytes	Da	ıta	Error check
Frame	01	04	02	00	0A	CRC

(-)	(-)									
Division	Station No.	Function code	Exception code	Error check						
Frame	01	84	04	CRC						

8) Individual writing of bit-type data in bit output area (05)

(1) Bit individual writing of output area

The structures of request and response frames when writing data of bit type in output area are as follows. The tail of the frame is applied only in the case of ASCII mode.

(a) Request frame

Division	Station No.	Function code(05)	Address	Output value	Frame error check	Tail(CRLF)
Size(byte)	1	1	2	2	2	2

(b) Response frame (when receiving a normal frame)

Division	Station No.	Function code(05)	Address	Output value	Frame error check	Tail(CRLF)
Size(byte)	1	1	2	2	2	2

(c) Response frame (when receiving an abnormal frame)

Division	Station No.	Error code	Exception code	Tail(CRLF)
Size(byte)	1	1	1	2

(2) Frame details

- (a) Station number: It means the station number of the slave to read the bit type data of input area.
- (b) Function code: '05' means bit continuous/individual reading of input area.
- (c) Address: It means the start address of data to be written and consists of 2 bytes, when the start address conforms to the Modbus address rule.
- (d) Output value: It is the bit value of address set in the address operates On, it is indicated by FF00(Hex), whereas if it operates Off, it is indicated by 0000(Hex).
- (e) Frame error check: It uses LRC in the case of ASCII mode or CRC error check method in the case of STU mode and consists of 2 bytes.
- (f) Tail: It is applied only in the case of ASCII mode, and CRLF is added after LRC.
- (g) Number of bytes: It means the number of bytes of data that responds.
- (h) Error code: It is represented by adding 80 (Hex) values to the function code and transmitted in 85(Hex) for the bit reading of output area.
- (i) Exception code: It means the detailed error description and consists of 1 byte.

(3) Frame example

This is an example of turning the 9th bit of the output area On in server station No. 1 that operates Modbus RTU mode.

(a) Request frame

	Stati	Functio	Address		Output		
Division	on	n code	High-order	Low-order	High-order	Low-order	Error check
	No.	II Code	byte	byte	byte	byte	
Frame	01	05	00	80	FF	00	CRC

(b) Response frame (when receiving a normal frame)

, ,	`	-	,				
Stati		Functio	Address		Output		
Division	on	n code	High-order	Low-order	High-order	Low-order	Error check
	No.	II COUE	byte	byte	byte	byte	
Frame	01	05	00	08	FF	00	CRC

Division	Station No.	Function code	Exception code	Error check
Frame	01	85	04	CRC

9) Individual writing of word-type data in word output area (06)

(1) Word individual writing of output area

The structures of request and response frames when writing data of word type in output area are as follows. The tail of the frame is applied only in the case of ASCII mode.

(a) Request frame

Division	Station No.	Function code(06)	Address	Output value	Frame error check	Tail(CRLF)
Size(byte)	1	1	2	2	2	2

(b) Response frame (when receiving a normal frame)

Division	Station No.	Function code(06)	Address	Output value	Frame error check	Tail(CRLF)
Size(byte)	1	1	2	2	2	2

(c) Response frame (when receiving an abnormal frame)

Division	Station No.	Error code	Exception code	Tail(CRLF)
Size(byte	1	1	1	2

(2) Frame details

- (a) Station number: It means the station number of the slave to read the word type data of input area.
- (b) Function code: '06' means word continuous/individual reading of input area.
- (c) Address: It means the start address of data to be written and consists of 2 bytes, when the start address conforms to the Modbus address rule.
- (d) Output value: It means the data value to be written in address set in the address.
- (e) Frame error check: It uses LRC in the case of ASCII mode or CRC error check method in the case of STU mode and consists of 2 bytes.
- (f) Tail: It is applied only in the case of ASCII mode, and CRLF is added after LRC.
- (g) Number of bytes: It means the number of bytes of data that responds.
- (h) Error code: It is represented by adding 80 (Hex) values to the function code and transmitted in 86(Hex) for the bit reading of output area.
- (i) Exception code: It means the detailed error description and consists of 1 byte.

(3) Frame example

This is an example of writing 0003(hex) in the 9th output area of word type in server station No. 1 that operates in Modbus RTU mode.

(a) Request frame

	Stati	Functio	Add	ress	Output	t value	
Division	on	n code	High-order	Low-order	High-order	Low-order	Error check
	No.	n code	byte	byte	byte	byte	
Frame	01	06	00	08	00	03	CRC

(b) Response frame (when receiving a normal frame)

- /		- (3					
	Stat		Functio	Address		Output		
	Division	on n code		High-order Low-order		High-order	Low-order	Error check
		No.	11 COUC	byte	byte	byte	byte	
	Frame	01	06	00	08	00	03	CRC

Division		Station No.	Function code	Exception code	Error check
	Frame	01	86	02	CRC

10) Continuous writing of bit-type data in bit output area (0F)

(1) Bit continuous writing of output area

The structures of request and response frames for continuous writing of bit-type data in output area are as follows. The tail of the frame is applied only in the case of ASCII mode.

(a) Request frame

Division	Station No.	Function code (0F)	Address	Number of outputs	Data size	Output value	Frame error check	Tail(CRLF)
Size(byte)	1	1	2	2	1	Ν	2	2

(b) Response frame (when receiving a normal frame)

Division	Station No.	Function code(0F)	Address	Number of outputs	Frame error check	Tail(CRLF)
Size(byte)	1	1	2	2	2	2

(c) Response frame (when receiving an abnormal frame)

Division	Station No.	Error code	Exception code	Tail(CRLF)
Size(byte)	1	1	1	2

(2) Frame details

- (a) Station number: It means the station number of the slave to read the bit type data of input area.
- (b) Function code: '0F' means bit continuous/individual reading of input area.
- (c) Address: It means the start address of data to be written and consists of 2 bytes, when the start address conforms to the Modbus address rule.
- (d) Number of outputs: It means the number of data to be written and consist of 2 bytes. Example) If the address writes 10 data consecutively from No. 20, the number of outputs is 00A (Hex).
- (e) Data size: The number of outputs is represented by a byte value. That is, if the data size is 1, the number of continuous write data is 8. Example) When 10 consecutive bits of data is written, the data size is 2.
- (f) Output value: It means the data value to be written in address set in the address.
- (g) Frame error check: It uses LRC in the case of ASCII mode or CRC error check method in the case of STU mode and consists of 2 bytes.
- (h) Tail: It is applied only in the case of ASCII mode, and CRLF is added after LRC.
- (i) Number of bytes: It means the number of bytes that responds.
- (j) Error code: It is represented by adding 80 (Hex) values to the function code and transmitted in 8F(Hex) for the bit reading of output area.
- (k) Exception code: It means the detailed error description and consists of 1 byte.

(3) Frame example

This is an example of writing 10 consecutive bit values from the 20th address in the server No. 1 that operates in Modbus RTU mode.

Example) Data value to be continuously written

Bit value	1	1	0	0	1	1	0	1	0	0	0	0	0	0	0	1
Hex		(2)			()			•	1	
Address	27	26	25	24	23	22	21	20	-	-	-	-	-	-	29	28

(a) Request frame

	Statio	Function	Addres	s		Number of outputs		Output	t value	Error
Division	n No.	code	High-order byte	Low- order byte	High- order byte	Low- order byte	Data size	High- order byte	Low- order byte	check
Frame	01	0F	00	13	00	0A	02	CD	01	CRC

(b) Response frame (when receiving a normal frame)

	Station		Address			Number of outputs		
Division	No.	Function code	High-order byte	Low-order byte	High-order byte	Low-order byte	Error check	
Frame	01	04	00	13	00	0A	CRC	

Division	Station No.	Function code	Exception code	Error check
Frame	01	8F	01	CRC

11) Continuous writing of word-type data in word output area (10)

(1) Word continuous writing of output area

The structures of request and response frames for continuous writing of word-type data in output area are as follows. The tail of the frame is applied only in the case of ASCII mode.

(a) Request frame

Division	Station No.	Function code(10)	Address	Number of outputs	Data size	Output value	Frame error check	Tail(CRLF)
Size(byte)	1	1	2	2	1	N*2	2	2

(b) Response frame (when receiving a normal frame)

Division	Station No.	Function code(10)	Address	Number of outputs	Frame error check	Tail(CRLF)
Size(byte)	1	1	2	2	2	2

(c) Response frame (when receiving an abnormal frame)

Division	Station No.	Error code	Exception code	Tail(CRLF)
Size(byte)	1	1	1	2

(2) Frame details

- (a) Station number: It means the station number of the slave to read the bit type data of input area.
- (b) Function code: '10' means bit continuous/individual reading of input area.
- (c) Address: It means the start address of data to be written and consists of 2 bytes, when the start address conforms to the Modbus address rule.
- (d) Number of outputs: It means the number of data to be written and consist of 2 bytes. Example) If the address writes 10 data consecutively from No. 20, the number of outputs is 00A (Hex).
- (e) Data size: The number of outputs is represented by a byte value. That is, if the data size is 1, the number of continuous write data is 8.
 - Example) When 10 consecutive bits of data is written, the data size is 2.
- (f) Output value: It means the data value to be written in address set in the address.
- (g) Frame error check: It uses LRC in the case of ASCII mode or CRC error check method in the case of STU mode and consists of 2 bytes.
- (h) Tail: It is applied only in the case of ASCII mode, and CRLF is added after LRC.
- (i) Number of bytes: It means the number of bytes that responds
- (j) Error code: It is represented by adding 80 (Hex) values to the function code and transmitted in 90(Hex) for the bit reading of output area.
- (k) Exception code: It means the detailed error description and consists of 1 byte.

(3) Frame example

This is an example of writing 2 consecutive words from the 20th address in the server station No. 1 that operates in Modbus RTU mode.

Example) Data value to be continuously written

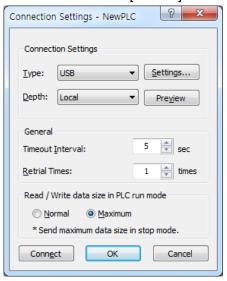
Hex	С	D	0	1	0	0	0	Α
Address		2	()			2	1	

(a) Request frame

	Station	Functi	Add	ress		ber of outs	Data					Error
Division	No.	on code	High- order bit	Low- order bit	High- order byte	Low- order byte	size		Outpu	t valu	е	check
Frame	01	10	00	13	00	02	04	CD	01	00	0A	CRC

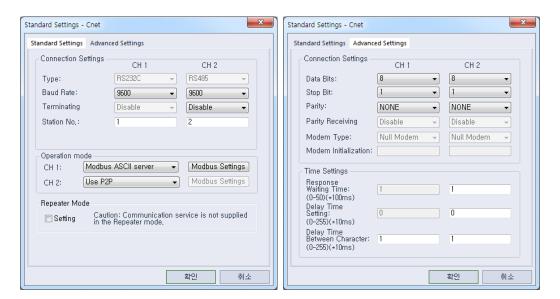
(b) Response frame (when receiving a normal frame)

		Functio	Add	ress	Number o	of outputs	Error
Division	Station No.	n code	High-order byte	Low-order byte	High-order byte	Low-order byte	check
Frame	01	10	00	13	00	02	CRC


Division	Station No	Function code	Exception code	Error check
Frame	01	90	01	CRC

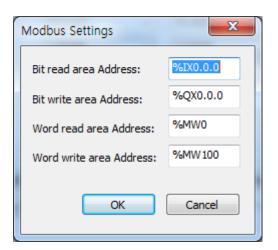
15.10.4 Modbus server

This is used when the external device that is trying to communicate operates as a Modbus client. It supports both ASCII mode and RTU mode of Modbus, each operation mode can be set in [Basic setting] window.

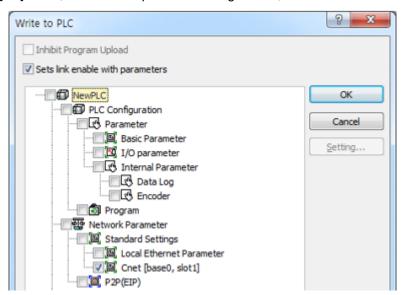

- 1) How to use a Modbus ASCII Server
 - (1) Connection setup

 - (b) Set connection options for your environment and click [Connect].

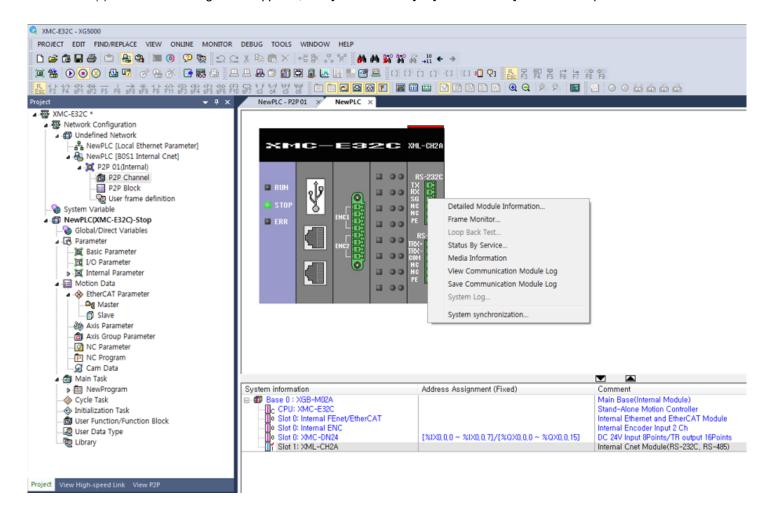
(2) Default setting


- (a) Double-click the serial communication module in the project window to launch the [Preferences] window and set the connection. Set the communication type, communication speed, data bit, stop bit, and station number in the menu.
- (b) The delay time can be set only when RS-485 is used, and the response wait time can be set only when using P2P as the operation mode in RS-485 communication.

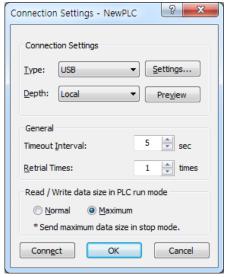
- (3) Select operating mode Select the Modbus ASCII server
- (4) Modbus settings
 - (a) When the Modbus ASCII server is selected as the operation mode, [Modbus setting] becomes active.
 - (b) Bit Read Area Start Address: Indicates the start address of the bit read area and consists of 5 digits. The first four digits represent the word value, and the remaining digits represent the bit value. Ex) IX0.0.0: I Device area 0-th bit of 0th word is set as start address of bit read area.
 - (c) Bit Write Area Start Address: Indicates the start address of the bit write area and consists of 5 digits. The first four digits represent the word value, and the remaining digits represent the bit value. Ex) QX0.0.0: The 0th bit of the tenth word of the Q device area is set as the start address of the bit read area.
 - (d) Word read area start address: It indicates the start address of the word read area and consists of 4 digits.


 Ex) The 0th word of MW0: M device area is set as the start address of the word read area.
 - (e) Word write area start address: It is the start address of the word write area and consists of 4 digits.

 Ex) MW100: It is the case that the 100th word of the M device area is set as the start address of the word write area.

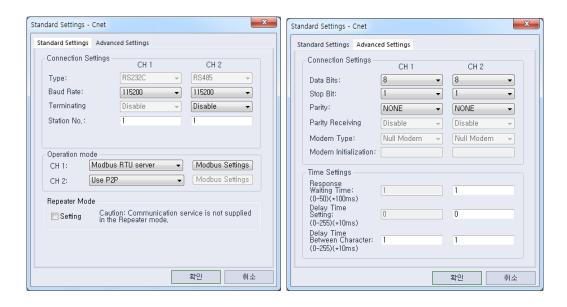

(5) Write parameters

- (a) Select [Online] \rightarrow [Write] or click the icon ($\stackrel{\clubsuit}{\Longrightarrow}$).
- (b) Check (✓) the module with the default settings and click [OK].
- (c) Click the [OK] button, and when the parameter writing finishes, reset each module.



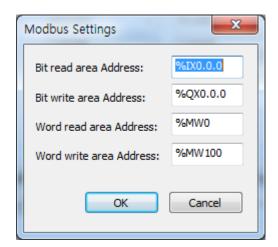
Chapter15 Built-in Cnet Communication

- (6) Check operation
 - (a) Select [Online] \rightarrow [Communication Module Settings] \rightarrow [System Diagnosis] or click the icon (\boxtimes).
 - (b) Click the communication module whose status you want to diagnose and press the right mouse button.
 - (c) When the following screen appears, click [Frame Monitor] or [Service Status] to check the operation status.

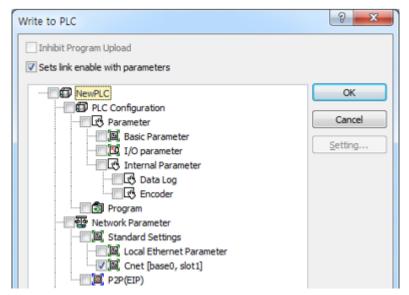


- 2) How to use a Modbus RTU Server
 - (1) Connection setup
 - (a) Select [Online] \rightarrow [Connection Settings] or click the icon ($\stackrel{\bigcirc}{\longrightarrow}$).
 - (b) Set connection options for your environment and click [Connect].

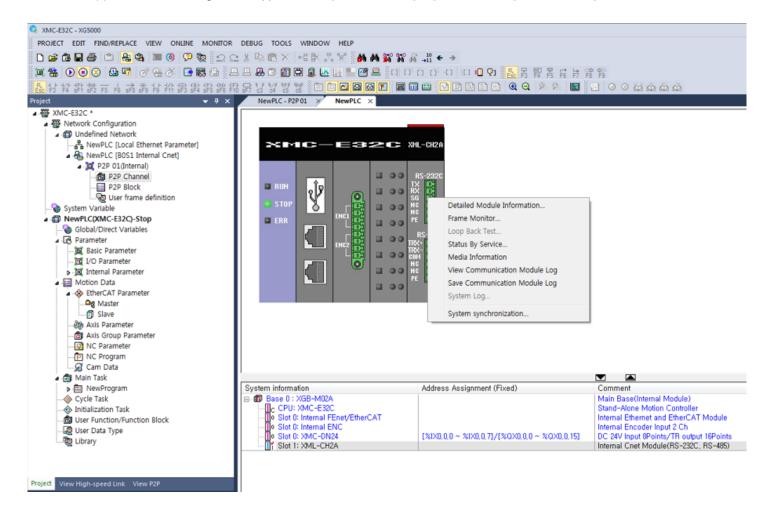
(2) Default setting


- (a) Double-click the serial communication module in the project window to launch the [Preferences] window and set the connection. Set the communication type, communication speed, data bit, stop bit, and station number in the menu.
- (b) The delay time can be set only when RS-485 is used, and the response wait time can be set only when using P2P as the operation mode in RS-485 communication.

(3) Select operating mode Select the Modbus ASCII server

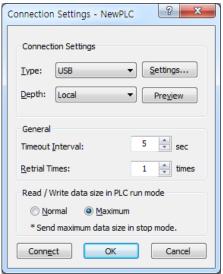

Chapter15 Built-in Cnet Communication

- (4) Modbus settings
 - (a) When the Modbus ASCII server is selected as the operation mode, [Modbus setting] becomes active.
 - (b) Bit Read Area Start Address: Indicates the start address of the bit read area and consists of 5 digits. The first four digits represent the word value, and the remaining digits represent the bit value.
 - Ex) IX0.0.0: I Device area 0-th bit of 0th word is set as start address of bit read area.
 - (c) Bit Write Area Start Address: Indicates the start address of the bit write area and consists of 5 digits. The first four digits represent the word value, and the remaining digits represent the bit value.
 - Ex) QX0.0.0: The 0th bit of the tenth word of the Q device area is set as the start address of the bit read area.
 - (d) Word read area start address: It indicates the start address of the word read area and consists of 4 digits. Ex) The 0th word of MW0: M device area is set as the start address of the word read area.
 - (e) Word write area start address: It is the start address of the word write area and consists of 4 digits.
 - Ex) MW100: It is the case that the 100th word of the M device area is set as the start address of the word write area.

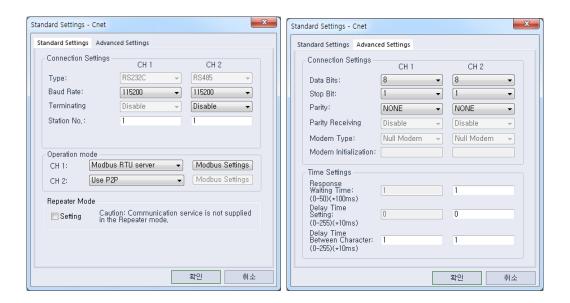


(5) Write parameters

- Select [Online] \rightarrow [Write] or click the icon ($\stackrel{\clubsuit}{\Longrightarrow}$). (d)
- Check (✓) the module with the default settings and click [OK].
- (f) Click the [OK] button, and when the parameter writing finishes, reset each module.


- (6) Check operation
 - (a) Select [Online] \rightarrow [Communication Module Settings] \rightarrow [System Diagnosis] or click the icon (\boxtimes).
 - (b) Click the communication module whose status you want to diagnose and press the right mouse button.
 - (c) When the following screen appears, click [Frame Monitor] or [Service Status] to check the operation status.

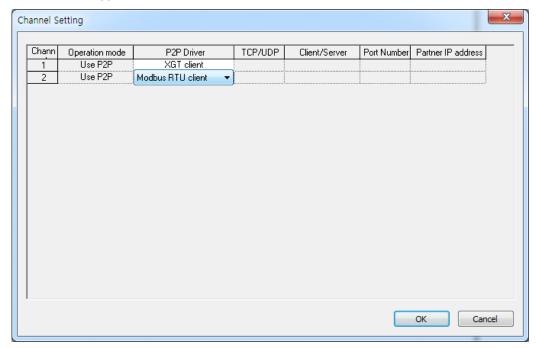
15.10.5 Modbus RTU / ASCII client


1) Default setting

- (1) Connection setup
 - (a) Select [Online] \rightarrow [Connection Settings] or click the icon ($^{\textcircled{\begin{tikzpicture}(1,0) \put(0,0){\line(0,0)} \put(0,0){\l$
 - (b) Set connection options for your environment and click [Connect].

(2) Default setting

- (a) Double-click the serial communication module in the project window to launch the [Preferences] window and set the connection. Set the communication type, communication speed, data bit, stop bit, and station number in the menu.
- (b) The delay time can be set only when RS-485 is used, and the response wait time can be set only when using P2P as the operation mode in RS-485 communication.



(3) Select operating mode

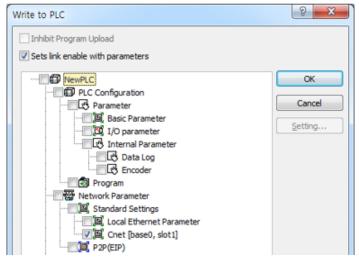
When using as a client, be sure to select 'Use P2P'.

(4) P2P channel setting

- (a) Double-click the P2P channel to select the protocol for each channel.
- (b) The P2P driver supports user frame definition, XGT client, LS bus client, and Modbus RTU / ASCII client.

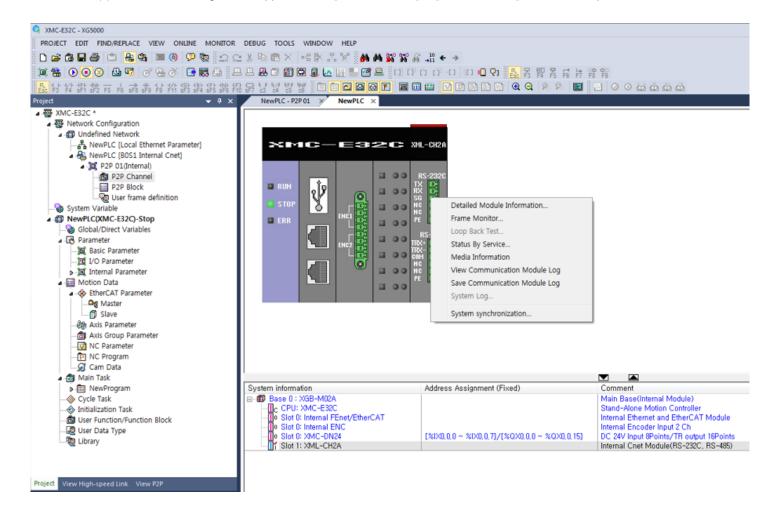
2) P2P Parameter setting

Operation in the Modbus RTU/ASCII client is divided into the Read command used to read and store the arbitrary area of the other station and the Write command written in the arbitrary area of the other station. The setting method of Modbus RTU client and Modbus ASCII client is the same as shown below.



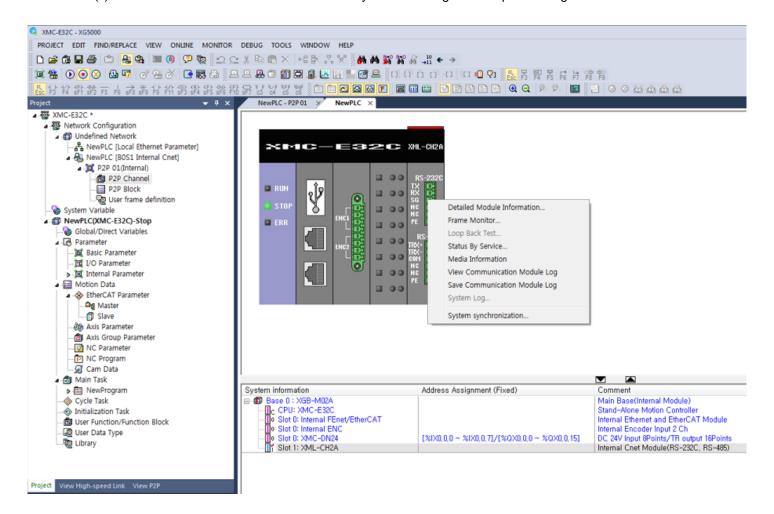
Numb	Classificati	- 1. 1.	
er	on	Block type	Meaning
1	Channel	Ch 1 2	The set drive name changes according to the driver set in P2P driver
2	P2P function	P2P function READ WRITE	Read: Used to read arbitrary data from the other station Write: Used to write arbitrary data to the other station
3	Start condition	Conditional flag	Enter special flag or bit contact to select the time when data is transmitted and received Example: _T20MS(cycle: 20ms), %MX0(when MX0 is On)
4	Mode	Command type 1. Single 2. Continuous	1.Individual: Used to read or write data of up to 4 memory areas to the other station(Example: M01, M10, M20, M30) 2.Continuous: Used to read or write continuous data to the other station (Example: M01~M10)
5	Data type	Data Type BIT WORD	Data types can be selected among bits and words
6	Data size	Data size	 It defines data size to be transmitted and received and is enabled only in continuous mode. If the P2P function is Read Modbus RTU client Bit type: 1~2000 Word type: 1~120 Modbus ASCII client Bit type: 1~976 Word type: 1~61 If the P2P function is Write Modbus RTU client Modbus RTU client Bit type: 1~1968 Word type: 1~120 Modbus ASCII client Bit type: 1~944 Word type: 1~120 Word type: 1~120 Word type: 1~120 Word type: 1~120

Numb er	Classificati on	Block type	Meaning
7	Partner station	Destination station	It is checked automatically. If you do not use the block, click it once more, otherwise the block will not work.
8	Partner station number	Destination station number	It means the station number of the partner station. Modbus: A total of 256 station numbers can be set from 0 to 255.
9	Settings	Variable Setting Counterpase FF.C Detail Settings Counterpase FF.C Detail Settings Services CPU	▶If the P2P function is Read 1.Read area: Data area start address of the partner station(server) 1)Bit: Bit input(0x10000), bit output(0x00000) 2)Word: Word input(0x30000), word output(0x40000) 2.Storage area: Data storage area of its station(client)
		Variable Setting Counterpart P.C. Detail Settings Counterpart CPU Series: View by finoduct Type: Read area: Local Address (NewP.C.) Save area: Remote Address Read area: Local Address (NewP.C.) Save area: Remote Address Read area: Carre area 0x40000 N00074	▶If the P2P function is Write 1.Read are: Data area of its station 2.Storage area: Data storage area start address of the other station 1)Bit: Bit input(0x10000), bit output(0x00000) 2)Word: Word input(0x30000), word output(0x40000)


3) Writing P2P parameters

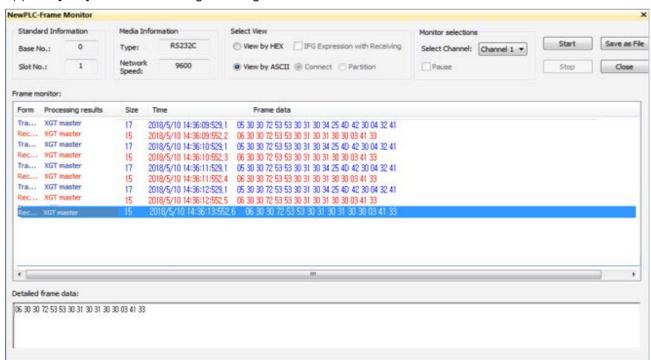
- (1) Writing P2P parameters
 - Select [Online] \rightarrow [Write] or click the icon ($\stackrel{\clubsuit}{\Longrightarrow}$).
 - Check (✓) the module with the default settings and click [OK]. (b)
 - Click the [OK] button, and when the parameter writing finishes, reset each module.

Chapter15 Built-in Cnet Communication


- (2) Link Enable
 - (a) Select [Online] → [Communication module settings] → [Link enable].
 - (b) Check the set P2P block and click Write.
- (3) Check operation
 - (a) Select [Online] \rightarrow [Communication Module Settings] \rightarrow [System Diagnosis] or click the icon (\boxtimes).
 - (b) Click the communication module whose status you want to diagnose and press the right mouse button.
 - (c) When the following screen appears, click [Frame Monitor] or [Service Status] to check the operation status.

15.10.6 Frame monitor

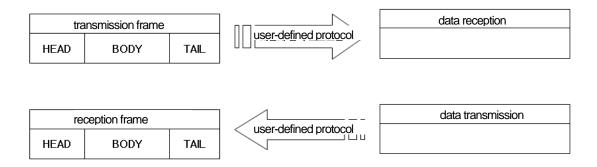
With the frame monitor function of XG5000, you can check the frame that client and server actually send and receive.


- (1) Check operation
 - (a) Select [Online] \rightarrow [Communication Module Settings] \rightarrow [System Diagnosis] or click the icon (\boxtimes).
 - (b) Click the communication module whose status you want to diagnose and press the right mouse button.

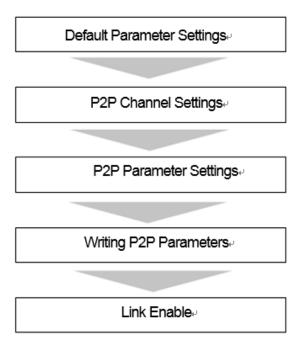
(c) When the following screen appears, click [Frame Monitor] or [Service Status] to check the operation status.

Chapter15 Built-in Cnet Communication

- (2) Frame monitor
 - (a) Select the channel you want to monitor.
 - (b) When the protocol is in Modbus ASCII mode, select View as ASCII.
 - (c) Select Hex View when the protocol is in Modbus RTU mode.
 - (d) Click [Start] to check the sending / receiving frame.



Items		Contents	Remarks
Basic information	Base No.	Base position of the communication module being monitored	
Basic information	Slot No.	Slot position of the communication module being monitored	
Monitor option	Channel selection	Select the channel to monitor	
	Type	Indicate the transmission frame and reception frame	
Frame monitor window	Processed results	Indicate the protocol type currently being used 1) XGT server 2) XGT client 3) Modbus server 4) Modbus client 5) User defined 6) Unknown: Frame that cannot be processed	
	Size	Length of the monitored frame	
	Time	Display the point of time for transmission/reception	
	Frame data	Display the data of transmitted/received frame	
View in HEX		Display the frame data with HEX values	
View in ASCII		Display the frame data with ASCII values	
Save file		Save the frame monitoring contents to a file	Saved in CSV format
Start		Start of the frame monitoring operation	
Stop		Stop the monitoring status	
Close		Close the frame monitor window	


15.11 User Defined Communication Service

15.11.1 Summary

Because there are many kinds of communication protocols, it is actually impossible to mount all protocols in one communication module. Therefore, to solve this problem, XMC built-in Cnet provides user frame definition communication function. When this function is used, when connecting with other devices that do not use XGT protocol or Modbus protocol, users can create and communicate the protocol for their own use. At this time, the user must send frame and receive frame in the same way as the protocol of the external device to send / receive data.

Follow the procedure below when using user frame definition communication.

15.11.2 User-defined frame configuration

When a frame is created using the user-defined communication, the frame is largely divided into a head which indicates the beginning of the frame, a tail indicating the end, and a body, which is a data area. The head, tail and body are composed of each segment. In addition, the total size of one frame should be less than 1024 bytes.

Frame		
HEAD	BODY	TAIL
Segment 1	Segment 1	Segment 1
Segment 2	Segment 2	Segment 2
Segment 3	Segment 3	Segment 3
Segment N	Segment N	Segment N

(1) Head configuration

The input types of the segments composed of the head are largely divided into numerical constants and string constants. The numerical constant is expressed as a hexadecimal value, and the string constant means an ASCII character.

(2) Tail configuration

The input types of the segments that consist of the tail include numerical constants, string constants and BCC to check frame errors. The meaning of the numerical constant and string constant is the same as that used in the head. The BCC is a segment used to check errors in the transmission and reception frames, and only one can be set in the tail.

a) BCC error check

The meaning of the numerical constant and string constant is the same as that used in the head. The BCC is a segment used to check errors in the transmission and reception frames, and only one can be set in the tail. If BCC is set, BCC operation is performed for the transmission/reception frame according to the setting method. If the operation results are different, the corresponding frame is ignored. In this way, it serves as a means for improving the reliability of communication. The error checking methods of each BCC are shown below.

Classification	BCC method	Descriptions
	Byte SUM	Use the low-order byte value of the result obtained by adding the data of the specified area in 1-byte unit
	Word SUM	Use the low-order word value of the result obtained by adding the data of the specified area in 1-word unit
General-	Byte XOR	Use the low-order byte of Exclusive OR result of the data of the designated area in 1-byte unit
purpose	7 bit SUM	Use values except for the most significant bit of the byte SUM result value
communication	7 bit XOR	Use values except for the most significant bit of the byte XOR result value
error detection	7 bit SUM#1	Add 20 _H if the 7bit SUM result value is less than 20 _H
method	Byte SUM 2'S COMP	Take 2's complement with respect to the byte SUM result
	Byte SUM 1'S COMP	Take 1's complement with respect to the byte SUM result
	CRC 16	16 bit CRC error detection method
	CRC 16 IBM	16 bit IBM CRC error detection method
	CRC 16 CCITT	16 bit CCITT CRC error detection method
	MODBUS LRC	MODBUS LRC error detection method
Dedicated	LGIS CRC	Error detection method used in LGIS PLC
communication	DLE AB	Error detection method of Allen Bradley's DF1 Protocol
error detection method	DLE SIEMENS	Error detection method used in Siemens 3964R communication

In BCC settings, if BCC calculation method is classified as a dedicated communication method, there is no need to set BCC setting range and display method. On the other hand, it is classified as a general-purpose communication method, BCC setting range and display method should be set.

ltem		Contents	
Start	Area	Specify where to start BCC calculation from head/body/tail	
position	Segment	Specify the segment position to start BCC calculation within the head/body/tail. 0 is included in the BCC	
position		calculation from the beginning of the frame	
End position	Before BCC	Included in the calculation from start position to before BCC	
	End of are	Included in the calculation from start position to the end of the specified area	
	Setting	Included in the calculation from start position to the specified area segment position	
ASCII conversion		Convert result values to ASCII characters, the size increases two times.	
Initial value 0		The initial value of BCC calculation can be set to 0. If not specified, FF _H becomes the initial value.	

(3) Body configuration

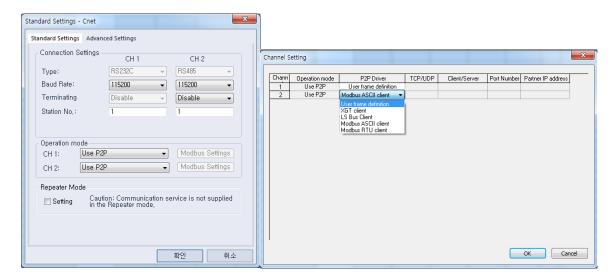
The input types of segments that make up the body vary depending on the transmission and reception. In the case of transmission, numerical and string constants are classified as variable size parameters, and the meaning of the numerical constant and the string constant is the same as that of the head.

a) Variable size parameters (in the case of reception frame)

The part of the frame that changes in size and content is defined as a variable size parameter segment. The variable size parameter can be set only for the body. In addition, unlike other segments, the additional segment cannot be set after the variable size parameter segment. When the variable size segment is used, there should be head or tail. If you register a frame only with the variable size parameter without head or tail, there is a possibility of error when receiving the frame depending on communication situation. Be sure to set head or tail for reliable communication. Even if the variable size parameter is used in the transmission frame, the function and characteristics are the same as those of the fixed size parameter of the reception because the size of the variable size parameter is specified in the P2P block settings.

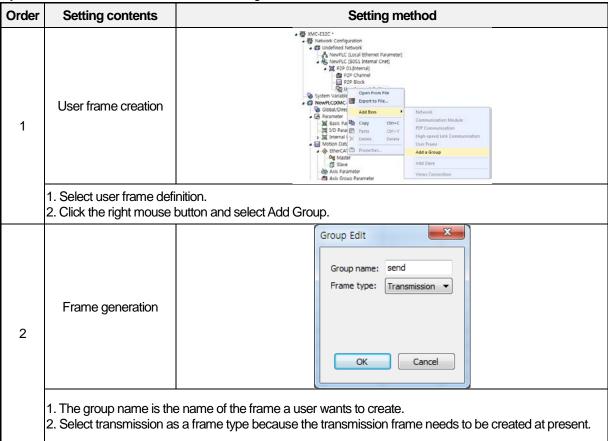
b) Fixed size parameters (in the case of reception frame)

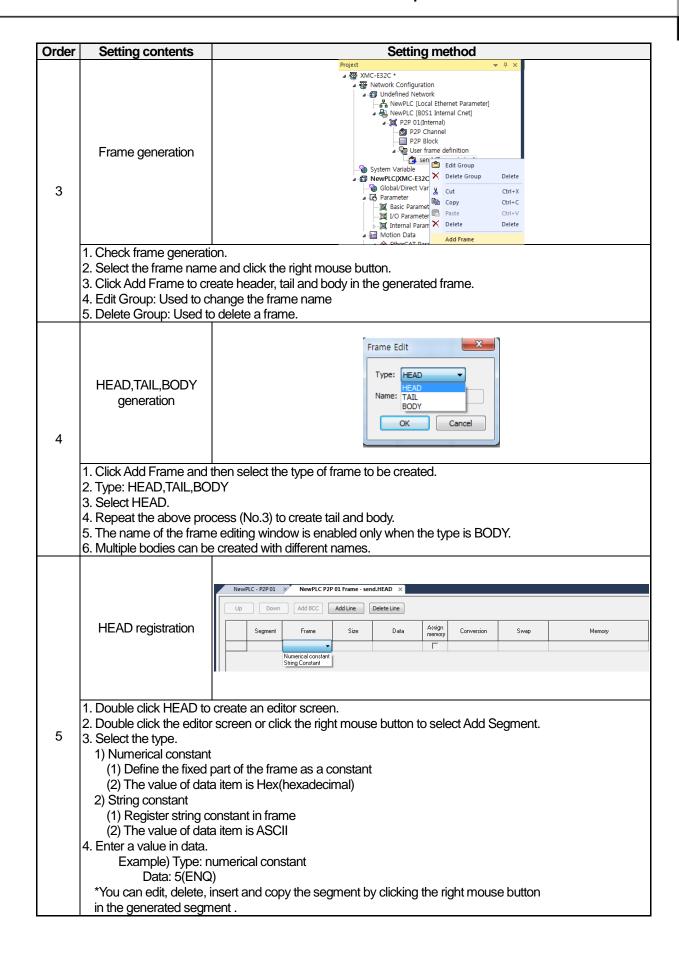
The part that changes in reception although the size is fixed is defined as a fixed size parameter segment. It can be set only in the body. In the case of the fixed size parameter, up to 4 parameters can be set in one body.


The specifications of the transmission and reception frames supported in the user-defined communication of Cnet I/F are summarized below.

Group	Frame	Segment	Remarks
	HEAD	Numerical constant	Max. 10 bytes
		String constant	Max. 10 bytes
	TAIL	Numerical constant	Max. 10 bytes
Transmission		String constant	Max. 10 bytes
frame		BCC	Only one BCC applicable
		Numerical constant	Max. 10 bytes
	BODY	String constant	Max. 10 bytes
		Variable size parameter	Up to 4 available
	HEAD	Numerical constant	Max. 10 bytes
	ПЕАО	String constant	Max. 10 bytes
	TAIL	Numerical constant	Max. 10 bytes
		String constant	Max. 10 bytes
		BCC	Only one BCC applicable
Reception	BODY	Numerical constant	Max. 10 bytes
frame		String constant	Max. 10 bytes
		Fixed size parameter	Up to 4 can be set
			3 fixed size parameters and 1 variable size
			parameter available
		Variable size parameter	Only one variable size parameter can be set.
			Impossible to add segment after variable size
			parameter

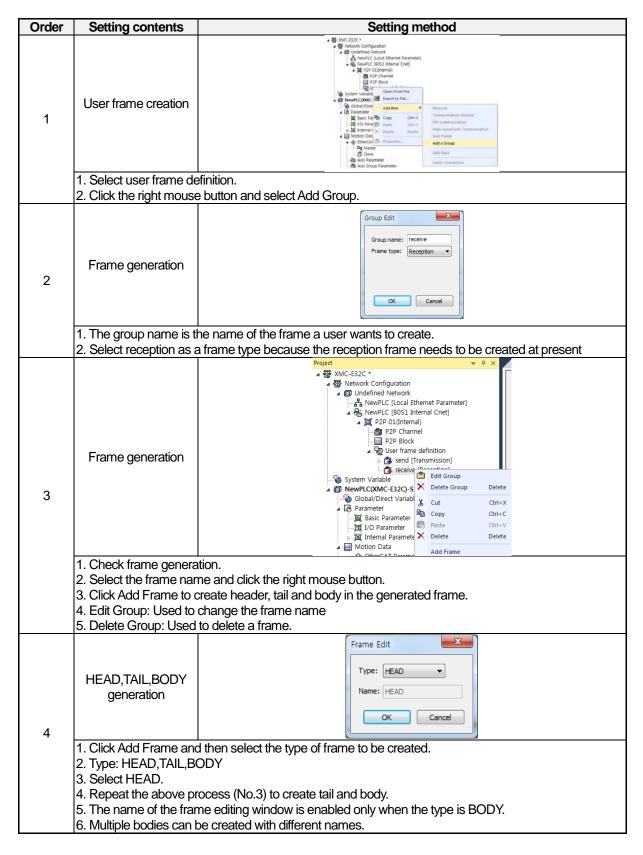
15.11.3 Create Frame


1) Channel settings


Cnet I/F can define the driver type for P2P service. However, if the P2P channel operates in the user frame definition, the operation mode of the default setting should be defined as P2P use.

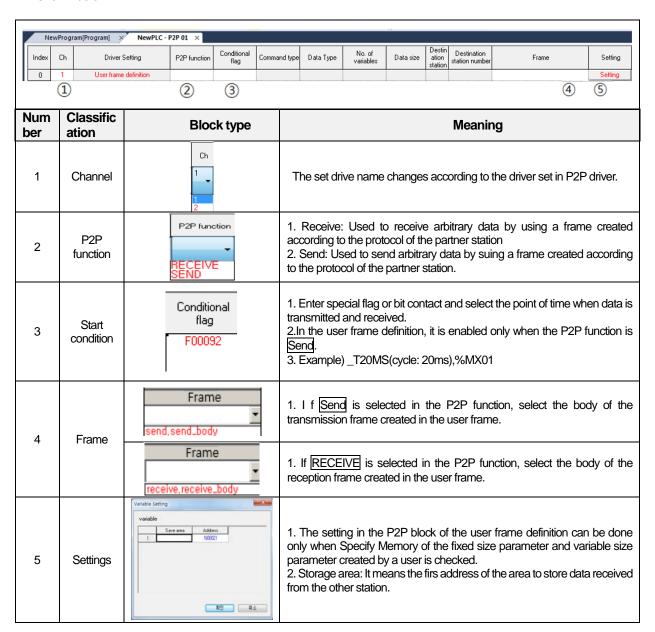
2) Creating transmission frame

The frame is largely divided into a head which indicates the beginning of the frame, a tail indicating the end, and a body, which is a data area. The method for creating the transmission frame is shown below.

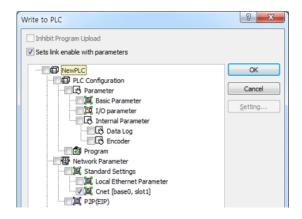


Chapter15 Built-in Cnet Communication

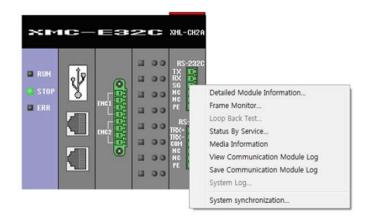
Order	Setting contents	Setting method			
6	 Double click TAIL to create an editor screen. TAIL registration The setting method is the same as that in the above process (No. 5). Adding BCC is possible after the segment is created in the editor screen. 				
7	1. Double click BODY to 1) The meaning of nur 2) Variable type param (1) Used to vary the (2) Up to 4 paramet	NewPLC P2P 01 Frame - send.body × Up			
	 ▶ Hex To ASCII: Convert the data read from the PLC memory into ASCII to configure the transmission frame ▶ ASCII To Hex: Convert the data read from the PLC memory into Hex to configure the transmission frame 				
	1) 4) Swap				
	 ▶ 2 byte swap: 2-byte swap of the data value (Example: 0x1234->0x3412) ▶ 4 byte swap: 4-byte swap of the data value (Example: 0x12345678->0x78564321 ▶ 8 byte swap: 8-byte swap of the data value 				


3) Creating reception frame

Order	Setting contents	Setting method
5	HEAD registration	NewPLC - P2P 01 NewPLC P2P 01 Frame - receive.HEAD Up
	2. Double click the edit3. Select the type.	
6	TAIL registration	Double click TAIL to create an editor screen. The setting method is the same as that in the above process (No. 5). Adding BCC is possible after the segment is created in the editor screen.
	BODY registration	NewPLC - P2P 01 X NewPLC P2P 01 Frame - receive.HEAD X NewPLC P2P 01 Frame - receive.TAIL X NewPLC P2P 01 Frame - receive.
7	 Double click BODY to enable the editor screen and select the data type. The meaning of numerical and string constants is the same as that in the header registration. Variable type parameter Used in cases where the length of the frame varies One variable size parameter can be set, and segment cannot be added when the variable size parameter is set Possible to save data in PLC memory when checking Specify Memory Control by byte Fixed size parameter Used if the frame length is fixed to a certain size Up to 4 parameters can be set in one body Possible to save data in PLC memory when checking Specify Memory Specify Memory: Checked when the device area to be saved in PLC is set. Conversion Hex To ASCII: Convert the received data into ASCII to configure the reception frame ASCII To Hex: Convert the received data into Hex to configure the reception frame Swap 2 byte swap: 2-byte swap of the data value (Example: 0x1234->0x3412) 4 byte swap: 8-byte swap of the data value (Example: 0x12345678->0x78564321 	

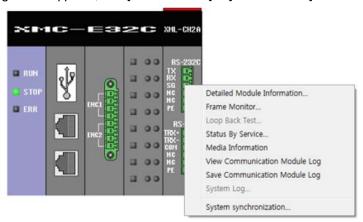

4) Parameter settings

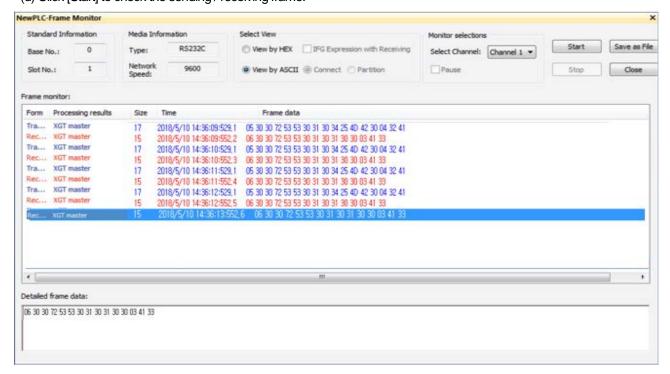
In order to transmit and receive data by using the transmission and reception frames created through the user frame definition in P2P view of XG5000, you should set parameters through P2P block. The parameter setting method is shown below.


5) Writing parameters

- (1) Writing parameter
- Select [Online] \rightarrow [Write] or click the icon ($\stackrel{\clubsuit}{\Longrightarrow}$).
- Check (✓) the module with the default settings and click [OK]. (b)
- Click the [OK] button, and when the parameter writing finishes, reset each module. (c)

(2) Check operation


- (a) Select [Online] \rightarrow [Communication Module Settings] \rightarrow [System Diagnosis] or click the icon (\boxtimes).
- (b) Click the communication module whose status you want to diagnose and press the right mouse button.
- (c) When the following screen appears, click [Frame Monitor] or [Service Status] to check the operation status.


15.11.4 Frame monitor

With the frame monitor function of XG5000, you can check the frame that client and server actually send and receive.

- (1) Check operation
 - (a) Select [Online] \rightarrow [Communication Module Settings] \rightarrow [System Diagnosis] or click the icon (\boxtimes).
 - (b) Click the communication module whose status you want to diagnose and press the right mouse button.
 - (c) When the following screen appears, click [Frame Monitor] or [Service Status] to check the operation status.

- (2) Frame monitor
 - (a) Select the channel you want to monitor.
 - (b) When the protocol is in Modbus ASCII mode, select View as ASCII.
 - (c) Select Hex View when the protocol is in Modbus RTU mode.
 - (d) Click [Start] to check the sending / receiving frame.

15.11.5 User-defined communication commands

(1) SEND_UDATA

Function block	Descriptions
BOOL—REQ DONE—BOOL USINT—BASE STAT—UINT USINT— SLOT USINT— CH ARRAY[1024] OF BYTE—DATA	Input REQ :Function block is executed(pulse operation) if 0 -> 1 BASE : Base SLOT : Slot CH : Channel(1 or 2) DATA :Data area to send SIZE : Data size to send
UINT— SIZE	Output DONE :1 is displayed when executed without error STAT : Status information

a) Functions

- This command is used to transmit user-defined data (hereafter referred to as DATA).
- For BASE and SLOT, enter the base and slot number on which the current CNET module is mounted.
- CH means channel number, and only 1 or 2 should be set.
- DATA should be declared as ARRAY OF BYTE type.
- The size of the array declared as SIZE ranges from 1 to 1024.(Unit: Byte)
- Store as much data as the number of SIZE from DATA [0] in the transmission buffer. (The number of data sizes that can be sent at a time is limited to 1024)
- When normal operation is performed, 1 is displayed in DONE and STAT, and status information is displayed when an error occurs.

b) Errors

STAT	Contents	Details
0	Initial state	Initial state before command execution
1	No error	Normal operation
2	Module setting error	The module is not mounted on the base slot, or it is not a CNET module
3	Channel setting error	It occurs when exceeding the input range(1, 2)
4	Array size error	The size of transmitted data exceeds 1024
5	Communication	The communication parameter of the Cnet module is not set to user-
5	parameter setting error	defined, and Link Enable is not done.
6	Command timeout	There is no response from the module, or the maximum scan time (10
0	error	scans) is exceeded.

(2) RCV_UDATA

Function block	Description
BOOL—REQ DONE—BOOL USINT— BASE STAT—UINT USINT— SLOT SIZE—UINT USINT— CH ARRAY[1024] OF BYTE— DATA	Input REQ :Function block is executed (pulse operation) if 0 -> 1 BASE : Base SLOT : Slot CH : Channel(1 or 2) DATA :Received data Output DONE :1 is displayed when executed without error STAT :Status information SIZE :Size of received data

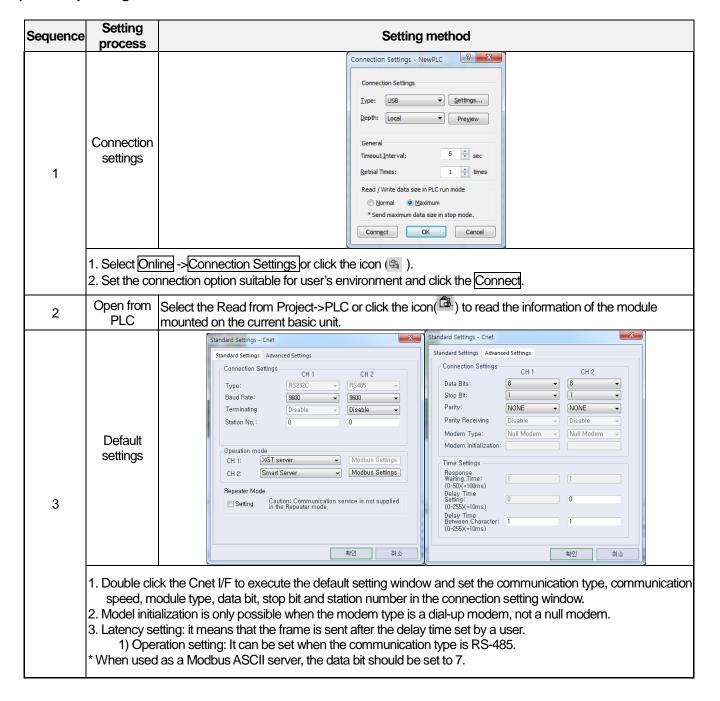
a) Functions

- This command is used to store data of the frame received through CNET.
- For BASE and SLOT, enter the base and slot number on which the current CNET module is mounted.
- CH means channel number, and only 1 or 2 should be set.
- DATA should be declared as ARRAY OF BYTE type.
- The size of the array declared as SIZE ranges from 1 to 1024.(Unit: Byte)
- SIZE represents the size of the received data
- When normal operation is performed, 1 is displayed in DONE and STAT, and status information is displayed when an error occurs.

b) Errors

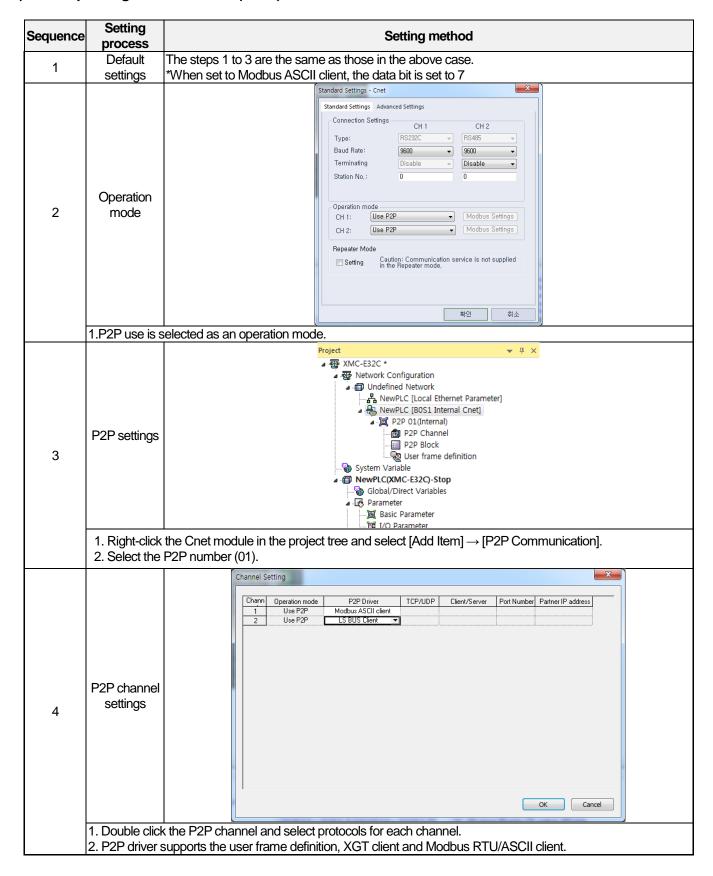
STAT	Contents	Details
0	Initial state	Initial state before command execution
1	No error	Normal operation
2	Module setting error	The module is not mounted on the base slot, or it is not a CNET module
3	Channel setting error	It occurs when exceeding the input range(1, 2)
4	Array size error	The size of transmitted data exceeds 1024
5	Communication	The communication parameter of the Cnet module is not set to user-
5	parameter setting error	defined, and Link Enable is not done.
6	Command timeout	There is no response from the module, or the maximum scan time (10
U	error	scans) is exceeded.

15.12 Program examples


15.12.1 How to set each operation mode

The operation mode of XMC built-in Cnet is classified into P2P service and server function.

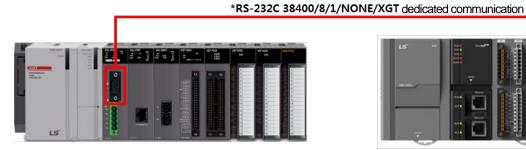
- P2P service: It operates as a client (master) and makes a request to read/write data from/to the partner station.
 - XGT client
 - LS BUS client
 - Modbus RTU/ASCII client
 - User frame definition
- Server: It operates as a server (slave) and responds according to the protocol type when requested by the client.
 - XGT server
 - Modbus RTU server


The setting method for each operation mode is as follows

1) When operating as a server

Sequence	Setting process	Setting method
4	Operation mode selection	Select the operation mode of a server to be used by a user. XMC Cnet I/F supports the XGT server, Modbus ASCII server and Modbus RTU server.
5	Writing parameters	Write to PLC Inhabit Program Uplead
	2. Click the	OK button, and when the parameter writing finishes, reset each module.
6	Operation check	RUN STOP ERR PROPERTY OF THE
	2. Click the i	ine -> Comunication Module Settings -> System Diagnostics or click the icon(). module, press the right mouse button. me Monitor] or [Service Status] to check the operation status.

2) When operating as a P2P service(client)


Sequence	Setting	Setting method
•	process	
5	P2P block settings	NewPLC - P2P 01 × NewPLC ×
	2. Create the	setting values are enabled differently according to the type of client selected in the channel settings. frame in the enabled cell according to the protocol type. of user frame definition, it is available only when the frame is created in the user frame definition.
6	Writing parameters	Write to PLC The transpare Library Sets this enable with parameters The Name Team of
	2. In the defa	ne ->Write or click the icon (1). ult settings, check the basic settings and P2P that have been set up, and then click the [OK] button. OK] button, and when the parameter writing finishes, reset each module.
7	Link Enable	Enable Services
		ne ->Communication Module Settings ->Link Enable or click the icon().
8	Operation check	P2P whose setting is completed and click Write. STOP
	2. Click the m	e ->Communication Module Settings ->System Diagnostics or click the icon(). In the conduction of the settings is a set of the set

15.12.2 Dedicated Communication Examples

What is a dedicated communication?

- It is a protocol defied by LS ELECTRIC and is classified into XGT client and XGT server
- XGT client: requests the server to read/write data
- XGT server: responds to the client's request

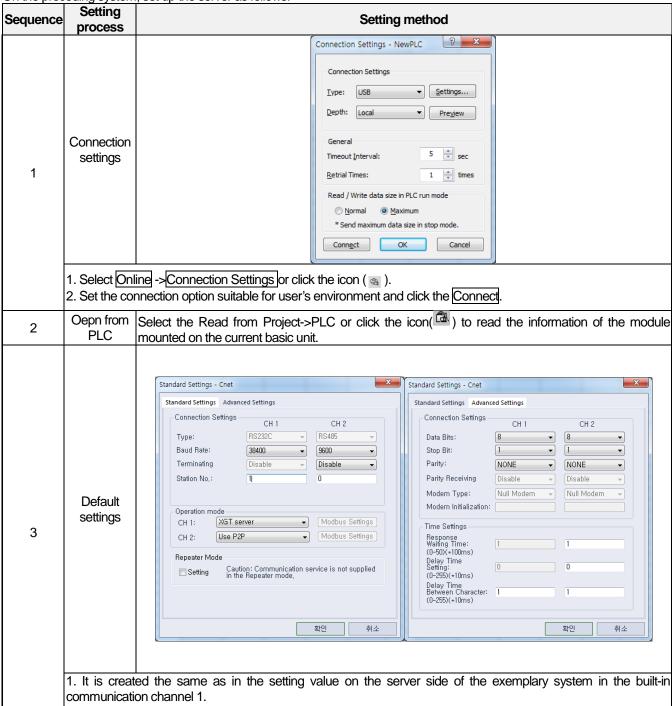
Here is an example of how to use XGT dedicated communication using XGT protocol.

<cli>ent>

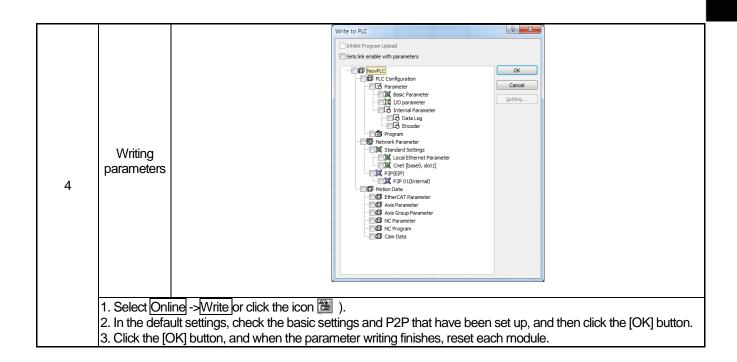
<server>

Example of dediated service system configuration

1) Client-side settings

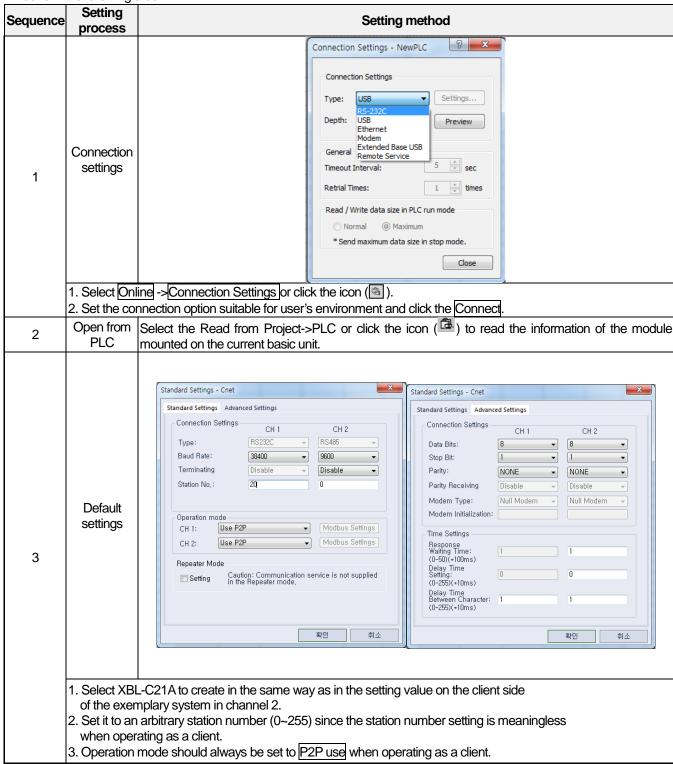

٦	Гуре	Setting contents	
Bas	sic unit	XGK-CPUH	
Communic	cation module	XGL-CH2B (Slot No.1)	
Commur	nication type	RS-232C	
Commun	ication speed	38,400	
Da	ata bit	8	
St	top bit	1	
Pa	rity bit	None	
Modem type		Null modem	
Operation cycle		200ms	
Operation	Write	Save 1 word of M100 on the client side in M110 on the server side	
status	Read	Save 1 word of M110 on the server side in M110 on the client side	

2) Server-side settings

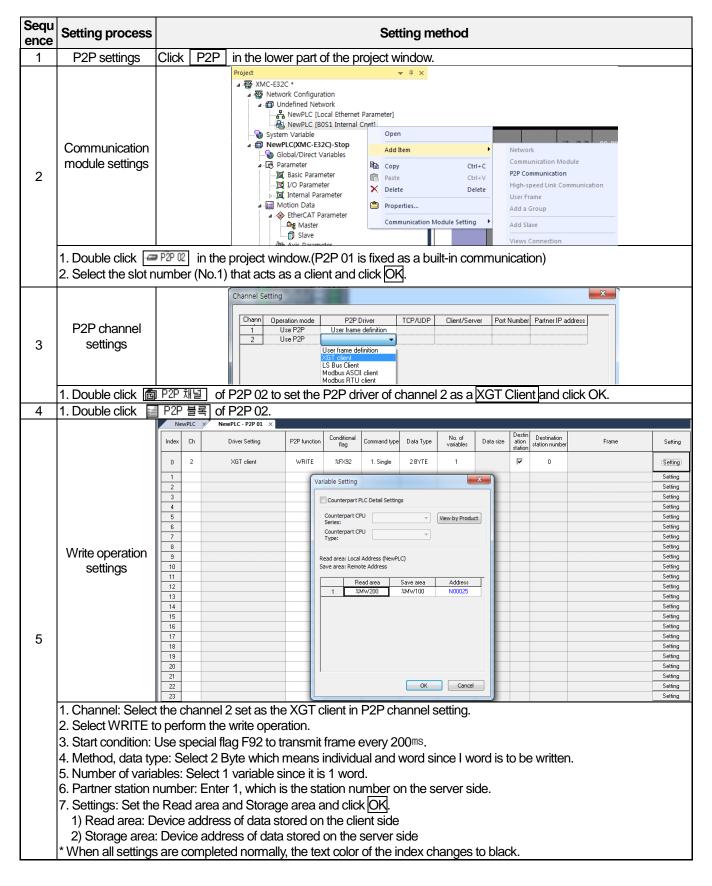

Type	Setting contents
Basic unit	XMC-E32C
Communication module	Basic unit built-in communication(RS-232C)
Communication type	RS-232C
Communication speed	38,400
Data bit	8
Stop bit	1
Parity bit	None
Modem type	Null modem
Station No.	1

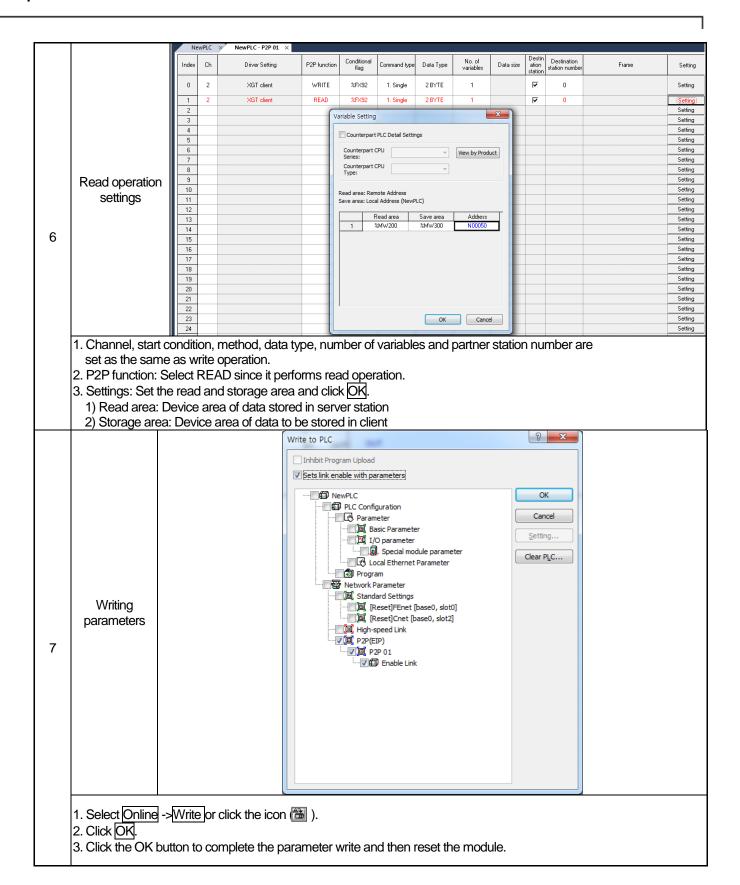
3) XGT server-side settings

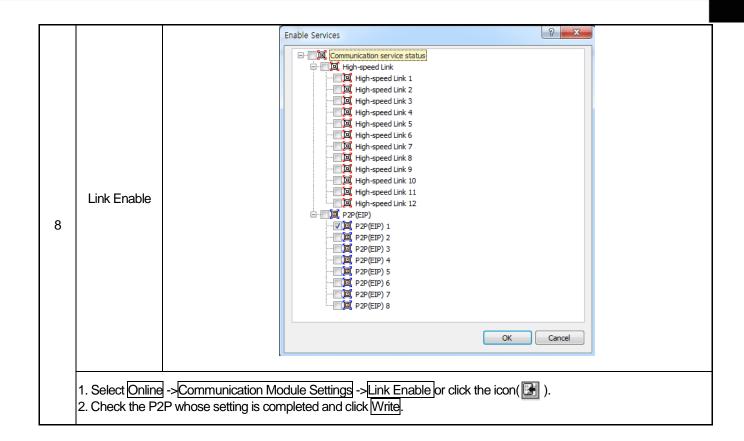
On the preceding system, set up the server as follows:



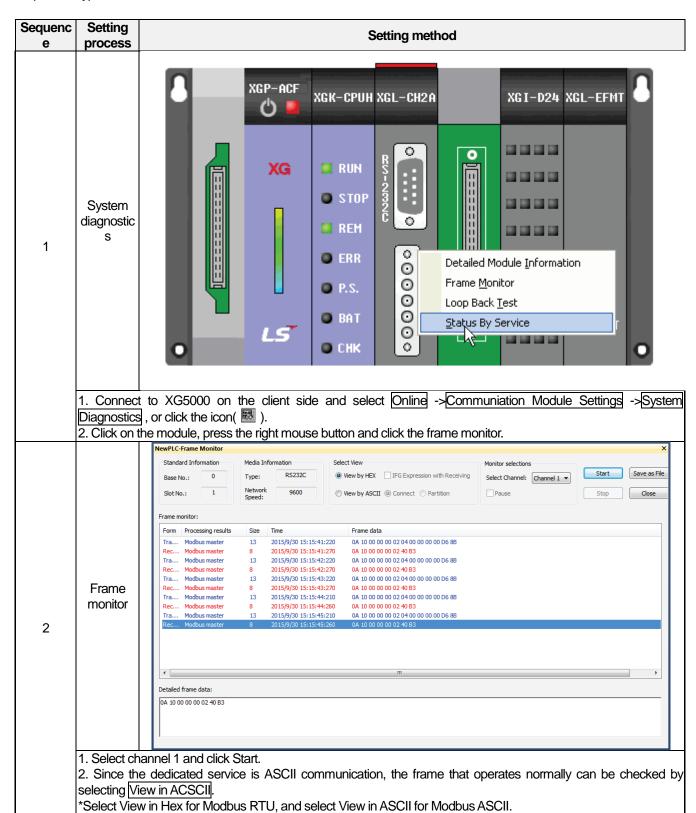
^{2.} Operation mode is set as XGT server since it operates as a dedicated communication server.




4) XGT client-side settings


In order to operate the XBL-C21A on the client side as an XGT client, the default settings of the Cnet I/F module are done in the following order.

When the default setting is completed, P2P channel and P2P block should be set. The setting method is shown below.



5) Operation status check

Frames transmitted and received through the frame monitoring of XG5000 can be analyzed to determine whether the communication status is normal. The frame monitoring method of Cnet I/F module is the same regardless of the protocol type, as shown below.

15.12.3 Modbus Communication Examples

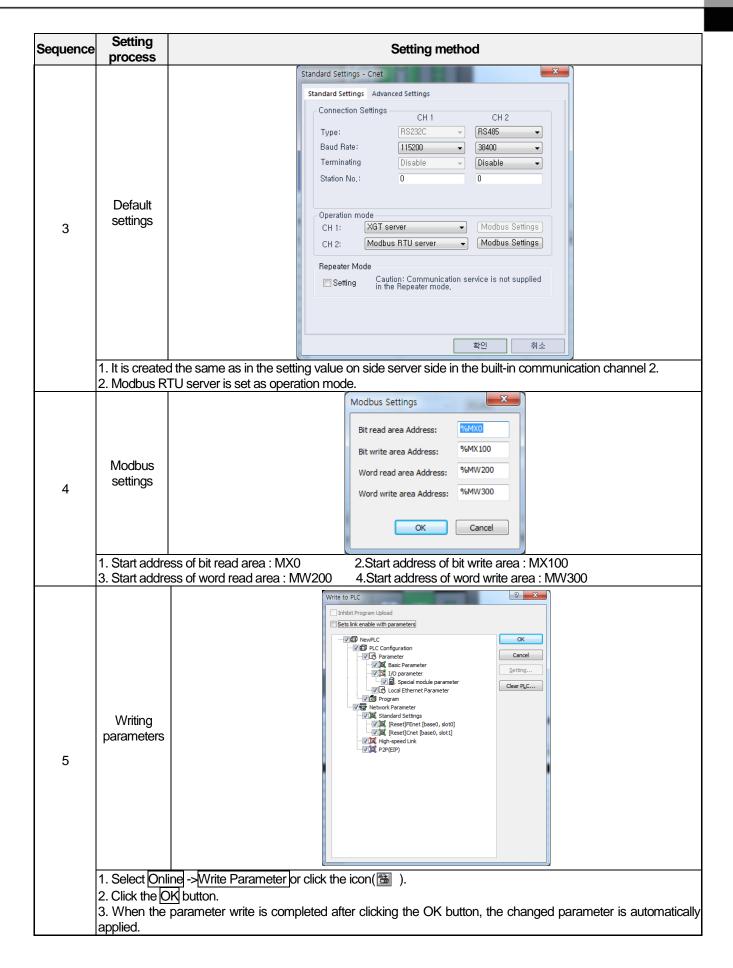
The system configuration of Modbus communication (Modbus RTU mode) example is shown in below, and the communication settings are summarized in the table below.

*RS-485 38400/8/1/NONE/ModeBus RTU

• XBL-C41A installed in slot No. 1 of client PLC

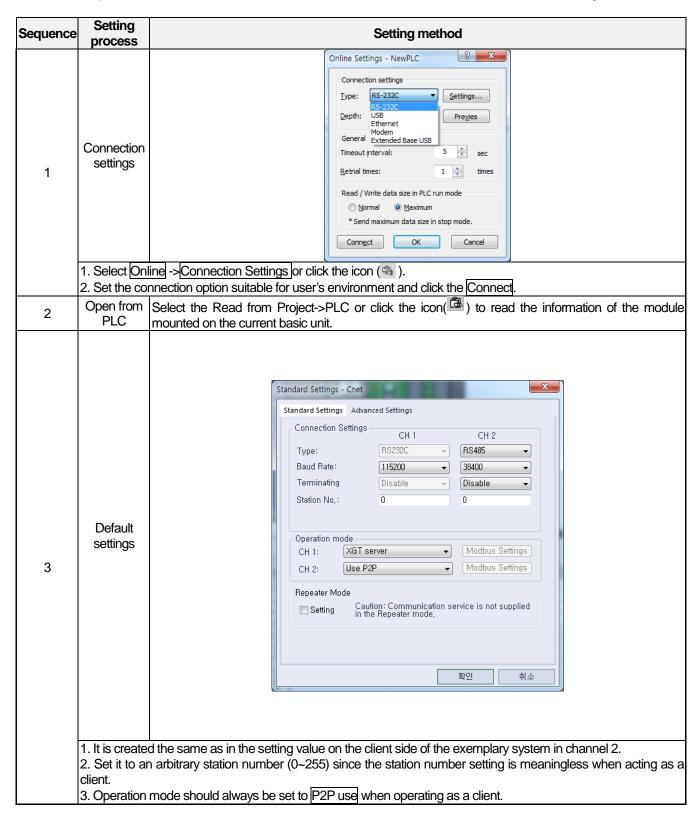
1) Client-side settings

	ilet it-side settif igs			
Basic unit		XGI-CPUUN		
Communication		XGL-CH2B(Slot No. 2)		
modu	le			
Communi	cation	RS-485		
type	!			
Communi	cation	38,400		
spee	d			
Data k	oit	8		
Stop k	oit	1		
Parity	bit	None		
Operation	cycle	200ms		
O ii	Write	 ►Save 1 word of MW100 on the client side in the word write area M1 on the server side ►Save 4 words from MW101 on the client side and to M5 in the word write area M2 ►Save MX1 bit value on the client side in the bit write area M20 on the server side ►Save MX2~MX17 bit value on the client side in the bit write area M21~M36 on the server side 		
Operation status	Read	 Save 1 word value of M2 in the read area on the server side in MW160 on the client side Save 4 words from M0 of the read area on the server side in MW150 to MW153 on the client side Save bit values of M10 in the bit read area on the server side in the 1th bit of MX170 on the client side Save bit values of M10 to M25 in the bit read area on the server side in MX180 to MX195 bits on the client side 		

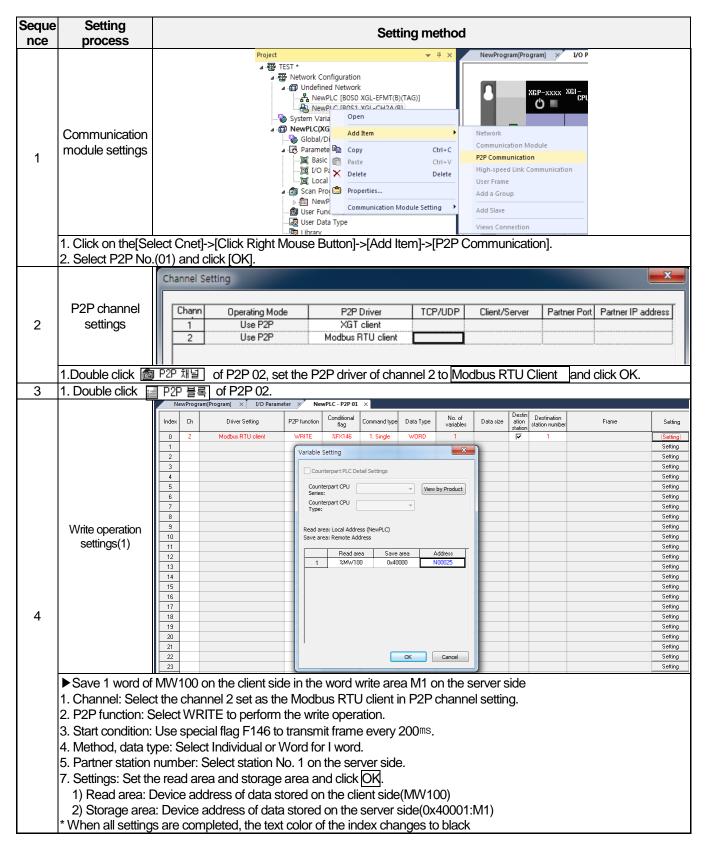

2) Server-side settings

Basic	unit	XMC-E32C	
Communic	ation type	Built-in RS-485	
Communica	tion speed	38,400	
Data	a bit	8	
Stop	bit	1	
Parity bit		None	
Station number		1	
	Bit read	P0	
Start address	Bit write	MO	
Start address	Word read	P0	
	Word write	MO	

3) Modbus RTU server-side settings

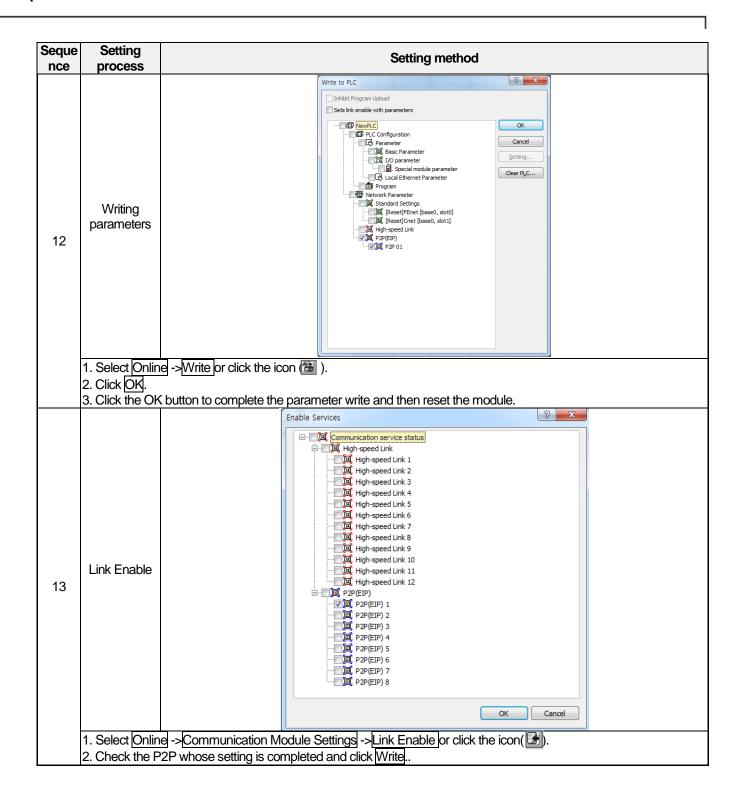

It is designed to operate the built-in communication channel of XMC-E32C as a Modbus RTU server and set as shown

Sequence	Setting process	Setting method
1	Connection settings 1. Select On	Connection Settings - NewPLC Connection Settings Iype: USB Preview General Timeout Interval: 5 sec Retrial Times: 1 times Read / Write data size in PLC run mode Normal Normal Maximum Send maximum data size in stop mode. Connection Settings or click the icon(Connection option suitable for user's environment and click Connection.
2	Open from PLC	Select the Read from Project->PLC or click the icon($^{\square}$) to read the information of the module mounted on the current basic unit.



4) Modbus RTU Client Settings

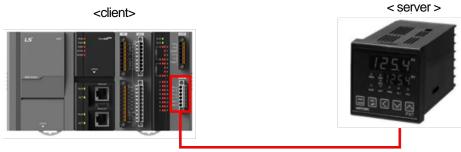
In order to operate XBL-241A on the client side as an XGT client, the Cnet I/F module is set in the following order.



When the default setting is completed, P2P channel and P2P should be set. The setting method is shown below.

	Write operation			: Local Address (Ne : Remote Address	ewPLC)						
	settings(2)			Read area	Save area	Address					
			1	%MW101	0x4002	N00074					
_			<u> </u>								
5											
	►Save 4 words f	rom MW101 on th	ne client side	in the word write	area from M2 to M	15 on the server s	de				
	Method, data ty Data size: Ente Settings: Set the (1) Read area:	ype: Select Continer 4 since it is 4 wo he read area and s Device address o	nuous, Word ords. storage area of data stored	since it is continue and then click the on the client side	(MW 101)		э. 4.				
	(2) Storage are	a: Device address	s of data to b	e stored in the se	rver station(0x400	02: M2)					
	Write operation settings(3)			: Local Address (Ne : Remote Address Read area %MX1	Save area 0x0020	Address N00123					
6	1. Channel, P2 2. Data type: S	P function, start coelect Bit.	ondition, met	hod and partner s	on the server side station number: Th	e same as in the	sequence 4.				
	(1) Read area	t the read area an : Device area of d ea: Device addres	lata stored or	n the client side(M		020: M20)					
	Write operation			: Local Address (Ne Remote Address	wPLC)						
	settings(4)			Read area	Save area	Address					
			1	%MX2	0x0021	N00172					
7	1. Channel, P2 2. Method: Sele 3. Data size: Er	■ Save bit values ranging from MX2 to MX17 on the client side in the bit write area from M21 to M36 on the server side 1. Channel, P2P function, start condition and data type: The same as in the sequence No. 6. 2. Method: Select Continuous. 3. Data size: Enter 5. 4. Settings: Set the read area and storage area and then click the OK button.									
		: Device area of dea: Device addres			IX2) erver station (0x00	020: M21)					

Sequ ence	Setting process	Setting method								
CHOC	Read operation	Read area: Remote Address Save area: Local Address (NewPLC)								
	settings(1)	Read area Save area Address 1 0x30002 %MW160 N00197								
8	Save 1 word value of M2 in the word read area on the server side in MW160 on the client side 1. Channel, start condition, method, data type and partner station number: The same as in the sequence No.4 2. P2P function: Select READ. 3. Settings: Set the read area and storage area and then click the OK button. (1) Read area: Device area of data stored on the client side(0x30002) (2) Storage area: Device address of data to be stored in the client (MW160)									
	Read operation	Read area: Remote Address Save area: Local Address (NewPLC)								
	settings(2)	Read area Save area Address 1 0x30000 %MW150 N00246								
	 Save 4 words from M0 of the read area on the server side in the address from MW150 to MW153 on the client side 1. Channel, function, start condition, method, data type and partner station number: The same as in the sequence No. 8 Method: Select Continuous Settings: Set the read area and storage area and then click the OK button. Read area: Device area of data stored on the server side(0x30000) Storage area: Device address of data to be stored in the client (MW150) 									
	Read operation settings(3)	Read area: Remote Address Save area: Local Address (NewPLC) Read area Save area Address								
10	Channel, function 2. Data type: Sel 3. Settings: Set ties (1) Read area:	e of M10 in the bit read area on the server side in the 1th bit of MX170 on the client side tion, start condition, method and partner station number: The same as in the sequence No. 8. ect Bit. the read area and storage area and then click the OK button. Device address of data stored on the server side(0x10010) a: Device address of data to be stored in the client(MX170)								
	Read operation settings(4)	Read area: Remote Address Save area: Local Address (NewPLC) Read area Save area Address								
	countings(1)	1 0x10010 %MX180 N00344								
11	the client side 1. Channel, func 2. Method: Selec 3. Settings: Set tl (1) Read area:	e of M10 in the bit read area from M10 to M25 on the server side in the bit of MX180 to MX195 or tion, start condition, method and partner station number: The same as in the sequence No. 10. It Continues he read area and storage area and then click the OK button. Device address of data stored on the server side(0x10010) a: Device address of data to be stored in the client(MX180)								



15.12.4 User-Defined Communication Examples

1) When communicating with other products

This chapter explains how to communicate using user frame definition communication.

System configuration

*RS-485 9600/8/1/NONE/ user-defined communication

In this example, the Cnet I / F and the external device to communicate by user defined communication are as follows.

	Basic unit	XMC-E32C	HANYOUNG Temperature controller			
Division	Communication module	Built-in RS-485	PX7*Note 2)			
Operation mode		Client	Server			
Protocol	Usert	rame definition	PC Link			
Communication type		RS-485	RS-485			
Communication speed		9,600	9,600			
Data bit		8	8			
Stop bit		1	1			
Parity bit		None	None			
Station No.		0	1			
Latency*Note 1)		100ms	-			
Operation The current value and set temperature value of the temperature controller area intervals of 1 second, and then the current value is stored in M200, and the ter set value in M210.						

[User-defined communication system configuration]

Note 1) Latency value is set in RS-422/485 communication and is designed to prevent the frame from being broken when communicating with the other device with slow response. The set value varies depending on the other device and distance, and the set value generally ranges from 50 to 100ms. Note 2) Please refer to the user's manual (http://hynux.com) for details on the communication settings of the temperature controller used in this example.

PC Link frame structure

The frame structure of PC Link, which is the communication protocol of HANYOUNG temperature controller used in this example, is as follows.

The frame of the temperature controller is executed as an ASCII string, and the contents of the defined D,I Register can be read and written. The type of protocol is divided into the STD standard protocol and the SUM protocol with a checksum added to the standard type. The type of protocol is selected by the parameter of the temperature controller. The standard protocol is "STD", and its structure starts with the start character STX(0x02) and ends with the termination character CR(0x0D) LF(0x0A).

Please refer to the PLC communication example of HANYOUNG NUX (http://hynux.com) for details on the command and data structure.

Ī	STX	station number	command	data	CR	LF
ſ	0x02	1~99			0x0D	0x0A

[Standard protocol architecture]

STX	station number	command	data	error code	CR	LF
0x02	1~99			Check Sum	0x0D	0x0A

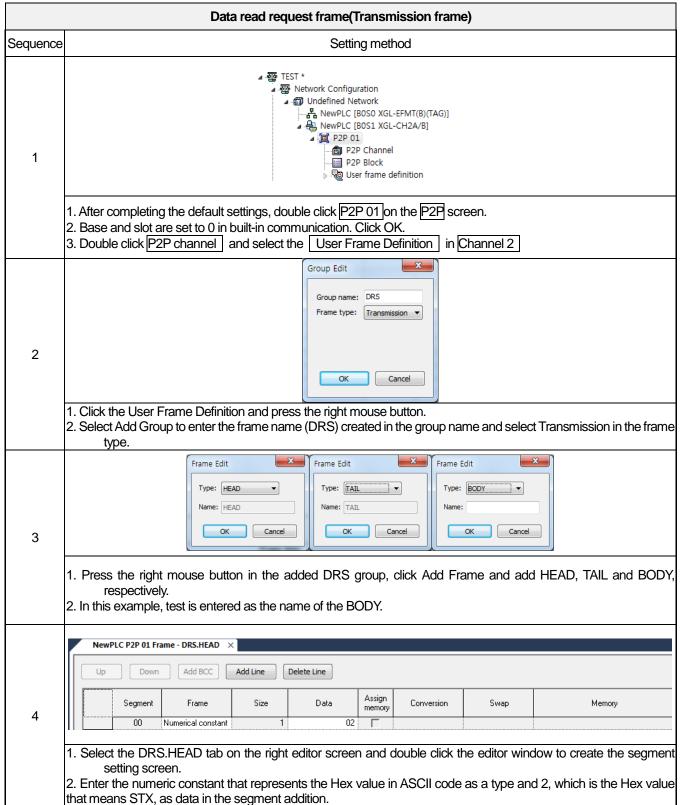
[SUM protocol architecture]

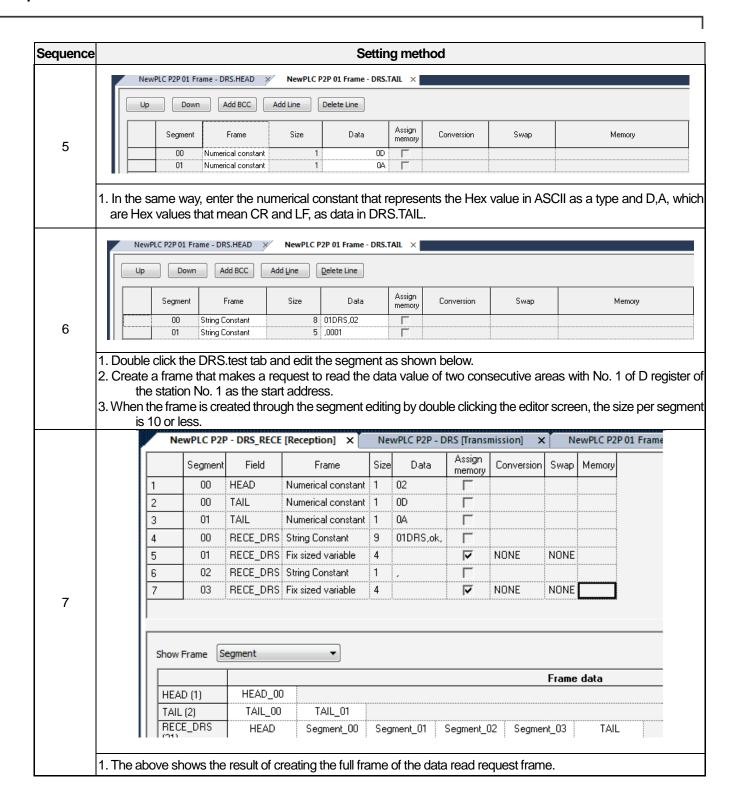
Exemplary frame creation

This example is when the current value and setting value of the temperature controller are stored in the M device area of the PLC and the table below shows the frames requesting reading of contiguous areas of data and the frames responding to requests to read data.

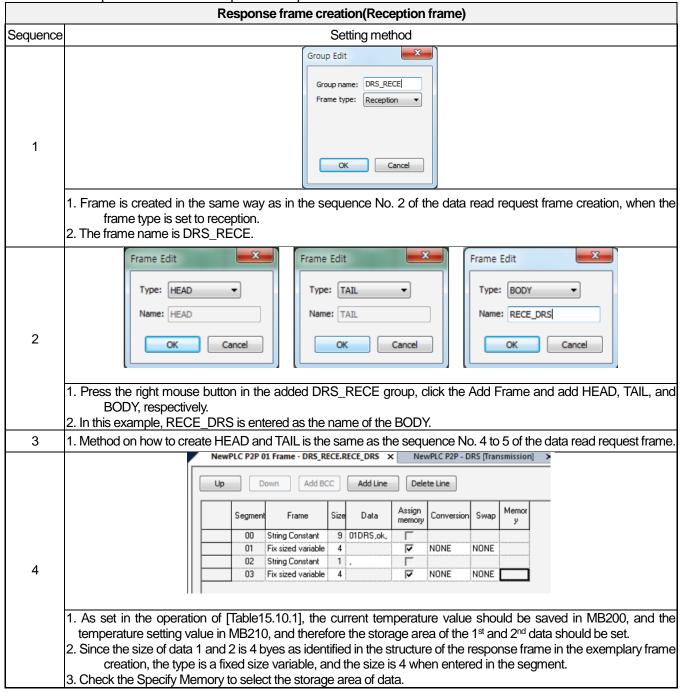
frame	STX	station No.	DRS ,		number of data	start address of D register	CR	LF
Size (Byte)	1	2	3 1		2	4	1	1

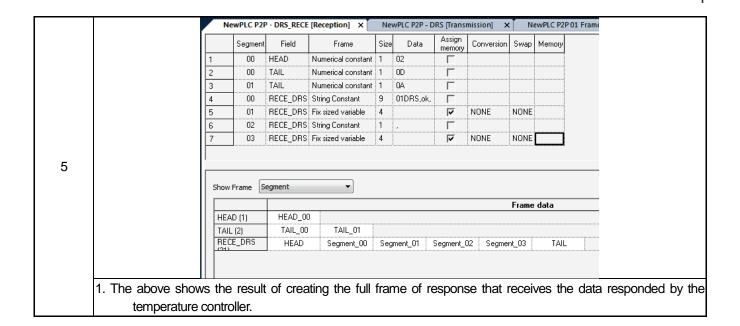
[Request frame]

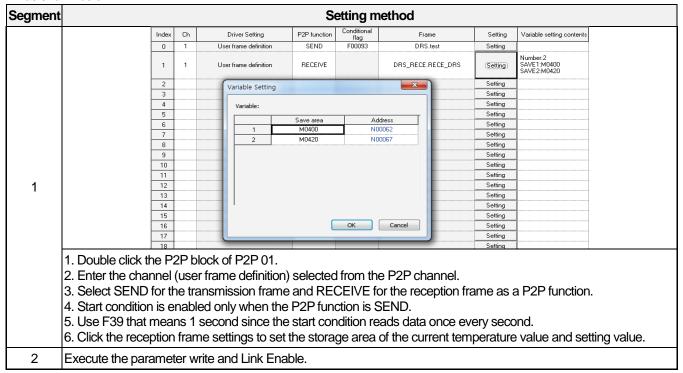

frame	STX	station No.	DRS	,	OK	,	Data 1	,	Data N	CR	LF
Size (Byte)	1	2	3	1	2	1	4	1	4	1	1

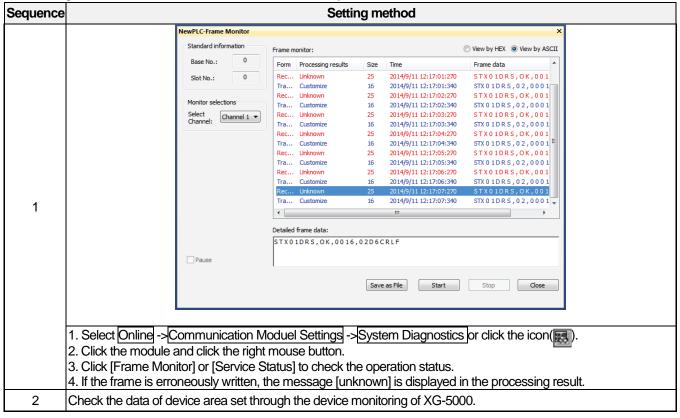

[Request frame]

- •DRS: It is a command to read the consecutive values of D register, and the number of data to be read on the frame and the start address of D register should be set.
- In the example, the number of data is 2, and 0 is entered as the start address of the current value.


- Default parameter settings Refer to 15.12.2 for the basic setting method.
- Creation of data read request frame


It describes how to create a frame in XG5000 for user-defined communication.


Creation of temperature controller response reception frame

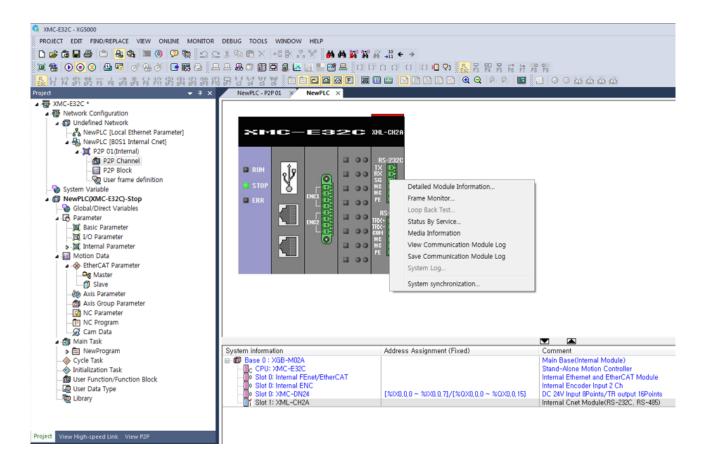

Creation of P2P transmission/reception blocks

P2P transmission and reception blocks are created using the user-defined communication segment created earlier, as shown below.

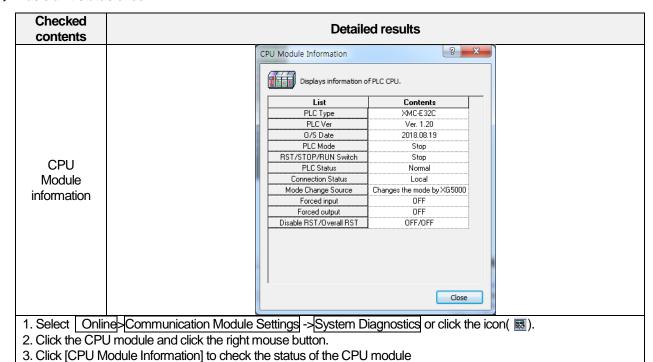
▶ Transmitted/received data check

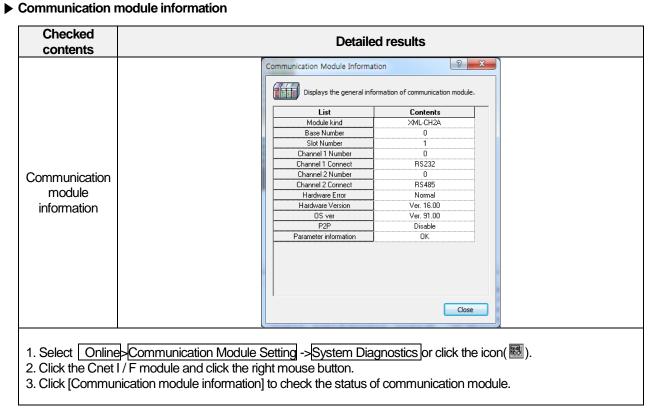
It is designed to check whether the created frame is normally transmitted and received.

15.13 Diagnostic Functions


With XG5000, you can check/diagnose the status of network and various systems such as basic unit status, communication module information, service status information and frame monitor, etc.

The available diagnostic functions are as follows.


- ▶ CPU module information
- Communication module information
- Frame monitor
- Service status


15.13.1 Diagnostic Function of XG5000

The status check and diagnostic method of the system and network through system diagnostics of XG5000 are as follows. Connect XG5000 to the basic unit and select "Online \rightarrow Communication Module Setting \rightarrow System Diagnostics" in the menu, or click the system diagnostics icon ($\boxed{8}$) and the following window appears.

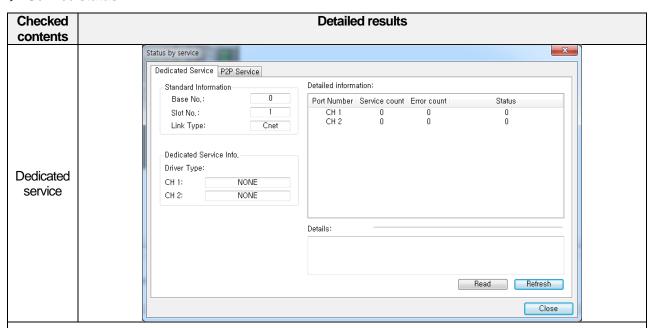
▶ Basic unit status check

▶ Contents of communication module information item

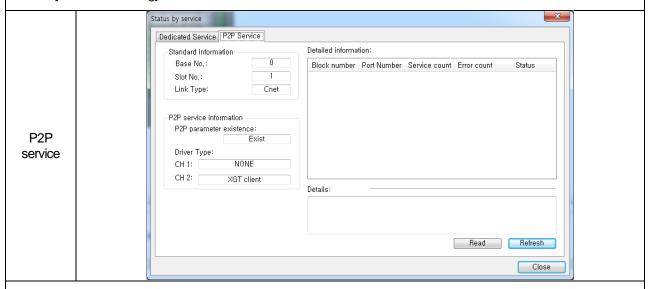
Items	Contents	
Communication module type	Indicate the type of the communication module currently being diagnosed.	
Base No.	Indicate the base information of the communication module currently being diagnosed. It is fixed to 0 and displayed in XGB PLC.	
Slot No.	Indicate the slot number of the communication module currently being diagnosed. It is fixed to 0 and displayed in built-in communication	
Station No.	Station number of the channel used in P2P and dedicated service	
Connection method	Information of the communication type (RS-232C, RS-422) of the corresponding channel	
Hardware error status	Indicate whether the hardware of the communication module is normal or not.	
Hardware version	Version of communication module hardware	
OS version	Indicate the version of the communication module OS	
P2P	Indicate the P2P communication is enabled/disabled	
System parameter information	Whether to download the default communication parameters Display the error information of default communication parameters	

▶ Frame monitor

The frame monitor of XG5000 allows you to check whether the frame transmitted/received through the Cnet I/F module is normal or not.


Checked contents	Detailed results				
Frame monitor	Slot No.: 1 Network Speed:	Select Wew © View by HEX	Monitor selections Select Channel: Channel 1 ▼	Start Save as File Stop Close	
	Rec XGT master 15 2018/5/ Tra XGT master 15 2018/5/ Tra XGT master 15 2018/5/ Tra XGT master 17 2018/5/ Tra XGT master 17 2018/5/ Tra XGT master 17 2018/5/ Rec XGT master 15 2018/5/	Frame data 0.14:96:09:528,1		,	

- 1. Select Online Communication Module Setting -> System Diagnostics or click the icon().
- 2. You can monitor the communication data currently being communcated by cliking on the Cnet I/F module and pressing the right mouse button to click the [Frame Monitor].
- 3. Click [Frame Monitor] to monitor the communication status.


► Frame Monitor Details

Item	s	Contents	
Base No.		Base position of the communication module being monitored	
Basic information	Slot No.	Slot position of the communication module being monitored	
Monitor option	Channel selection	Select the channel to monitor	
	Type	Indicate the transmission frame and reception frame	
Frame monitor window	Processed results	Indicate the protocol type currently being used 1) XGT server 2) XGT client 3) Modbus server 4) Modbus client 5) User defined 6) Unknown: Frame that cannot be processed	
	Size	Length of the monitored frame	
	Time	Display the point of time for transmission/reception	
	Frame data	Display the data of transmitted/received frame	
View in	HEX	Display the frame data with HEX values	
View in A	ASCII	Display the frame data with ASCII values	
Save file		Save the frame monitoring contents to a file	
Start		Start of the frame monitoring operation	
Stop		Stop the monitoring status	
Clos	е	Close the frame monitor window	

Service status

- 1. Select Online Communication Module Setting -> System Diagnostics or click the icon()
- 2. Click on the Cnet I/F, and then press the right mouse button and click the service status.
- 3. Click [Service Status], and then click [Dedicated Service].
- 4. Click [Continue Reading] to check the status of each service.

- 1. Select Online Communication Module Setting -> System Diagnostics or click the icon()
- 2. Click on the Cnet I/F, and then press the right mouse button and click the service status.
- 3. Click [Status by Service], and then click [P2P Service].
- 4. Click [Continue Reading] to check the status of each service.

▶ Details by service

Division	Item		Contents
	Basic information	Base No.	Base position of the module using the dedicated service
		Slot No.	Slot position of the module using the dedicated service
		Link type	Type of the communication module being used
Dedicated	Dedicate	d service information	Indicate the type of drives being used for each channel
service		Port No.	Indicate the channel number
	Detailed information	Service count	Indicate the number of dedicated service communications
	window	Error count	Indicate the number of errors that occur during the dedicated service communication
		Status	Display the dedicated service communication status
	Basic information	Base No.	Base position of the module using the P2P service
		Slot No.	Slot position of the module using the P2P service
		Link type	Type of the communication module being used
	P2P service information	Presence of P2P parameters	Indicate whether the P2P parameter is downloaded or not
		Driver type	P2P driver setting information for each channel XGT client/MODBUS client/User definable
P2P service		Block No.	Available from 0 to 63 Display only the currently registered block being operated
		Port No.	Indicate the channel number
	Detailed information	Status	Display service execution status information for each block
		Service count	Indicate the number of times each block has been executed since the P2P service was performed
		Error count	Indicate the number of errors that occur during the service
Continuous	Co	ntinuous Read	Check P2P service status information every second
Read/ Redo	Restart		Check the P2P service status information at the time of execution

Chapter15 Built-in Cnet Communication

▶ Service status code

It is used to check the communication status of Cnet I / F module.

Dedicated service			P2P service
Status	Meaning	Status	Meaning
0	Normal communication	0	Normal communication
1	Reception frame header error (No ACK/NAK)	4	Maximum station setting error(when setting 0 to 255 stations or more)
2	Reception frame tail error(No Tail)	5	Time out occurs
3	Reception frame BCC error	FFFE	1.Modbus address error 2.When using commands other than Read/Write
9	The station number of the received frame is different from the number of its station (Its station number=0)		
0A	No response is received from the CPU		
0B	The received frame is longer than the Modbus maximum frame		-
0C	The received frame is not Modbus ASCII / Modbus RTU		
0D	HEX conversion error in Modbus occurs		

15.13.2 Protocol-specific error codes

It is related to the error code according to the protocol.

▶ XGT Client / Server

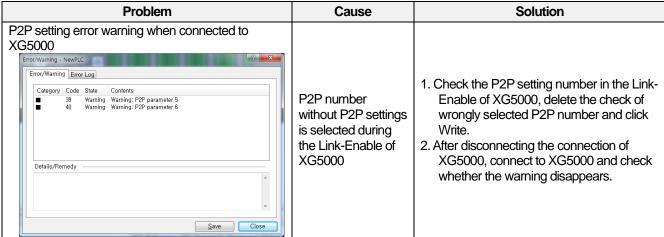
Error code	Error type	Error content and cause	Example of error frame
0003	Block number excess error	The number of blocks is larger than 16 at individual read/write requests	01rSS1105%MW10
0004	Variable length error	Variable length is greater than the maximum size (16)	01rSS113%MW10000000000
0007	Data type error	Data other than X,B,W,D and L is received	01rSS1105%MK10
		Date length area information is incorrect	01rSB05%MW%4
		It does not start with %	01rSS0105\$MW10
0011	Data error	The area value of a variable is invalid	01rSS0105%MW/&
		In the case of bit writing, 00 or 01 should be written, but other values are written	01wSS0105\$MX1011
0090	Monitor execution error	The execution of unregistered monitor is required	
0190	Monitor execution error	The range of monitor execution exceeds that of registration numbers requested by the client	
0290	Monitor registration error The range of monitor registration exceeds that of registration numbers requested by the client		
1132	Device memory error	Character, which is not a device to be used, is entered	
1232	Data size error	The size of data exceeds 60 words that can be read or written at a time	01wSB05%MW1040AA5512
1234	Reserved frame error	There is additional content that is not needed	01rSS0105%MW10000
1332	Data type mismatch error	In the case of individual read/write, all blocks should be requested with respect to the same data type	01rSS0205%MW1005%MB10
1432	Data value error	Data value cannot be converted to Hex value	01wSS0105%MW10AA%5
7132	Variable request area excess error	It is required beyond the area supported by each device.	01rSS0108%MWFFFFF

► Modbus ASCII. Modbus RTU Client / Server

Code	Name	Detailed descriptions	
01	Function code error	Function code error	
02	Address error	Address allowable range excess error	
03	Data setting error	Data value is not allowed	
04	Server station error	Server(slave)station is in error state	
05	Retransmission request	Requests the client to make a request again at a proper time because the content to be processed is to huge for the server to handle at the moment	
06	Processing time delay	The server station takes time to process. The master should make a request again.	

Chapter15 Built-in Cnet Communication

▶ P2P Client Error Code


Code	Name	Detailed descriptions
05	P2P block timeout error	Exceeds P2P block reception response time

▶ Error code that occurs in PLC itself

Code	Name	Detailed descriptions
0015	PLC P2P client time out	Timeout error occurs with respect to P2P block in PLC, not communication module. The PLC waits for up to 5 seconds after the P2P requests to the communication module. After 5 seconds, the PLC generates a timeout error with respect to the P2P block.
0016	PLC P2P client error	Invalid device area access error

15.13.3 Troubleshooting

1) Solution when P2P parameter setting error warning occurs when connected to XG5000

2) If the communication is not done even though P2P setting is completed when operating as a client

Problem	Cause	Solution
	Basic unit is in the stop state	Connect to XG5000, check operation mode and convert Stop to Run
Communication setting is completed, but Tx/Rx of LED of Cnetl/F does not blink	Communication default parameter mismatch between the client and the server	Connect to XG5000, select "File->Open from PLC" and check the communication default setting of the module that acts as client and server
	Link-Enable is not done	After performing P2P parameter, select the Link-Enable of the P2P and execute Write.

3) If the communication type is set to RS-485, and the response frame is missing when operating as a client

Problem	Cause	Solution
Frame monitoring after completing the settings of multiple P2P parameters in P2P block results in missing response frames	P2P start condition is faster than communication time	Change the P2P start condition of P2P block setting in consideration of communication time Communication time= Transmission time + reception time Transmission time= Start condition + basic unit Scan time + communication module Reaction time + data Delivery time Reception time= Basic unit scan time + communication module reaction time + data delivery time
	Response time of the communication module acting as a server is slow	1.Increase the latency in the default network setting section of XG5000

4) Solution when transmitting and receiving data that cannot be subject to frame analysis

Problem	Cause	Solution
	In a multi-drop connection, a plurality of servers transmit data at the same time	Execute 1:1 communication with the device acting as a server and check whether it is normal In case of normal communication between all devices, a plurality of servers may transmit data at the same time in a multi-drop configuration. Take the Interlock and be sure not to transmit in this case
Transmitting and receiving data that cannot be subject to frame	Parity bit setting is not matched	Match the parity bit setting between Cnet I/F and device acting as a server
analysis	Length of the stop bit is not set correctly	Match the stop bit setting between Cnet I/F and device acting as a server
	Communication speed setting is not matched	Match the communication speed setting between Cnet I/F and device acting as a server
	In multi-drop, termination resistance is not set	Check whether the termination resistor between Cnet I/F and device acting as a server is installed or not.

5) If it is unclear whether the error is caused by the client or the device operating as a server

Problem	Cause	Solution
It is unclear whether the		1.Check Cnet I/F module
communication error is caused by		- Check the installation status of the module
the client or the device acting as a	-	- Check the wiring status
server		2.Check the basic unit status

6) Solution when normal or abnormal communication repeatedly occurs

Problem	Cause	Solution
	In a multi-drop connection, a plurality of servers transmit data at the same time	Execute 1:1 communication with the device acting as a server and check whether it is normal In case of normal communication between all devices, a plurality of servers may transmit data at the same time in a multi-drop configuration. Take the Interlock and be sure not to transmit in this case
	Wiring connection failure of communication line	Replace cable or fix the cable connection securely
Normal or abnormal communication repeatedly occurs	Timing mismatch between transmission and reception signals when communication is set by half-duplex communication(RS-485)	Increase the latency of the device acting as a client and a server
	When the transmission processing is not completed, the following transmission process is required. When the reception processing is not completed, the following reception process is required	Ensure the handshaking in the program

Appendix 1 Flag List

(1) Type of flag

(a) System flag

This flag indicates the operation, state, and information of motion controller.

Variable	Туре	Address	Description
_SYS_STATE	DWORD	%FD0	PLC mode and states
_RUN	BOOL	%FX0	RUN
_STOP	BOOL	%FX1	STOP
_ERROR	BOOL	%FX2	ERROR
_LOCAL_CON	BOOL	%FX4	Local control
_REMOTE_CON	BOOL	%FX6	Remote mode ON
_RUN_EDIT_ST	BOOL	%FX8	Downloading a program at online editing mode
_RUN_EDIT_CHK	BOOL	%FX9	Processing online editing internally
_RUN_EDIT_DONE	BOOL	%FX10	Online editing done
_RUN_EDIT_NG	BOOL	%FX11	Online editing abnormal termination
_CMOD_KEY	BOOL	%FX12	Change operation mode by the switch
_CMOD_LPADT	BOOL	%FX13	Change operation mode by the local PADT
_FORCE_IN	BOOL	%FX16	Force input
_FORCE_OUT	BOOL	%FX17	Force output
_MON_ON	BOOL	%FX20	Monitoring mode
_USTOP_ON	BOOL	%FX21	STOP by STOP Function
_ESTOP_ON	BOOL	%FX22	STOP by ESTOP Function
_INIT_RUN	BOOL	%FX24	Executing the initial task
_PB1	BOOL	%FX28	Program code 1
_PB2	BOOL	%FX29	Program code 2
_CNF_ER	DWORD	%FD2	System errors(Significant error)
_ANNUM_ER	BOOL	%FX70	Significant error detection in external device
_BPRM_ER	BOOL	%FX72	Basic parameter error
_IOPRM_ER	BOOL	%FX73	IO configuration parameter error
_SPPRM_ER	BOOL	%FX74	Parameter error in Special module
_CPPRM_ER	BOOL	%FX75	Local Ethernet parameter error
_PGM_ER	BOOL	%FX76	Program error
_SWDT_ER	BOOL	%FX78	CPU abnormal ends
_ENCPRM_ER	BOOL	%FX85	Encoder parameter error
_AXISPRM_ER	BOOL	%FX86	Axis parameter error
_GROUPPRM_ER	BOOL	%FX87	Axis group parameter error
_ECPRM_ER	BOOL	%FX88	EtherCAT parameter error

Variable	Туре	Address	Description
_NCPRM_ER	BOOL	%FX89	NC Parameter Error
_NCPGM_ER	BOOL	%FX90	NC Program Check Error
_PTASK_CYCLE_ER	BOOL	%FX91	Main Task Period Error
_CTASK_CYCLE_ER	BOOL	%FX92	Cycle Task Period Error
_SYSTEM_ER	BOOL	%FX93	System Error
_TASK_PRM_USAGE_OVER_ER	BOOL	%FX94	Task Program Occupancy Excess Error
_CNF_WAR	DWORD	%FD4	System warnings(Minor error)
_RTC_ER	BOOL	%FX128	Abnormal RTC data
_PTASK_CYCLE_WAR	BOOL	%FX129	Main Task Period Exceeded Warning
_CTASK_CYCLE_WAR	BOOL	%FX130	Cycle Task Period Exceeded Warning
_AB_SD_ER	BOOL	%FX131	Stop from abnormal operation
_MOTION_CONTROL_WAR	BOOL	%FX132	Motion Control Abnormal Warning
_ANNUM_WAR	BOOL	%FX134	Minor error detection in external device
_TASK_PRM_USAGE_OVER_WAR	BOOL	%FX135	Task Program Occupancy Excess Warning
_P2P_WAR	BOOL	%FX138	P2P Parameter Warning
_T20MS	BOOL	%FX192	20ms CLOCK
_T100MS	BOOL	%FX193	100ms CLOCK
_T200MS	BOOL	%FX194	200ms CLOCK
_T1S	BOOL	%FX195	1s CLOCK
_T2S	BOOL	%FX196	2s CLOCK
_T10S	BOOL	%FX197	10s CLOCK
_T20S	BOOL	%FX198	20s CLOCK
_T60S	BOOL	%FX199	60s CLOCK
_ON	BOOL	%FX201	Always ON
_OFF	BOOL	%FX202	Always OFF
_10N	BOOL	%FX203	1 scan ON
_1OFF	BOOL	%FX204	1 scan OFF
_STOG	BOOL	%FX205	Every scan Toggle
_ERR	BOOL	%FX224	Calculation error flag
_ALL_OFF	BOOL	%FX227	All output OFF
_LER	BOOL	%FX229	Latch flag for calculation error
_ARY_IDX_ERR	BOOL	%FX247	Exceeding error from Index range when using array
_ARY_IDX_LER	BOOL	%FX248	Latch for exceeding error on Index range when using array
_UDF_STACK_ERR	BOOL	%FX249	UDF Stack Over Error Flag
_UDF_STACK_LER	BOOL	%FX250	UDF Stack Over Error Latch Flag
_CPU_TYPE	WORD	%FW18	CPU type
_CPU_VER	WORD	%FW19	CPU version
_OS_VER	DWORD	%FD10	OS version
_OS_DATE	DWORD	%FD11	OS date
_OS_VER_PATCH	DWORD	%FD12	OS patch version

Variable	Туре	Address	Description
_RTC_TIME	ARRAY[07] OF BYTE	%FB52	RTC Time
_RTC_DATE	DATE	%FW30	Current RTC date
_RTC_WEEK	UINT	%FW31	Current RTC day
_RTC_TOD	TIME_OF_DAY	%FD16	Current time of RTC(ms unit)
_KEY	DWORD	%FD17	Current state of the local key switch
_AC_F_CNT	UINT	%FW36	Short power interruptions count
_FALS_NUM	UINT	%FW37	FALS Command Usage Area
_SYS_ERR_TYPE	WORD	%FW38	System Error Detailed Flag
_ENCODER_HW_ERR	BOOL	%FX608	Encoder Input Handling H/W Setting Error
_BACKPLANE_IF_ERR	BOOL	%FX609	Backplane Interface Error
_SERIAL_NUM	ARRAY[019] OF BYTE	%FB80	Serial Number
_PTASK_SCAN_MAX	UINT	%FW512	Main Task Max. Scan Time(Unit:100us)
_PTASK_SCAN_MIN	UINT	%FW513	Main Task Min. Scan Time(Unit:100us)
_PTASK_SCAN_CUR	UINT	%FW514	Main Task Current Scan Time(Unit:100us)
_CTASK_SCAN_MAX	UINT	%FW515	Cycle Task Max. Scan Time(Unit:100us)
_CTASK_SCAN_MIN	UINT	%FW516	Cycle Task Min. Scan Time(Unit:100us)
_CTASK_SCAN_CUR	UINT	%FW517	Cycle Task Current Scan Time(Unit:100us)
_PROGRAM_RATIO_MAX	UINT	%FW518	User Program Maximum Execution Occupancy
			(1sec)
_PROGRAM_RATIO_MIN	UINT	%FW519	User Program Minimum Execution Occupancy (1sec)
_PROGRAM_RATIO_CUR	UINT	%FW520	User Program Current Execution Occupancy (1sec)
_PTASK_CYCLE_WAR_NUM	UINT	%FW748	Main Task Period Exceeded Warning Count
_CTASK_CYCLE_WAR_NUM	UINT	%FW749	Cycle Task Period Exceeded Warning Count
_RTC_WR	BOOL	%FX20480	User RTC Setting Request
_CHK_ANC_ERR	BOOL	%FX20482	Request for significant error detection in external
			device
_CHK_ANC_WAR	BOOL	%FX20483	Request for minor error detection in external device
_PTASK_SCAN_WR	BOOL	%FX20486	Main Task Scan Value Initialization
_CTASK_SCAN_WR	BOOL	%FX20487	Cycle Task Scan Value Initialization
_INIT_DONE	BOOL	%FX20496	Completion of initialization task
_ANC_ERR	WORD	%FW1282	Significant error information in external device
_ANC_WAR	WORD	%FW1283	Minor error information in external device
_RTC_TIME_USER	ARRAY[07] OF BYTE	%FB2568	User RTC Time

(b) Motion flag

The flag displayed following are as follows. It displays the state and data of the motion controller.

The flag related to axis is displayed as "_AXxx_..."(xx indicates the relevant axis No. : Decimal) and the flag related to axis group is displayed as "_AGyy_..."(yy indicates the axis group No. : Decimal).

1) Motion common flag

Variable	Туре	Address	Description
_MC_RUN	BOOL	%FX65536	MC RUN
_MC_STOP	BOOL	%FX65537	MC STOP
_MC_TEST	BOOL	%FX65538	MC TEST
_MC_WARNING	BOOL	%FX65539	MC Common warning occurrence
_MC_ALARM	BOOL	%FX65540	MC Common alarm occurrence
_MC_COM_ERR	BOOL	%FX65541	MC Common error occurrence
_MC_COM_ERR_CODE	WORD	%FW4097	MC Common error code
_EC_LINKUP_INFO	BOOL	%FX65600	EtherCAT Link Up/Down Information
_EC_COMM	BOOL	%FX65601	EtherCAT Communication connection state
_EC_COMM_ERR	BOOL	%FX65602	EtherCAT Communication timeout error
_EC_PDO_ERR_CNT	UINT	%FW4102	EtherCAT PDO error count
_EC_SLAVE_RDY	ARRAY[063] OF BOOL	%FX65664	EtherCAT Slave ready
_EC_SDO_BUSY	ARRAY[063] OF BOOL	%FX65792	EtherCAT Slave SDO processing busy
_EC_SDO_ERR	ARRAY[063] OF BOOL	%FX65920	EtherCAT Slave SDO processing error
_EC_LINE_FAIL	ARRAY[063] OF BOOL	%FX66048	EtherCAT Cable disconnection state
_EC_MASTER_STATE	BYTE	%FB8264	EtherCAT master STATE
_EC_SLAVE_NUM	WORD	%FW4133	Number of connected EtherCAT Slave
_EC_ERR_INFO1	STRING	%FB8272	EtherCAT error information1
_EC_ERR_INFO2	STRING	%FB8304	EtherCAT error information2
_EC_TRANSMITTED_OK	UDINT	%FD2084	EtherCAT Number of frames transmitted
_EC_RECEIVED_OK	UDINT	%FD2085	EtherCAT Number of frames received
_EC_CRCERR_CNT	UDINT	%FD2086	EtherCAT Receive CRC error frame
_EC_COLLISION_CNT	UDINT	%FD2087	EtherCAT Number of collision frames
_EC_CARRIER_SENSE_ERR	UDINT	%FD2088	EtherCAT Carrier sense error
_EC_LINKOFF_CNT	UDINT	%FD2089	EtherCAT Number of Link Off
_EC_OVERSIZE_FRAME	UDINT	%FD2090	EtherCAT Receive oversize frames
_EC_UNDERSIZE_FRAME	UDINT	%FD2091	EtherCAT Receive undersize frames
_EC_JABBER_FRAME	UDINT	%FD2092	EtherCAT Receive jabber frame
_EC_PDO_CUR_TRANSCYCLE	UDINT	%FD2093	EtherCAT PDO transfer cycle ns
_EC_PDO_MAX_TRANSCYCLE	UDINT	%FD2094	EtherCAT Maximum PDO transfer cycle ns
_EC_PDO_MIN_TRANSCYCLE	UDINT	%FD2095	EtherCAT Minimum PDO transfer cycle ns
_EC_PDO_TRANS_JITTER	UDINT	%FD2096	EtherCAT PDO frame transfer jitter ns
_EC_PDO_ERR_CNT_TOTAL	UDINT	%FD2097	PDO error count (accumulated)
_EC_LOST_FRAME	UDINT	%FD2098	Number of lost frames
_EC_PDO_ERR_CNT_MAX	UDINT	%FD2099	PDO error count (Max.)
_EC_ERR_INFO3	STRING	%FB8424	EtherCAT error information 3

Reference) The flags of _AXxx_HOME(Flag used at home return command) and _AXxx_Homing(Operation status of PLC open standard) indicate the same state.

2) Motion axis flag

The address information is the flag memory of axis 01. The address has 2,048bit (32LREAL) offsets per axis.

Variable	Туре	Address	Description
_AXxx_RDY	BOOL	%FX73728	Axis xx ready
_AXxx_WARNING	BOOL	%FX73729	Axis xx warning occurrence
_AXxx_ALARM	BOOL	%FX73730	Axis xx alarm occurrence
_AXxx_SV_ON	BOOL	%FX73731	Axis xx servo On/Off
_AXxx_SV_RDY	BOOL	%FX73732	Axis xx servo ready
_AXxx_MSTSLV_STS	BOOL	%FX73733	Axis xx master/slave status
_AXxx_NC	BOOL	%FX73734	Axis xx NC operation
_AXxx_MST_INFO	UINT	%FW4609	Axis xx master axis information
_AXxx_AXIS_TYPE	UINT	%FW4610	Axis xx axis type
_AXxx_LINKED_NODE	UINT	%FW4611	Axis xx connected node information
_AXxx_LINKED_SLOT	UINT	%FW4612	Axis xx connected slot information
_AXxx_UNIT	UINT	%FW4613	Axis xx axis unit
_AXxx_VEL_UNIT	UINT	%FW4614	Axis xx speed unit
_AXxx_AX_ERR	WORD	%FW4615	Axis xx error code
_AXxx_SVON_INCMPL	BOOL	%FX73856	Axis xx servo on incomplete
_AXxx_COMM_WARN	BOOL	%FX73857	Axis xx communication warning
_AXxx_DEV_WARN	BOOL	%FX73858	Axis xx deviation warning
_AXxx_SV_ERR	BOOL	%FX73872	Axis xx servo drive error
_AXxx_HW_POT	BOOL	%FX73873	Axis xx positive limit detection
_AXxx_HW_NOT	BOOL	%FX73874	Axis xx negative limit detection
_AXxx_SW_POT	BOOL	%FX73875	Axis xx S/W positive limit detection
_AXxx_SW_NOT	BOOL	%FX73876	Axis xx S/W negative limit detection
_AXxx_SV_OFF	BOOL	%FX73877	Axis xx execution error of operation command in servo-off state
_AXxx_POS_OVR	BOOL	%FX73878	Axis xx exceeds the set range of positioning travel amount
_AXxx_VEL_OVR	BOOL	%FX73879	Axis xx exceeds the maximum velocity
_AXxx_DEV_ERR	BOOL	%FX73880	Axis xx deviation alarm
_AXxx_HOME_INCMPL	BOOL	%FX73881	Axis xx Execution of absolute position
			command in undetermined HOME
_AXxx_COMM_ERR	BOOL	%FX73882	Axis xx communication alarm
_AXxx_BUSY	BOOL	%FX73888	Axis xx busy state of motion command
_AXxx_PAUSE	BOOL	%FX73889	Axis xx pause state of motion command
			(velocity is zero)
_AXxx_STOP	BOOL	%FX73890	Axis xx stop state by the stop command
_AXxx_CMD_FAIL	BOOL	%FX73891	Axis xx abnormal completion of motion
			command
_AXxx_CMD_CMPL	BOOL	%FX73892	Axis xx normal completion of motion
			command

Variable	Туре	Address	Description
_AXxx_DIR	BOOL	%FX73893	Axis xx operation direction
_AXxx_JOG	BOOL	%FX73894	Axis xx JOG operation
_AXxx_HOME	BOOL	%FX73895	Axis xx Homing operation
_AXxx_POS_CTRL	BOOL	%FX73896	Axis xx position control operation
_AXxx_VEL_CTRL	BOOL	%FX73897	Axis xx velocity control operation
_AXxx_TRQ_CTRL	BOOL	%FX73898	Axis xx torque control operation
_AXxx_LINTP	BOOL	%FX73899	Axis xx linear interpolation operation
_AXxx_CINTP	BOOL	%FX73900	Axis xx circular interpolation operation
_AXxx_SYNC	BOOL	%FX73901	Axis xx synchronous control operation
_AXxx_COORD	BOOL	%FX73902	Axis xx coordinated operation
_AXxx_BUSY_ACC	BOOL	%FX73917	Axis xx acceleration operation
_AXxx_BUSY_CONSTVEL	BOOL	%FX73918	Axis xx constant speed operation
_AXxx_BUSY_DEC	BOOL	%FX73919	Axis xx deceleration operation
_AXxx_POS_CMPL	BOOL	%FX73920	Axis xx positioning completion
_AXxx_INPOS	BOOL	%FX73921	Axis xx inposition detection
_AXxx_LATCH_CMPL	BOOL	%FX73922	Axis xx latch completion
_AXxx_HOME_CMPL	BOOL	%FX73923	Axis xx homing completion
_AXxx_Disabled	BOOL	%FX73936	Axis xx Disabled state
_AXxx_Standstill	BOOL	%FX73937	Axis xx Standstill state
_AXxx_Discrete	BOOL	%FX73938	Axis xx Discrete state
_AXxx_Continuous	BOOL	%FX73939	Axis xx Continuous state
_AXxx_Synchronized	BOOL	%FX73940	Axis xx Synchronized state
_AXxx_Homing	BOOL	%FX73941	Axis xx Homing state
_AXxx_Stopping	BOOL	%FX73942	Axis xx Stopping state
_AXxx_ErrorStop	BOOL	%FX73943	Axis xx ErrorStop state
_AXxx_CMD_TPOS	LREAL	%FL1156	Axis xx target position
_AXxx_CMD_CPOS	LREAL	%FL1157	Axis xx command position of current scan
_AXxx_CMD_VEL	LREAL	%FL1158	Axis xx command velocity
_AXxx_CMD_ACCDEC	LREAL	%FL1159	Axis xx command acceleration/deceleration
_AXxx_CMD_JERK	LREAL	%FL1160	Axis xx command jerk
_AXxx_CMD_TRQ	LREAL	%FL1161	Axis xx command torque
_AXxx_ACT_POS	LREAL	%FL1162	Axis xx actual current position
_AXxx_ACT_VEL	LREAL	%FL1163	Axis xx actual current velocity
_AXxx_ACT_TRQ	LREAL	%FL1164	Axis xx actual current torque
_AXxx_POS_DEV	LREAL	%FL1165	Axis xx position deviation
_AXxx_DRV_ALARM	BOOL	%FX74624	Axis xx drive alarm state
_AXxx_DRV_WARNING	BOOL	%FX74625	Axis xx drive warning state
_AXxx_DRV_SV_ON	BOOL	%FX74626	Axis xx servo on status
_AXxx_DRV_POT	BOOL	%FX74627	Axis xx positive limit input
_AXxx_DRV_NOT	BOOL	%FX74628	Axis xx negative limit input

Variable	Туре	Address	Description
_AXxx_DRV_HOME	BOOL	%FX74629	Axis xx home input
_AXxx_DRV_LATCH1	BOOL	%FX74630	Axis xx LATCH1 input
_AXxx_DRV_LATCH2	BOOL	%FX74631	Axis xx LATCH2 input
_AXxx_DRV_PARAMBUSY	BOOL	%FX74632	Axis xx read/write operations of the SDO
			parameter
_AXxx_DRV_IN	DWORD	%FD2333	Axis xx drive inputs
_AXxx_DRV_ERR	WORD	%FW4668	Axis xx drive error code
_AXxx_CMDBUF_FULL	BOOL	%FX73951	Axis xx Buffered full of command buffers
_AXxx_CMDBUF_QUEUED	UINT	%FW4622	Axis xx Buffered number of command
			execution wait
_AXxx_CMDBUF_FREE	UINT	%FW4623	Axis xx Buffered number of executable
			commands

Reference) The flags of _AXxx_HOME(Flag used at home return command) and _AXxx_Homing(Operation status of PLC open standard) indicate the same state.

3) Motion axis group flag

The address information is the flag memory of axis 01. The address has 5,120bit (80LREAL) offsets per axis.

Variable	Туре	Address	Description
_AGxx_RDY	BOOL	%FX212992	Axis group xx ready
_AGxx_WARNING	BOOL	%FX212993	Axis group xx warning occurrence
_AGxx_ALARM	BOOL	%FX212994	Axis group xx alarm occurrence
_AGxx_SV_ON	BOOL	%FX212995	Axis group xx servo On/Off
_AGxx_SV_RDY	BOOL	%FX212996	Axis group xx servo ready
_AGxx_ERR	WORD	%FW13313	Axis group xx error code
_AGxx_BUSY	BOOL	%FX213024	Axis group xx busy state of motion command
_AGxx_PAUSE	BOOL	%FX213025	Axis group xx pause state of motion command
			(velocity is zero)
_AGxx_STOP	BOOL	%FX213026	Axis group xx stop state by the stop command
_AGxx_CMD_FAIL	BOOL	%FX213027	Axis group xx command error exit status
_AGxx_CMD_CMPL	BOOL	%FX213028	Axis group xx command execution complete
_AGxx_LINTP	BOOL	%FX213029	Axis group xx linear interpolation operation
_AGxx_CINTP	BOOL	%FX213030	Axis group xx circular interpolation operation
_AGxx_HOME	BOOL	%FX213031	Axis group xx homing operation
_AGxx_SYNC	BOOL	%FX213032	Axis group xx synchronization operation
_AGxx_TLINTP	BOOL	%FX213033	Axis group xx coordinated time operation
_AGxx_CDMOVE	BOOL	%FX213034	Axis group xx coordinated direct operation
_AGxx_CCINTP	BOOL	%FX213035	Axis group xx coordinated circular interpolation
			operation
_AGxx_POS_CMPL	BOOL	%FX213056	Axis group xx positioning completion
_AGxx_Disabled	BOOL	%FX213072	Axis group xx Disabled state

Variable	Туре	Address	Description
_AGxx_Standby	BOOL	%FX213073	Axis group xx Standby state
_AGxx_Moving	BOOL	%FX213074	Axis group xx Moving state
_AGxx_Homing	BOOL	%FX213075	Axis group xx Homing state
_AGxx_Stopping	BOOL	%FX213076	Axis group xx Stopping state
_AGxx_ErrorStop	BOOL	%FX213077	Axis group xx ErrorStop state
_AGxx_CMD_TPOS	ARRAY[09] OF LREAL	%FL3330	Axis group xx target position
_AGxx_CMD_CPOS	ARRAY[09] OF LREAL	%FL3340	Axis group xx command position of current scan
_AGxx_CMD_VEL	LREAL	%FL3350	Axis group xx target velocity
_AGxx_CMD_ACCDEC	LREAL	%FL3351	Axis group xx command acc./dec.
_AGxx_CMD_JERK	LREAL	%FL3352	Axis group xx command jerk
_AGxx_ACT_POS	ARRAY[09] OF LREAL	%FL3353	Axis group xx actual current position
_AGxx_ACT_VEL	LREAL	%FL3363	Axis group xx actual current velocity
_AGxx_CFG_AX_NUM	UINT	%FW13456	Axis group xx number of axes
_AGxx_CMDBUF_FULL	BOOL	%FX213087	Axis group xx Buffered full of command buffers
_AGxx_CMDBUF_QUEUED	UINT	%FW13318	Axis group xx Buffered number of command
			execution wait
_AGxx_CMDBUF_FREE	UINT	%FW13319	Axis group xx Buffered number of executable
			commands
_AGxx_CFG_A1	UINT	%FW13458	Axis group xx axis number of composition axis1
_AGxx_CFG_A2	UINT	%FW13459	Axis group xx axis number of composition axis2
_AGxx_CFG_A3	UINT	%FW13460	Axis group xx axis number of composition axis3
_AGxx_CFG_A4	UINT	%FW13461	Axis group xx axis number of composition axis4
_AGxx_CFG_A5	UINT	%FW13462	Axis group xx axis number of composition axis5
_AGxx_CFG_A6	UINT	%FW13463	Axis group xx axis number of composition axis6
_AGxx_CFG_A7	UINT	%FW13464	Axis group xx axis number of composition axis7
_AGxx_CFG_A8	UINT	%FW13465	Axis group xx axis number of composition axis8
_AGxx_CFG_A9	UINT	%FW13466	Axis group xx axis number of composition axis9
_AGxx_CFG_A10	UINT	%FW13467	Axis group xx axis number of composition axis10
_AGxx_MTCP_Px	LREAL	%FL3367	Axis group xx X axis position(MCS)
_AGxx_MTCP_Py	LREAL	%FL3368	Axis group xx Y axis position(MCS)
_AGxx_MTCP_Pz	LREAL	%FL3369	Axis group xx Z axis position(MCS)
_AGxx_MTCP_A	LREAL	%FL3370	Axis group xx X axis rotation(MCS)
_AGxx_MTCP_B	LREAL	%FL3371	Axis group xx X axis rotation(MCS)
_AGxx_MTCP_C	LREAL	%FL3372	Axis group xx Z axis rotation(MCS)
_AGxx_PTCP_Px	LREAL	%FL3373	Axis group xx X axis position(PCS)
_AGxx_PTCP_Py	LREAL	%FL3374	Axis group xx Y axis position(PCS)
_AGxx_PTCP_Pz	LREAL	%FL3375	Axis group xx Z axis position(PCS)
_AGxx_PTCP_A	LREAL	%FL3376	Axis group xx X axis rotation(PCS)
_AGxx_PTCP_B	LREAL	%FL3377	Axis group xx Y axis rotation(PCS)
_AGxx_PTCP_C	LREAL	%FL3378	Axis group xx Z axis rotation(PCS)

4) Slave flag

Variable	Туре	Address	Description
_SLVxx_EC_STATE	SINT	%FB47104	EtherCAT Slave xx STATE
_SLVxx_LINK_STATUS	BYTE	%FB47105	EtherCAT Slave xx link information
_SLVxx_ERROR	WORD	%FW23553	EtherCAT Slave xx error
_SLVxx_VENDOR_ID	DWORD	%FD11777	EtherCAT Slave xx Vendor ID
_SLVxx_PRODUCT_CODE	DWORD	%FD11778	EtherCAT Slave xx Product Code
_SLVxx_REVISION_NUMBER	DWORD	%FD11779	EtherCAT Slave xx Revision Number
_SLVxx_ALStatus	AL status information	%FW23563	Slave xx AL status information
_SLVxx_ALStatusCode	AL error code	%FW23564	Slave xx AL error code
_SLVxx_DLStatus	Link status information	%FW23565	Slave xx Link status information
_SLVxx_LinkLostCount	Port A Number of link	%FD11783	Slave xx Port A Number of link disconnection
	disconnection		
_SLVxx_InValidFrameCounterA	Port A Abnormal frame	%FB47136	Slave xx Port A Abnormal frame counter
	counter		
_SLVxx_RxErrorCounterA	Port A Number of physical	%FB47137	Slave xx Port A Number of physical layer
	layer errors		errors
_SLVxx_InValidFrameCounterB	Port B Abnormal frame	%FB47138	Slave xx Port B Abnormal frame counter
	counter		
_SLVxx_RxErrorCounterB	Port B Number of	%FB47139	Slave xx Port B Number of physical layer
	physical layer errors		errors
_SLVxx_InValidFrameCounterC	Port C Abnormal frame	%FB47140	Slave xx Port C Abnormal frame counter
	counter		
_SLVxx_RxErrorCounterC	Port C Number of	%FB47141	Slave xx Port C Number of physical layer
	physical layer errors		errors
_SLVxx_InValidFrameCounterD	Port D Abnormal frame	%FB47142	Slave xx Port D Abnormal frame counter
	counter		
_SLVxx_RxErrorCounterD	Port D Number of	%FB47143	Slave xx Port D Number of physical layer
	physical layer errors		errors
_SLVxx_ForwardedRXErrCounter	Number of transmitted	%FD11786	Slave xx Number of transmitted abnormal
	abnormal frames		frames

5) NC channel flag

It displays the state of NC channel. NC channel flag is displayed as "_NCyy_..." (yy indicates the NC channel No.(Decimal))

Variable	Туре	Address	Description
_NCyy_Ready	BOOL	%FX524288	NC Ch. yy NC ready
_NCyy_Warning	BOOL	%FX524289	NC Ch. yy warning occurrence
_NCyy_Alarm	BOOL	%FX524290	NC Ch. yy alarm occurrence
_NCyy_ResetStatus	BOOL	%FX524291	NC Ch. yy reset state
_NCyy_CycStartBegin	BOOL	%FX524292	NC Ch. yy cycle start begin information
_NCyy_CycStartFinish	BOOL	%FX524293	NC Ch. yy cycle start finish information
_NCyy_TargetQtyCmpl	BOOL	%FX524294	NC Ch. yy target quantity reached signal
_NCyy_PrgmNormalCmpl	BOOL	%FX524295	NC Ch. yy normal completion of program execution
_NCyy_PwrFailInAuto	BOOL	%FX524296	NC Ch. yy power failure in automatic operation
_NCyy_ErrorCode	WORD	%FW32770	NC Ch. yy error code
_NCyy_IPR_HeartBeat	UDINT	%FD16386	NC Ch. yy IPR HeartBeat
_NCyy_IPR_Run	BOOL	%FX524384	NC Ch. yy IPR operation state (0:stop,
			1:running)
_NCyy_IPR_WaitEoM	BOOL	%FX524400	NC Ch. yy waiting end of motion state (0: not
			waiting, 1:waiting)
_NCyy_IPR_EndOfMot	UINT	%FW32776	NC Ch. yy end of motion
_NCyy_IPR_AfBufSts	UINT	%FW32777	NC Ch. yy AutoFIFO buffer state (0: empty,
			another: buffer usage)
_NCyy_IPR_ErrorCode	UINT	%FW32778	NC Ch. yy IPR error code
_NCyy_PA_ErrorCode	UINT	%FW32779	NC Ch. yy program access error code
_NCyy_IPR_AlarmSts	ARRAY[04] OF DWORD	%FD16390	NC Ch. yy IPR alarm information
_NCyy_CycleStart	BOOL	%FX524672	NC Ch. yy cycle start state
_NCyy_FeedHold	BOOL	%FX524673	NC Ch. yy feed hold state
_NCyy_AutoOperation	BOOL	%FX524674	NC Ch. yy automatic operation state
_NCyy_RetraceMove	BOOL	%FX524675	NC channel yy Signal to confirm reverse
			operation
_NCyy_RapidTrvsOpr	BOOL	%FX524736	NC Ch. yy rapid traverse operation
_NCyy_CuttingFeedOpr	BOOL	%FX524737	NC Ch. yy cutting feed operation
_NCyy_ConstSurfSpeed	BOOL	%FX524738	NC channel yy Signal controlling constant
			surface speed
_NCyy_TargetVelocity	LREAL	%FL8200	NC Ch. yy target velocity (F command value)
_NCyy_CmdVelocity	LREAL	%FL8201	NC Ch. yy command velocity
_NCyy_TVelOfSpindle	LREAL	%FL8203	NC Ch. yy spindle target velocity (S command
			value)
_NCyy_CVelOfSpindle	LREAL	%FL8204	NC Ch. yy spindle command velocity
_NCyy_FeedOverride	LREAL	%FL8206	NC Ch. yy feed override

Variable	Туре	Address	Description
_NCyy_RapidOverride	LREAL	%FL8207	NC Ch. yy rapid override
_NCyy_SpindleOverride	LREAL	%FL8208	NC Ch. yy spindle override
_NCyy_SpindleStop	BOOL	%FX525376	NC Ch. yy spindle stop state
_NCyy_SpindleCW	BOOL	%FX525377	NC Ch. yy spindle CW operation
_NCyy_SpindleCCW	BOOL	%FX525378	NC Ch. yy spindle CCW operation
_NCyy_SpindleOrient	BOOL	%FX525379	NC channel yy Signal to confirm spindle orientation status
_NCyy_SpindleCVelAgr	BOOL	%FX525380	NC Ch. yy spindle command velocity reached signal
_NCyy_SpindleZeroVel	BOOL	%FX525381	NC Ch. yy spindle zero velocity reached signal
_NCyy_SpindlePosCtrl	BOOL	%FX525382	NC channel yy Signal to confirm spindle position control mode status
_NCyy_SpindleSSCtrl	BOOL	%FX525383	NC channel yy Signal to confirm main axis SS control mode status
_NCyy _MainSpindle	UDINT	%FW32840	NC channel yy Confirm the main spindle axis number
_NCyy_DwellCount	UDINT	%FD16422	NC Ch. yy dwell count
_NCyy_ErrorBlockNum	UDINT	%FD16423	NC Ch. yy error block number
_NCyy_BlockCmdType	UINT	%FW32848	NC Ch. yy command type of current block
_NCyy_CurrentToolNum	UINT	%FW32856	NC Ch. yy current tool number
_NCyy_ToolRadiusComp	UINT	%FW32857	NC Ch. yy offset number of current tool radius
			compensation
_NCyy_ToolLengthComp	UINT	%FW32858	NC Ch. yy offset number of current tool length
			compensation
_NCyy_McodeStrobe	BOOL	%FX526080	NC Ch. yy M code output strobe signal
_NCyy_McodeDistCmpl	BOOL	%FX526081	NC Ch. yy M code distribution complete signal
_NCyy_McodeM00	BOOL	%FX526082	NC Ch. yy special M code output signal(M00)
_NCyy_McodeM01	BOOL	%FX526083	NC Ch. yy special M code output signal(M01)
_NCyy_McodeM02	BOOL	%FX526084	NC Ch. yy special M code output signal(M02)
_NCyy_McodeM30	BOOL	%FX526085	NC Ch. yy special M code output signal(M30)
_NCyy_McodeData	UDINT	%FD16441	NC Ch. yy M code data output
_NCyy_ScodeStrobe	BOOL	%FX526144	NC Ch. yy S code output strobe signal
_NCyy_ScodeDistCmpl	BOOL	%FX526145	NC Ch. yy S code distribution complete signal
_NCyy_ScodeData	UDINT	%FD16443	NC Ch. yy S code data output
_NCyy_TcodeStrobe	BOOL	%FX526208	NC Ch. yy T code output strobe signal
_NCyy_TcodeDistCmpl	BOOL	%FX526209	NC Ch. yy T code distribution complete signal
_NCyy_TcodeData	UDINT	%FD16445	NC Ch. yy T code data output
_NCyy_CycleTime	REAL	%FD16446	NC Ch. yy machining cycle time
_NCyy_TotalRunTime	REAL	%FD16447	NC Ch. yy total machining cycle time
NCyy_PartCount	UDINT	%FD16448	NC Ch. yy machining quantity
NCyy_PartCountByM99	UDINT	%FD16449	NC Ch. yy M99 machining quantity at repeat machining

Variable	Туре	Address	Description
_NCyy_MainProgram	STRING	%FB65800	NC Ch. yy main program name
_NCyy_CurrentProgram	STRING	%FB65832	NC Ch. yy current running program name
_NCyy_MainBlkNum	UDINT	%FD16466	NC Ch. yy block number of main program
_NCyy_CurrentBlkNum	UDINT	%FD16468	NC Ch. yy block number of current running program
_NCyy_ModalG_OneShot	REAL	%FD16476	NC Ch. yy G code modal value group 0 - One shot
_NCyy_ModalG_Motion	REAL	%FD16477	NC Ch. yy G code modal value group 1 - Motion
_NCyy_ModalG_CmdMode	REAL	%FD16479	NC Ch. yy G code modal value group 3 - Command
			mode (ABS or INC)
_NCyy_ModalG_Mirror	REAL	%FD16480	NC channel yy G Code Modal Value Group 4 - Mirror
_NCyy_ModalG_Feed	REAL	%FD16481	NC Ch. yy G code modal value group 5 - Feed mode
_NCyy_ModalG_Unit	REAL	%FD16482	NC Ch. yy G code modal value group 6 - Unit
_NCyy_ModalG_TRComp	REAL	%FD16483	NC Ch. yy G code modal value group 7 - Tool radius
			compensation
_NCyy_ModalG_Stroke	REAL	%FD16485	NC Ch. yy G code modal value group 9 - Stroke check
_NCyy _ModalG_Scale	REAL	%FD16487	NC channel yy G Code Modal Value Group 11 - Scale
_NCyy _ModalG_Macro	REAL	%FD16488	NC channel yy G Code Modal Value Group 12 - Macro
_NCyy_ModalG_TLComp	REAL	%FD16489	NC Ch. yy G code modal value group 13 - Tool length
			compensation
_NCyy_ModalG_WpCoord	REAL	%FD16490	NC Ch. yy G code modal value group 14 - Workpiece
			coordinate system
_NCyy_ModalG_CutMode	REAL	%FD16491	NC channel yy G Code Modal Value Group 15 -
			CutMode
_NCyy_ModalG_Plane	REAL	%FD16492	NC Ch. yy G code modal value group 16 - Circular plane
_NCyy_ModalG_RPolar	REAL	%FD16496	NC Ch. yy G code modal value group 20 - Reverse polar
			coordinate interpolation
_NCyy_ModalG_CylIntp	REAL	%FD16498	NC Ch. yy G code modal value group 22 - Cylindrical
			interpolation
_NCyy _ModalG_Skip	REAL	%FD16499	NC channel yy G Code Modal Value Group 23 - Skip
_NCyy_ModalFeed	LREAL	%FL8254	NC Ch. yy modal feed
_NCyy_ModalScode	UDINT	%FD16510	NC Ch. yy modal S code
_NCyy_ModalSpindleM	UDINT	%FD16511	NC Ch. yy modal spindle M code
_NCyy_ModelMcode	UDINT	%FD16512	NC Ch. yy Modal M Code
_NCyy_ModelHcode	UDINT	%FD16513	NC Ch. yy Modal H Code
_NCyy_ModalWorkCoord	UDINT	%FD16514	NC Ch. yy Modal Workpiece Coordinate

6) NC channel/axis flag

It displays the state of axis configured on the NC channel. NC channel/axis flag is displayed as "_NCyy_X...", "NCyy_Y..." (yy indicates the NC channel No.(Decimal) and X,Y,Z,A,B,C,U,V,W is the assigned axis)

Variable	Туре	Address	Description
_NC01X_Ready	BOOL	%FX532480	NC Ch. 01 axis X ready
_NC01X_Warning	BOOL	%FX532481	NC Ch. 01 axis X warning occurrence
_NC01X_Alarm	BOOL	%FX532482	NC Ch. 01 axis X alarm occurrence
_NC01X_ServoOn	BOOL	%FX532483	NC Ch. 01 axis X servo On/Off
_NC01X_ServoReady	BOOL	%FX532484	NC Ch. 01 axis X servo ready
_NC01X_ServoAlarm	BOOL	%FX532485	NC Ch. 01 axis X servo alarm occurrence
_NC01X_OprRdy	BOOL	%FX532544	NC Ch. 01 axis X operation ready
_NC01X_FeedMode	BOOL	%FX532552	NC Ch. 01 axis X axis feed mode (0: linear axis, 1:
			rotation axis)
_NC01X_LinkedAxNum	UINT	%FW33285	NC Ch. 01 axis X actual axis number of IPR axis
_NC01X_Busy	BOOL	%FX532608	NC Ch. 01 axis X busy state
_NC01X_Direction	BOOL	%FX532609	NC Ch. 01 axis X operation direction
_NC01X_ForwardRun	BOOL	%FX532610	NC Ch. 01 axis X running to positive direction
_NC01X_ReverseRun	BOOL	%FX532611	NC Ch. 01 axis X running to negative direction
_NC01X_RapidTraverse	BOOL	%FX532612	NC Ch. 01 axis X rapid traverse operation
_NC01X_CuttingFeed	BOOL	%FX532613	NC Ch. 01 axis X cutting feed operation
_NC01X_Homing	BOOL	%FX532614	NC Ch. 01 axis X homing operation
_NC01X_SpindleRun	BOOL	%FX532615	NC channel axis 01 X Spindle operation
_NC01X_PosCmpl	BOOL	%FX532672	NC Ch. 01 axis X positioning completion
_NC01X_Inposition	BOOL	%FX532673	NC Ch. 01 axis X in-position detection
_NC01X_HomeCmpl	BOOL	%FX532675	NC Ch. 01 axis X homing completion
_NC01_Mirror	BOOL	%FX532736	NC channel axis 01 X Signal to confirm Mirror
_NC01X_CmdPosInWC	LREAL	%FL8325	NC Ch. 01 axis X command position in workpiece
			coordinate system
_NC01X_CmdPosInRC	LREAL	%FL8326	NC Ch. 01 axis X command position in relative
			coordinate system
_NC01X_ActualVel	LREAL	%FL8327	NC Ch. 01 axis X actual current velocity
_NC01X_RemDistance	LREAL	%FL8329	NC Ch. 01 axis X remaining distance
_NC01X_PosDeviation	LREAL	%FL8330	NC Ch. 01 axis X servo position deviation (tracking error)
_NC01X_WcOffset	LREAL	%FL8334	NC Ch. 01 axis X offset value of workpiece coordinate
			system
_NC01X_WcBasicOffset	LREAL	%FL8335	NC Ch. 01 axis X basic offset value of workpiece
			coordinate system
_NC01X_WcShiftOffset	LREAL	%FL8336	NC Ch. 01 axis X shift offset value of workpiece
			coordinate system
_NC01X_LocalWcOffset	LREAL	%FL8337	NC Ch. 01 axis X offset value of local workpiece
			coordinate system

Variable	Туре	Address	Description
_NC01X_CmdPosInMC	LREAL	%FL8339	NC Ch. 01 axis X command position in machine
			coordinate system
_NC01X_ActualPosInMC	LREAL	%FL8341	NC Ch. 01 axis X actual current position in machine
			coordinate system
_NC01X_SkipPosInMC	LREAL	%FL8342	NC channel axis 01 X Position value of machine
			displaying skip signal
_NC01X_AxErr	WORD	%FW33372	NC Ch. 01 axis X error code
_NC01X_DrvErr	WORD	%FW33373	NC Ch. 01 axis X drive error code

7) SD memory flag

Variable	Туре	Address	Description
_SD_Attach	BOOL	%KX8256	SD attachment state
_SD_Rdy	BOOL	%KX8257	SD memory ready
_SD_Err	BOOL	%KX8258	SD memory error
_SD_Init	BOOL	%KX8259	SD memory initializing state
_SD_Closing	BOOL	%KX8260	SD memory closing state
_SD_FATErr	BOOL	%KX8261	File System Error
_SD_AutoLogAct	BOOL	%KX8262	Act Auto-logging
_SD_Busy	BOOL	%KX8263	SD memory busy state
_SD_SpaceWarn	BOOL	%KX8264	SD memory insufficient state
_SD_Detach	BOOL	%KX8265	SD memory detachment state
_SD_VolTot	UDINT	%KD259	SD memory storage capacity(GB)
_SD_VolAvail	UDINT	%KD260	Available storage capacity(KB)
_SD_Ecode	WORD	%KW522	SD memory error code
_SD_FmtInfo	WORD	%KW523	SD memory format information
_SD_FmtRun	BOOL	%KX8368	SD memory format operation state
_SD_FmtDone	BOOL	%KX8369	SD memory format complete state
_SD_FmtErr	BOOL	%KX8370	SD memory format fail state
_SD_FmtEcode	WORD	%KW524	SD memory format error code
_SD_FmtProgress	WORD	%KW525	SD memory format progress ratio(%)
_SD_AttachCnt	WORD	%KW526	SD memory attachment count
_SD_DetachCnt	WORD	%KW527	SD memory detachment count
_SD_AddfuncAct	BOOL	%KX8640	SD additional function operation state
_SD_AddfuncErr	BOOL	%KX8641	SD additional function error state
_SD_AddfuncDone	BOOL	%KX8642	SD additional function complete state
_SD_CmpResult	BOOL	%KX8643	SD result of comparison
_SD_AddfuncKind	WORD	%KW541	SD type of additional function
_SD_AddfuncEcode	WORD	%KW542	SD additional function error code

8) Data log flag

Variable	Туре	Address	Description
_DL00_Enable	BOOL	%KX8224	Group 00 datalog enable state
_DL00_Rdy	BOOL	%KX8960	Group 00 datalog ready
_DL00_Act	BOOL	%KX8961	Group 00 datalog operation state
_DL00_Err	BOOL	%KX8962	Group 00 datalog error state
_DL00_Stoping	BOOL	%KX8963	Group 00 datalog stoping state
_DL00_Finish	BOOL	%KX8964	Group 00 datalog finish state
_DL00_Trig	BOOL	%KX8965	Group 00 trigger occurrence state
_DL00_TrigDone	BOOL	%KX8966	Group 00 trigger complete state
_DL00_Evt	BOOL	%KX8967	Group 00 event occurrence state
_DL00_Ovf	BOOL	%KX8968	Group 00 buffer overflow state
_DL00_Ecode	WORD	%KW561	Group 00 datalog error code
_DL00_FileIdx	WORD	%KW562	Group 00 datalog file index number
_DL00_FileRollcnt	WORD	%KW563	Group 00 overwrite count
_DL00_FileSize	UDINT	%KD282	Group 00 file size(Byte)
_DL00_DataRow	UDINT	%KD283	Group 00 data row number
_DL00_RemainBuf	UDINT	%KD284	Group 00 remaining buffer size(Byte)
_DL00_WaitingData	UDINT	%KD285	Group 00 waiting data size(Byte)
_DL00_OvfCnt	WORD	%KW572	Group 00 buffer overflow count
_DL00_TrigCnt	WORD	%KW573	Group 00 trigger occurrence count
_DL00_TrigOvlap	WORD	%KW574	Group 00 trigger overlap count
_DL00_EvtgCnt	WORD	%KW575	Group 00 event occurrence count

9) Encoder flag

Variable	Туре	Address	Description
_ENC1_POS	LREAL	%KL0	Encoder1 input position
_ENC2_POS	LREAL	%KL1	Encoder2 input position
_ENC1_UNIT	UINT	%KW8	Encoder1 unit (0:pulse, 1:mm, 2:inch, 3:degree)
_ENC2_UNIT	UINT	%KW9	Encoder2 unit (0:pulse, 1:mm, 2:inch, 3:degree)
_ENC1_VEL	LREAL	%KL3	Encoder 1 velocity
_ENC2_VEL	LREAL	%KL4	Encoder 2 velocity
_ENC1_POS_LATCH	LREAL	%KL 5	Encoder 1 Input Position Latch
_ENC2_POS_LATCH	LREAL	%KL6	Encoder 2 Input Position Latch

10) P2P flag

Variable	Туре	Address	Description
_P2Pn_NDRxx	BOOL		P2P Parameter n times xx block service
_P2Pn_ERRxx	BOOL	Refer to	P2P parameter n times xx block service abnormal completion
_P2Pn_STATUSxx	WORD	XG5000 P2P Global/Direct	Error code is displayed when P2P parameter n times xx block service abnormal completion.
_P2Pn_SVCCNTxx	DWORD	Variable	Displays the number of P2P parameter n times xx block service normal execution.
_P2Pn_ERRCNTxx	DWORD		Displays the number of P2P parameter n times xx block service abnormal execution.

Appendix 2 Error Information & Solution

Here describes the information error types and its solutions.

(1) Function block error information

Error	code	Every Deceription	Califiana
Hex	Dec	Error Description	Solutions
0005	5	The current motion controller does not support the function block.	This command is not performed in the current version of the controller. Please contact customer support team of our company after checking the version in which the command can be executed.
0006	6	The axis number (Axis input) or encoder number (Encoder input) of the function block exceeded the allowable range.	Set axis and encoder numbers with a range by product.
0007	7	The axis group number (AxesGroup input) of the function block exceeded the allowable range.	Set the group axis number to be between 1 and 16.
8000	8	The NC channel of the function block exceeded the allowable range.	Check the range of the NC channel and set it again.
0009	9	The slave number (Slave input) of the function block exceeded the allowable range.	Check the range of the slave number and set it again.
000B	11	The input of the function block exceeded the allowable range.	Check the input range of the function block and set it again.
000C	12	The array input of the function block exceeded the allowable range.	Check the size of the array input of the function block and set it again.
0012	18	Error block internal execution error occurred during execution of the function block.	The problem can arise in the current controller version. Please check the support version of XG5000 and controller.
0013	19	Motion response error occurred during execution of the function block.	The problem can arise in the current controller version. Please check the support version of XG5000 and controller.
0014	20	It exceeded the allowable range of the cam ID(CamTableID input) of the function block.	Check the range of the cam ID and set it again.

(2) System error information

Note Dec System Error Request for A/S if it occurs repeatedly even when the power is supplied again.	Error	code		Caludiana	
Supplied again. Sart the program after modifying and re-loading the program	Hex	Dec	Error Description	Solutions	
Oct	000E	14	System Error	Request for A/S if it occurs repeatedly even when the power is	
Ocheck the preservation status after uploading I/O parameter. If it is broken, modify and re-download it to check the operation. If there is still abnormality, exchange it.				supplied again.	
is broken, modify and re-download it to check the operation. If there is still abnormality, exchange it. Check the preservation status after uploading basic parameter. If it is broken, modify and re-download it to check the operation. If there is still abnormality, exchange it. Check the preservation status after uploading special module parameter. If it is broken, modify and re-download it to check the operation. If there is still abnormality, exchange it. Check the preservation status after uploading special module parameter. If it is broken, modify and re-download it to check the operation. If there is still abnormality, exchange it. System has been terminated abnormality due to noise and hardware abnormalities. 1) Request for A/S if it occurs repeatedly even when the power is supplied again. 2)Implement noise countermeasures Check the preservation status after uploading built-in parameter. If it is broken, modify and re-download it to check the operation. If there is still abnormality, exchange it. Modify the parameter and re-download it to check the operation. If there is still abnormality exchange it. Modify the parameter and re-download it to check the operation. If there is still abnormality exchange it. Modify the parameter and re-download it to check the operation. If there is still abnormality exchange it. Modify the parameter and re-download it to check the operation. If there is still abnormality exchange it. Modify the parameter and re-download it to check the operation. If there is still abnormality exchange it. Modify the parameter and re-download it to check the operation. If there is still abnormality exchange it. Modify the parameter and re-download it to check the operation. If there is still abnormality exchange it. Modify the parameter and re-download it to check the operation except excep	0017	23	Program Error	Start the program after modifying and re-loading the program	
Check the preservation status after uploading basic parameter.	0018	24	IO Configuration Parameter Abnormality		
Check the preservation status after uploading basic parameter. If it is broken, modify and re-download it to check the operation. If there is still abnormality, exchange it.				•	
tit is broken, modify and re-download it to check the operation. If there is still abnormality, exchange it. Check the preservation status after uploading special module parameter. If it is broken, modify and re-download it to check the operation. If there is still abnormality, exchange it. O027 39 CPU Abnormal Termination or Failure System has been terminated abnormality due to noise and hardware abnormalities. 1) Request for A/S if it occurs repeatedly even when the power is supplied again. 2) Implement noise countermeasures O02B 43 Built-in Parameter-Encoder Abnormality Check the preservation status after uploading built-in parameter. If it is broken, modify and re-download it to check the operation. If there is still abnormality, exchange it. O02C 44 Axis Parameter Abnormality Modify the parameter and re-download it O02D 45 Axis Group Parameter Abnormality Modify the parameter and re-download it O02E 47 NC Parameter Abnormality Modify the parameter and re-download it O02F 47 NC Parameter Abnormality Modify the parameter and re-download it O030 48 NC Program Inspection Error Check the program and re-download it O030 48 NC Program Inspection Error Check the program and re-download it O030 48 NC Program Inspection Error Check the program and re-download it Repair the wrong equipment and restart it by referring to major failure detection error flag of the external equipment (depending on the parameter) O030 56 Main Task Cycle Error Check the main task cycle flag, re-download it after modifying the main task program or download it by increasing the periodic task cycle of the basic parameter O030 57 Periodic Task Cycle Error Check the periodic task cycle flag, re-download it to preducing the periodic task cycle of the basic parameter. O031 58 Task Program Occupancy Rate Excess Error Security of the Basic parameter of the basic parameter. O032 59 Local Ethernet Parameter Inspection Error Modify the parameter and re-download it O033 59 Local Ethernet Parameter Inspection Error Modify the parameter					
Check the preservation status after uploading special module parameter. If it is broken, modify and re-download it to check the operation. If there is still abnormality, exchange it. CPU Abnormal Termination or Failure	0019	25	Basic Parameter Abnormality		
O1D 29 Special Module Parameter Abnormality Check the preservation status after uploading special module parameter. If it is broken, modify and re-download it to check the operation. If there is still abnormality, exchange it.					
parameter. If it is broken, modify and re-download it to check the operation. If there is still abnormality, exchange it. System has been terminated abnormality due to noise and hardware abnormalities. 1) Request for A/S if it occurs repeatedly even when the power is supplied again. 2) Implement noise countermeasures Check the preservation status after uploading built-in parameter. If it is broken, modify and re-download it ot check the operation. If there is still abnormality, exchange it. Check the preservation status after uploading built-in parameter. If it is broken, modify and re-download it to check the operation. If there is still abnormality, exchange it. Check the preservation status after uploading built-in parameter. If it is broken, modify and re-download it to check the operation. If there is still abnormality, exchange it. Modify the parameter and re-download it Check the parameter and re-download it Modify the parameter and re-download it Modify the parameter and re-download it Modify the parameter and re-download it No Parameter Abnormality Modify the parameter and re-download it Repair the wrong equipment and restant it by referring to major failure detection error flag of the external equipment(depending on the parameter) Main Task Cycle Error Check the main task cycle flag, re-download it after modifying the main task program or download it by increasing the main task cycle of the basic parameter Check the periodic task cycle flag, re-download it after modifying the periodic task. Check the periodic task cycle of the basic parameter. 1) Secure the time for the system internal service to operate by reducing the amount of user program execution in the main task/periodic task. 2) Secure the time for the system internal service to operate by setting the execution cycle of the basic parameter to be higher Modify the parameter and re-download it Repair the wood of the main task/periodic task. 2) Secure the time for the system internal service to operate by setting the execut	0045	-00	Occasion Mandala Bassassatas Alexander		
operation. If there is still abnormality, exchange it. System has been terminated abnormally due to noise and hardware abnormalidities. 1) Request for A/S if it occurs repeatedly even when the power is supplied again. 2)Implement noise countermeasures O02B 43 Built-in Parameter-Encoder Abnormality Check the preservation status after uploading built-in parameter. If it is broken, modify and re-download it to check the operation. If there is still abnormality, exchange it. O02C 44 Axis Parameter Abnormality Modify the parameter and re-download it O02D 45 Axis Group Parameter Abnormality Modify the parameter and re-download it O02E 46 EtherCAT Parameter Abnormality Modify the parameter and re-download it O02D 47 NC Parameter Abnormality Modify the parameter and re-download it O030 48 NC Program Inspection Error Check the program and re-download it O030 50 Major Failure Detection Error of External Equipment Equipment Parameter Detection Error of External Repair the wrong equipment and restart it by referring to major failure detection error flag of the external equipment(depending on the parameter) O138 56 Main Task Cycle Error Check the main task cycle flag, re-download it after modifying the main task program or download it by increasing the main task cycle of the basic parameter O139 57 Periodic Task Cycle Error Check the periodic task cycle flag, re-download it after modifying the periodic task cycle of the basic parameter O130 58 Task Program Occupancy Rate Excess Error Professional Security of the parameter and the periodic task cycle of the main task/periodic task operate by reducing the amount of user program execution in the main task/periodic task. 2) Secure the time for the system internal service to operate by setting the execution cycle of the main task/periodic task of the basic parameter to be higher O140 50 140 140 140 140 140 140 140 140 140 14	0010	29	Special Module Parameter Abnormality		
O027 39 CPU Abnormal Termination or Failure System has been terminated abnormally due to noise and hardware abnormalities. 1) Request for A/S if it occurs repeatedly even when the power is supplied again. 2)Implement noise countermeasures Check the preservation status after uploading built-in parameter. If it is broken, modify and re-download it to check the operation. If there is still abnormality, exchange it.				·	
hardware abnormalities. 1) Request for A/S if it occurs repeatedly even when the power is supplied again. 2)Implement noise countermeasures Check the preservation status after uploading built-in parameter. If it is broken, modify and re-download it to check the operation. If there is still abnormality, exchange it. Modify the parameter and re-download it. Axis Group Parameter Abnormality Modify the parameter and re-download it. Check the program and re-download it. Check the main task cycle flag, re-download it after modifying the main task program or download it by increasing the main task program or download it. Check the periodic task cycle flag, re-download it after modifying the periodic task cycle of the basic parameter. Check the periodic task cycle flag, re-download it after modifying the periodic task cycle of the basic parameter. The periodic task. Check the periodic task cycle flag, re-download it after modifying the periodic task cycle of the basic parameter. The periodic task cycle of the basic parameter. The periodic task cycle of the parameter in the periodic task. Check the periodic task. Check the periodic task cycle flag, re-download it to check th	0027	30	CPLL Abnormal Termination or Failure		
1) Request for A/S if it occurs repeatedly even when the power is supplied again. 2)Implement noise countermeasures Check the preservation status after uploading built-in parameter. If it is broken, modify and re-download it to check the operation. If there is still abnormality, exchange it. O2C 44 Axis Parameter Abnormality Modify the parameter and re-download it O2D 45 Axis Group Parameter Abnormality Modify the parameter and re-download it O2E 46 EtherCAT Parameter Abnormality Modify the parameter and re-download it O32 48 NC Parameter Abnormality Modify the parameter and re-download it O33 48 NC Program Inspection Error Check the program and re-download it Check the program and re-download it by referring to major failure detection error flag of the external equipment(depending on the parameter) Check the main task cycle flag, re-download it after modifying the main task program or download it by increasing the main task cycle of the basic parameter Check the periodic task cycle flag, re-download it after modifying the periodic task cycle of the basic parameter Check the periodic task cycle flag, re-download it after modifying the periodic task cycle of the basic parameter Check the periodic task cycle flag, re-download it by increasing the periodic task cycle of the basic parameter Check the periodic task cycle flag, re-download it by increasing the periodic task cycle of the basic parameter Check the periodic task cycle of the basic parameter Check the periodic task cycle flag, re-download it by increasing the periodic task cycle of the basic parameter Check the periodic task cycle of the basic parameter Check the periodic task cycle of the basic parameter Check the periodic task cycle of the basic parameter Check the periodic task cycle of the basic parameter Check the periodic task cycle of the bas	0027	39	CFO ADHOITIAL TEITHINALIOTTOL FAIIULE	· ·	
Supplied again. 2)Implement noise countermeasures 2)Implement					
2)Implement noise countermeasures 2)Implement 2)Implemen				, , ,	
Suilt-in Parameter-Encoder Abnormality Check the preservation status after uploading built-in parameter. If it is broken, modify and re-download it to check the operation. If there is still abnormality, exchange it. Wodify the parameter and re-download it				5	
If it is broken, modify and re-download it to check the operation. If there is still abnormality, exchange it.	002B	43	Built-in Parameter-Encoder Abnormality	, ,	
002C 44 Axis Parameter Abnormality Modify the parameter and re-download it 002D 45 Axis Group Parameter Abnormality Modify the parameter and re-download it 002E 46 EtherCAT Parameter Abnormality Modify the parameter and re-download it 003F 47 NC Parameter Abnormality Modify the parameter and re-download it 0030 48 NC Program Inspection Error Check the program and re-download it 0032 50 Major Failure Detection Error of External Equipment Repair the wrong equipment and restart it by referring to major failure detection error flag of the external equipment(depending on the parameter) 0038 56 Main Task Cycle Error Check the main task cycle flag, re-download it after modifying the main task program or download it by increasing the main task program or download it by increasing the periodic task program or download it by increasing the periodic task cycle of the basic parameter 003A 58 Task Program Occupancy Rate Excess Error 1) Secure the time for the system internal service to operate by reducing the amount of user program execution in the main task/periodic task. 003B 59 Local Ethernet Parameter Inspection Error Modify the parameter and re-download it 01F5 501 REC Data Abnormality Reset it using RTC clock function. If it occurs repeatedly, pl			,		
Modify the parameter and re-download it				there is still abnormality, exchange it.	
002E 46 EtherCAT Parameter Abnormality Modify the parameter and re-download it 002F 47 NC Parameter Abnormality Modify the parameter and re-download it 0030 48 NC Program Inspection Error Check the program and re-download it 0032 50 Major Failure Detection Error of External Equipment Repair the wrong equipment and restart it by referring to major failure detection error flag of the external equipment(depending on the parameter) 0038 56 Main Task Cycle Error Check the main task cycle flag, re-download it after modifying the main task program or download it by increasing the main task cycle of the basic parameter 0039 57 Periodic Task Cycle Error Check the periodic task cycle flag, re-download it after modifying the periodic task cycle of the basic parameter 003A 58 Task Program Occupancy Rate Excess Error 1) Secure the time for the system internal service to operate by reducing the amount of user program execution in the main task/periodic task. 2) Secure the time for the system internal service to operate by setting the execution cycle of the main task/periodic task of the basic parameter to be higher 003B 59 Local Ethernet Parameter Inspection Error Modify the parameter and re-download it 01F5 501 RTC Data Abnormality R	002C	44	Axis Parameter Abnormality	Modify the parameter and re-download it	
Modify the parameter and re-download it	002D	45	Axis Group Parameter Abnormality	Modify the parameter and re-download it	
O30	002E	46	EtherCAT Parameter Abnormality	Modify the parameter and re-download it	
Major Failure Detection Error of External Equipment Repair the wrong equipment and restart it by referring to major failure detection error flag of the external equipment (depending on the parameter)	002F	47	NC Parameter Abnormality	Modify the parameter and re-download it	
Equipment failure detection error flag of the external equipment(depending on the parameter) Check the main task cycle flag, re-download it after modifying the main task program or download it by increasing the main task cycle of the basic parameter Check the periodic task cycle flag, re-download it after modifying the periodic task cycle of the basic parameter Check the periodic task cycle flag, re-download it after modifying the periodic task program or download it by increasing the periodic task cycle of the basic parameter Task Program Occupancy Rate Excess Error 1) Secure the time for the system internal service to operate by reducing the amount of user program execution in the main task/periodic task. Secure the time for the system internal service to operate by setting the execution cycle of the main task/periodic task of the basic parameter to be higher Local Ethernet Parameter Inspection Error Modify the parameter and re-download it RESET IT USED TASK PROGRAM AS A PROGRAM AS	0030	48	NC Program Inspection Error	Check the program and re-download it	
on the parameter) Check the main task cycle flag, re-download it after modifying the main task program or download it by increasing the main task cycle of the basic parameter Periodic Task Cycle Error Check the periodic task cycle flag, re-download it after modifying the periodic task program or download it by increasing the periodic task program or download it by increasing the periodic task cycle of the basic parameter Task Program Occupancy Rate Excess Error Task Program Occupancy Rate Excess Error Secure the time for the system internal service to operate by reducing the amount of user program execution in the main task/periodic task. Secure the time for the system internal service to operate by setting the execution cycle of the main task/periodic task of the basic parameter to be higher Local Ethernet Parameter Inspection Error Modify the parameter and re-download it Reset it using RTC clock function. If it occurs repeatedly, place	0032	50	Major Failure Detection Error of External	Repair the wrong equipment and restart it by referring to major	
Check the main task cycle flag, re-download it after modifying the main task program or download it by increasing the main task cycle of the basic parameter Periodic Task Cycle Error Periodic Task Cycle Error Check the periodic task cycle flag, re-download it after modifying the periodic task program or download it by increasing the periodic task cycle of the basic parameter Task Program Occupancy Rate Excess Error Secure the time for the system internal service to operate by reducing the amount of user program execution in the main task/periodic task. Secure the time for the system internal service to operate by setting the execution cycle of the main task/periodic task of the basic parameter to be higher Local Ethernet Parameter Inspection Error Modify the parameter and re-download it Reset it using RTC clock function. If it occurs repeatedly, place			Equipment	failure detection error flag of the external equipment(depending	
main task program or download it by increasing the main task cycle of the basic parameter O039 57 Periodic Task Cycle Error Check the periodic task cycle flag, re-download it after modifying the periodic task program or download it by increasing the periodic task cycle of the basic parameter O03A 58 Task Program Occupancy Rate Excess Error 1) Secure the time for the system internal service to operate by reducing the amount of user program execution in the main task/periodic task. 2) Secure the time for the system internal service to operate by setting the execution cycle of the main task/periodic task of the basic parameter to be higher O03B 59 Local Ethernet Parameter Inspection Error Modify the parameter and re-download it O1F5 501 RTC Data Abnormality Reset it using RTC clock function. If it occurs repeatedly, place				on the parameter)	
cycle of the basic parameter Check the periodic task cycle flag, re-download it after modifying the periodic task program or download it by increasing the periodic task cycle of the basic parameter Task Program Occupancy Rate Excess Error Task Program Occupancy Rate Excess Error Secure the time for the system internal service to operate by reducing the amount of user program execution in the main task/periodic task. Secure the time for the system internal service to operate by setting the execution cycle of the main task/periodic task of the basic parameter to be higher Modify the parameter and re-download it Reset it using RTC clock function. If it occurs repeatedly, place	0038	56	Main Task Cycle Error		
O039 57 Periodic Task Cycle Error Check the periodic task cycle flag, re-download it after modifying the periodic task program or download it by increasing the periodic task cycle of the basic parameter O03A 58 Task Program Occupancy Rate Excess Error 1) Secure the time for the system internal service to operate by reducing the amount of user program execution in the main task/periodic task. 2) Secure the time for the system internal service to operate by setting the execution cycle of the main task/periodic task of the basic parameter to be higher O03B 59 Local Ethernet Parameter Inspection Error Modify the parameter and re-download it Reset it using RTC clock function. If it occurs repeatedly, place				, ,	
the periodic task program or download it by increasing the periodic task cycle of the basic parameter 1) Secure the time for the system internal service to operate by reducing the amount of user program execution in the main task/periodic task. 2) Secure the time for the system internal service to operate by setting the execution cycle of the main task/periodic task of the basic parameter to be higher 1) Secure the time for the system internal service to operate by setting the execution cycle of the main task/periodic task of the basic parameter to be higher 1) Secure the time for the system internal service to operate by setting the execution cycle of the main task/periodic task of the basic parameter to be higher 1) Secure the time for the system internal service to operate by setting the execution cycle of the main task/periodic task of the basic parameter to be higher 1) Secure the time for the system internal service to operate by setting the execution cycle of the main task/periodic task of the basic parameter and re-download it 2) Secure the time for the system internal service to operate by setting the execution cycle of the main task/periodic task of the basic parameter to be higher 2) Secure the time for the system internal service to operate by setting the execution cycle of the main task/periodic task of the basic parameter to be higher 2) Secure the time for the system internal service to operate by setting the execution cycle of the main task/periodic task of the basic parameter to be higher					
periodic task cycle of the basic parameter 1) Secure the time for the system internal service to operate by reducing the amount of user program execution in the main task/periodic task. 2) Secure the time for the system internal service to operate by setting the execution cycle of the main task/periodic task of the basic parameter to be higher 1) Secure the time for the system internal service to operate by setting the execution cycle of the main task/periodic task of the basic parameter to be higher 1) Secure the time for the system internal service to operate by setting the execution cycle of the main task/periodic task of the basic parameter to be higher 1) Secure the time for the system internal service to operate by setting the execution cycle of the main task/periodic task of the basic parameter to be higher 1) Secure the time for the system internal service to operate by setting the execution cycle of the main task/periodic task of the basic parameter and re-download it 1) Secure the time for the system internal service to operate by setting the execution cycle of the main task/periodic task of the basic parameter to be higher 1) Secure the time for the system internal service to operate by setting the execution cycle of the main task/periodic task of the basic parameter to be higher 1) Secure the time for the system internal service to operate by setting the execution cycle of the main task/periodic task of the basic parameter to be higher	0039	57	Periodic Task Cycle Error		
Task Program Occupancy Rate Excess Error 1) Secure the time for the system internal service to operate by reducing the amount of user program execution in the main task/periodic task. 2) Secure the time for the system internal service to operate by setting the execution cycle of the main task/periodic task of the basic parameter to be higher 1) Secure the time for the system internal service to operate by setting the execution cycle of the main task/periodic task of the basic parameter to be higher 1) Secure the time for the system internal service to operate by setting the execution cycle of the main task/periodic task of the basic parameter to be higher 1) Secure the time for the system internal service to operate by setting the execution cycle of the main task/periodic task of the basic parameter and re-download it 1) Secure the time for the system internal service to operate by setting the execution cycle of the main task/periodic task of the basic parameter and re-download it 1) Secure the time for the system internal service to operate by setting the execution cycle of the main task/periodic task of the basic parameter to be higher 1) Secure the time for the system internal service to operate by setting the execution cycle of the main task/periodic task of the basic parameter to be higher 1) Secure the time for the system internal service to operate by setting the execution cycle of the main task/periodic task of the basic parameter to be higher					
reducing the amount of user program execution in the main task/periodic task. 2) Secure the time for the system internal service to operate by setting the execution cycle of the main task/periodic task of the basic parameter to be higher 1003B 59 Local Ethernet Parameter Inspection Error Modify the parameter and re-download it 101F5 501 RTC Data Abnormality Reset it using RTC clock function. If it occurs repeatedly, place	0034	FO	Took Program Oog manay Data Evagos Error		
task/periodic task. 2) Secure the time for the system internal service to operate by setting the execution cycle of the main task/periodic task of the basic parameter to be higher 003B 59 Local Ethernet Parameter Inspection Error Modify the parameter and re-download it 01F5 501 RTC Data Abnormality Reset it using RTC clock function. If it occurs repeatedly, place	003A	56	Task Program Occupancy Rate Excess Error	,	
2) Secure the time for the system internal service to operate by setting the execution cycle of the main task/periodic task of the basic parameter to be higher 003B 59 Local Ethernet Parameter Inspection Error Modify the parameter and re-download it 01F5 501 RTC Data Abnormality Reset it using RTC clock function. If it occurs repeatedly, place					
setting the execution cycle of the main task/periodic task of the basic parameter to be higher O03B 59 Local Ethernet Parameter Inspection Error Modify the parameter and re-download it O1F5 501 RTC Data Abnormality Reset it using RTC clock function. If it occurs repeatedly, place				·	
basic parameter to be higher 003B 59 Local Ethernet Parameter Inspection Error Modify the parameter and re-download it 01F5 501 RTC Data Abnormality Reset it using RTC clock function. If it occurs repeatedly, place					
003B 59 Local Ethernet Parameter Inspection Error Modify the parameter and re-download it 01F5 501 RTC Data Abnormality Reset it using RTC clock function. If it occurs repeatedly, place					
01F5 501 RTC Data Abnormality Reset it using RTC clock function. If it occurs repeatedly, place	003B	59	Local Ethernet Parameter Inspection Error		
			•		

(3) Data log, SD additional function error information

Error	code		0.1.0
Hex	Dec	Error Description	Solutions
Overal	l Error (
0001	1	SD Card Recognition Error	Format it to FAT32 and connect to SD memory
0002	2	Partition Information Error	Format it to FAT32 and connect to SD memory
0003	3	File System Error	Format it to FAT32 and connect to SD memory
0004	4	Unsupported SD Card	Connect SD card with a capacity of 2GB to 32GB
0005	5	SD Card Capacity Check Error	The SD memory capacity test failed, and thus DS cannot be used. Replace SD memory or re-connect it after formatting
0006	6	SD Card Capacity Excess	SD memory capacity is used up, and data storage is not possible. Replace SD memory or re-connect it after formatting. If the available capacity is less than 20%
0007	7	Folder Creation Failed	Failed to create data log folder in SD. Replace SD memory or reconnect it after formatting
Error C	Code by	Data Log Group	
1000	4096	Group x Folder Creation Error	Format it to FAT32 and connect to SD memory
2000	8192	Group x File Open Error	Format it to FAT32 and connect to SD memory
4000	16384	Group x File Write Error	Format it to FAT32 and connect to SD memory
SD Ad	ditional	Function Error Code	
0001	1	File Error(File Open Failure, CRC Error)	Operate it after creating the file again
0002	2	Damaged File (Damages to Head and Tail, etc.)	Operate it after creating the file again
0005	5	No Password in File	The password is set in the PLC, but there is no password in the file stored in the SD card. Set the password and create a file.
0006	6	Password Mismatch	The password set in the PLC does not match the password of the file stored in the SD card. Confirm it again after checking the password.
0007	7	MAC Address Mismatch	The set MAC address does not match the MAC address of the PLC. Check the MAC address and reset it.
000A	10	No Saved File	There is no file saved in the SD card. Operate it after creating a file.
000B	11	PLC Mode Is RUN State	Check it after switching PLC mode to STOP.

(4) Analog error information

Error	code		Solutions	
Hex	Dec	Error Description	Solutions	
0064	0100	Range setting error of input channel 0	Set the range that can be set	
0065	0101	Range setting error of input channel 0	Set the range that can be set	
00C8	0200	Filter value setting error of input channel 0	Set the filter value that can be set	
00C9	0201	Filter value setting error of input channel 0	Set the filter value that can be set	
012C	0300	Average value setting error of input channel 0	Set the average value that can be set	
012D	0301	Average value setting error of input channel 0	Set the average value that can be set	
0190	0400	Range setting error of output channel 0	Set the output range that can be set	
0191	0401	Range setting error of output channel 0	Set the output range that can be set	
01F4	0500	Input value setting error of output channel 0	Set the input value that can be set	
01F5	0501	Input value setting error of output channel 0	Set the input value that can be set	
0258	0600	Interpolation method range setting error of output channel 0	Set the interpolation method range that can be set	
0259	0601	Interpolation method range setting error of output channel 0	Set the interpolation method range that can be set	

(5) Cnet error information

1) XGT server error information

Error	code	Error Description	Actions
Hex	Dec	Error Description	Actions
0003	0003	Block number excess error	Set the block number as 16 or less.
0004	0004	Variable length error	Set the variable length as 16 or less.
0007	0007	Data type error	Set a data type as X, B, W, D and L.
0011	0017	Data error	Set the data type, area, and length that can be set.
0090	0144	Monitor execution error	Register a monitor for execution.
0190	0400	Monitor execution error	When executing a monitor, set the range of the registration number requested by a client to the settable input range.
0290	0656	Monitor registration error	When registering a monitor, set the range of the registration number requested by a client to the settable input range.
1132	4402	Device memory error	Set it as an available device.
1232	4658	Data size error	Set the data size to 60 words or less.
1234	4660	Spare frame error	Remove unnecessary contents of the spare frame.
1332	4914	Data type mismatch error	Set all blocks to the same data type.
1432	5170	Data value error	Check if the data value can be changed to Hex.
7132	28978	Variable request area excess error	Set a device to a usable area.

2) Modbus server error information

Error code		Error Deceription	Actions
Hex	Dec	Error Description	Actions
0001	0004	IF I Inction code error	The function code that is not supported by a server device.
0001	0001		Check whether the Modbus server supports the function code.
0002	0002	Address error	Set the address range to the one supported by a server device.
0003	0003	Data setting error	Set the address type to the one supported by a server device.
0004	0004	Server station abnormality error	Check the error status of the server (slave) station.
			There is a lot of processing on the server, which cannot be
0005	0005	Request a server station to resend	processed.
			Request to resend at the processable time on the client side.
0006	0006	0006 IServer station processing time delay	It takes times for the server station to process.
0000			The client side must make the request again.

3) P2P client error information

Erro	r code	Error Description	Actions
Hex	Dec		Actions
0005	0005	P2P block time out error	Check the state of the server connection and media setting.

4) PLC CPU error information

Error code		Freez Description	Actions
Hex	Dec	Error Description	Actions
0015	0021	P2P Client timeout error	PLC does not respond within 5 seconds after making a P2P request to a communication module. Check the state of a communication module.
0016	0022	P2P client device error	A wrong device area was used. Reset the device.

(5) Motion error information

Error code		rinformation	
Hex	Dec	Error Description	Solutions
0E00	3584	Command data range transmitted from XG5000 was out of the allowed value.	The problem can arise in the current controller version. Please check the support version of XG5000 and controller.
0E01	3585	The XG5000 test operation function cannot be	Execute the test operation of XG5000 after changing controller to
OLOT	3303	executed if the controller is in the RUN state.	STOP state.
0E02	3586	Cam data cannot be written if there is an axis in operation.	Write the cam data while all axes are not in operation.
0E03	3587	Encoder parameters cannot be written if there is an axis in operation.	Write the encoder parameters while all axes are not in operation.
0E04	3588	EtherCAT parameters cannot be written while	Rewrite the EtherCAT parameters after disconnecting the
		EtherCAT communication is being connected.	EtherCAT communication.
0E10	3600	Encoder parameter data is abnormal.	Download the data again from XG5000 and place requests for A/S if the error occurs repeatedly after re-execution.
0E11	3601	Encoder 1 pulse input type of encoder parameter exceeded the setting range.	Set the encoder 1 pulse input of the encoder parameter to be between 0 and 5.
0E12	3602	Encoder 1 maximum value of encoder parameter	Set the encoder 1 maximum value of the encoder parameter in
		was out of the range of pulse unit expression value.	the range of -2,147,483,648 to 2,147,483,647 when converted in pulse unit.
0E13	3603	Encoder 1 minimum value of encoder parameter	Set the encoder 1 minimum value of the encoder parameter in
		was out of the range of pulse unit expression	the range of -2,147,483,648 to 2,147,483,647 when converted in
		value.	pulse unit.
0E14	3604	Encoder 1 maximum value and minimum value	Set the encoder 1 minimum value of the encoder parameter to be
		of encoder parameters exceeded the range.	smaller than the maximum value.
0E15	3605	Encoder 2 pulse input type of encoder parameter exceeded the range.	Set the encoder 2 pulse input of the encoder parameter to be between 0 and 5.
0E16	3606	Encoder 2 maximum value of encoder parameter	Set the encoder 2 maximum value of the encoder parameter in
00		was out of the range of pulse unit expression	the range of -2,147,483,648 to 2,147,483,647 when converted in
		value.	pulse unit.
0E17	3607	Encoder 2 minimum value of encoder parameter	Set the encoder 2 minimum value of the encoder parameter in
		was out of the range of pulse unit value.	the range of -2,147,483,648 to 2,147,483,647 when converted in
		ů i	pulse unit.
0E18	3608	Encoder 2 maximum value and minimum value	Set the encoder 2 minimum value of the encoder parameter to be
		of encoder parameters exceeded the range.	smaller than the maximum value.
0E19	3609	Encoder input settings cannot be made above	Confirm the encoder-related items of the encoder parameter and
		encoder settings of encoder parameter.	set values within the range.
0E1A	3610	The number of pulses per rotation of encoder 1 of	Set the number of pulses per rotation of encoder 1 of encoder
		encoder parameter exceeded the setting range.	parameter to be greater than 0 and less than or equal to 4294967295.
0E1B	3611	The transfer distance per rotation of encoder 1 of	Set the transfer distance per rotation of encoder 1 of encoder
		encoder parameter exceeded the setting range.	parameter to be more than 0.00000001 and less than or equal to 4294967295.
0E1C	3612	The number of pulses per rotation of encoder 2 of	Set the number of pulses per rotation of encoder 2 of encoder
		encoder parameter exceeded the setting range.	parameter to be greater than 0 and less than or equal to 4294967295.
0E1D	3613	The transfer distance per rotation of encoder 2 of	Set the transfer distance per rotation of encoder 2 of encoder
		encoder parameter exceeded the setting range.	parameter to be more than 0.00000001 and less than or equal to 4294967295.

Error	code		
Hex	Dec	Error Description	Solutions
0E1E	3614	Encoder 1 input filter value of encoder parameter	Set the encoder 1 input filter value of encoder parameter to a
		exceeded the setting range.	value between 0 and 6.
0E1F	3615	Encoder 2 input filter value of encoder parameter exceeded the setting range.	Set the encoder 2 input filter value of encoder parameter to a value between 0 and 6.
0E20	3616	Encoder 1 maximum value and minimum value	Set the range of encoder 1 minimum and maximum values of
		of encoder parameters are set not to include the	encoder parameters to include the current position of encoder 1.
		current position of encoder 1.	Or, in order to operate with the set parameters, change the
		·	current position of encoder to the value within the parameter by
			using the encoder preset command.
0E21	3617	Encoder 2 maximum value and minimum value	Set the range of encoder 2 minimum and maximum values of
		of encoder parameters are set not to include the	encoder parameters to include the current position of encoder 2.
		current position of encoder 2.	Or, in order to operate with the set parameters, change the
			current position of encoder to the value within the parameter by
			using the encoder preset command.
0E22	3618	Encoder 1 position latch value of encoder	Set the encoder 1 position latch value of encoder parameter to a
		parameter exceeded the setting range.	value between 0 and 1.
0E23	3619	Encoder 2 position latch value of encoder	Set the encoder 2 position latch value of encoder parameter to a
		parameter exceeded the setting range.	value between 0 and 1.
0E30	3632	EtherCAT parameter data is abnormal.	Download the data from XG5000 again and place requests for
			A/S if the error occurs repeatedly after re-execution.
0E31	3633	The periodic communication timeout count of the	Set the periodic communication timeout count of the EtherCAT
		EtherCAT parameter exceeded the range.	parameter to be between 1 and 8.
0E32	3634	Error occurred during the EtherCAT parameter parsing	Check the EtherCAT parameters and set them again.
0E40	3648	The connection command cannot be executed	Check the EtherCAT parameter and set it again.
		beyond the EtherCAT parameter.	
0E41	3649	The EtherCAT slave connect command is	Check if the EtherCAT slave connect command has been
		running.	entered again while the EtherCAT slave connect command is running.
0E42	3650	The EtherCAT slave disconnect command is	Check whether the EtherCAT disconnect command has been
		running.	entered again while the EtherCAT slave disconnect command is
			running.
0E43	3651	The connection/disconnection command cannot	Check whether the mode switch has been executed during the
		be executed due to mode switch.	EtherCAT slave connection/disconnection command operation.
0E44	3652	The connection/disconnection command cannot	Check whether the ESTOP command was executed during the
		be executed with the ESTOP command.	EtherCAT slave connection/disconnection command operation.
0E50	3664	The encoder preset command cannot be	Confirm the encoder-related items of the encoder parameter,
		executed due to abnormal encoder parameter.	heck if they are set to values within the range and set the
			encoder parameter to normal values by using XG5000.
0E51	3665	The preset command cannot be executed	Check if the encoder preset command has been entered when
		because there is an axis that operates with the	there is an axis that operates with the encoder as the main axis.
		encoder as the main axis.	
0E52	3666	The encoder preset position was out of the range	Set the encoder preset position to a range that is greater than or
		of maximum value or minimum value of the	equal to the minimum value, and smaller than or equal to the
		encoder.	maximum value of the encoder.
0E53	3667	The encoder selection of encoder preset	Set the encoder selection to be between 0 and 1 (0: Encoder 1,

Error code				
Hex	Dec	Error Description	Solutions	
TICK		command exceeded the range.	1: Encoder 2).	
0E54	3668	As the built-in ENC1 is set to the encoder of the spindle axis that is automatically controlled by the NC function module, the encoder's current position setting command cannot be executed.	Check if the built-in ENC1 is set to the encoder connected to the spindle axis in the item 'Spindle Encoder Selection' of the axis parameter.	
0E55	3669	As the built-in ENC2 is set to the encoder of the spindle axis that is automatically controlled by the NC function module, the encoder's current position setting command cannot be executed.	Check if the built-in ENC2 is set to the encoder connected to the spindle axis in the item 'Spindle Encoder Selection' of the axis parameter.	
0E60	3680	The command cannot be executed due to the basic parameter data abnormality.	Download the basic parameter again from XG5000 and place requests for A/S if 'the basic parameter error' occurs repeatedly after re-execution.	
0E61	3681	Cam data is abnormal.	Download the data again from XG5000 and place requests for A/S it is occurs repeatedly after re-execution.	
0F00	3840	It failed to change to EtherCAT INIT state.	Check the communication cable status and slave operation status (power-on and error occurrence). And check whether the communication cable is exposed to noise.	
0F06	3846	It is EtherCAT INIT state initialization (DC_INIT) error.	Check the communication cable connection status and slave operation status(power-on and error occurrence). And check whether the communication cable is exposed to noise.	
0F09	3849	There is no EtherCAT slave connected to the controller.	Check whether the communication cable between the controller and the EtherCAT slave is properly installed, the power is normally applied to the EtherCAT slave, or the communication cable is exposed to noise if there is a slave connected to the controller.	
0F0A	3850	It exceeded the maximum number of connected slaves.	Make sure that there are not more than 64 EtherCAT slaves connected to the controller.	
0F0E	3854	There is a difference in node ID and EtherCAT parameter settings of the EtherCAT slave.	Check whether the order of the network cable connection between the controller and the EtherCAT slaves matches the EtherCAT parameter settings.	
0F0F	3855	There is an error in setting node ID of the EtherCAT slave.	Check whether there are duplicate node IDs or errors in settings.	
0F10	3856	It failed to change to EtherCAT PREOP stage.	Check the communication cable connection status and slave operation status (power-on and error occurrence). And check whether the communication cable is exposed to noise.	
0F1E	3870	There is no slave setting data of EtherCAT parameter.	Set the slave of the EtherCAT parameter using XG5000, and then send the EtherCAT parameter to the controller.	
0F1F	3871	The slave setting data of the EtherCAT parameter and the connected slave are different.	Set the slave setting of the EtherCAT parameter to match the actually connected slave information. The slave of the EtherCAT parameter can be set automatically using the 'EtherCAT Slave Auto Connection' function in XG5000.	
0F20	3872	It failed to change to EtherCAT SAFEOP state.	Check the communication cable connection status and slave operation status (power-on and error occurrence). And check whether the communication cable is exposed to noise.	
0F30	3888	It failed to change to EtherCAT OP state.	Check the communication cable connection status and slave operation status (power-on and error occurrence). And check whether the communication cable is exposed to noise.	

Error	code		
Hex	Dec	Error Description	Solutions
0F40	3904	It failed to change from EtherCAT OP state to INIT state.	Check the communication cable connection status and slave operation status (power-on and error occurrence). And check whether the communication cable is exposed to noise.
0F50	3920	There is no response in a communication connection state.	Check the communication cable connection status and slave operation status (power-on and error occurrence). And check whether the communication cable is exposed to noise.
0F51	3921	Periodic communication error occurred. (Communication error that exceeds the periodic communication timeout count of master parameter occurs)	Check whether servo power is off during communication, communication cable is properly installed, or communication cable is exposed to noise.
0F52	3922	A periodic communication error occurred. (The AlStatus error occurred on the slave device)	Check the AL Status Code of the slave device.
0F60	3936	The slave device address (Adp) setting value of ESC read command exceeded the range.	Check the slave device address (Adp) range according to the EtherCAT command code(EcatCmd) setting value to set it.
0F61	3937	The data size setting value of the ESC read command exceeded the range.	Set the data size setting value of the ESC read command to 1 ~ 4 (BYTE).
0F62	3938	EtherCAT command code(EcatCmd) setting value of the ESC read command was incorrect.	Set the EtherCAT command code to one among 1(APRD), 4(FPRD) and 7(BRD).
0F63	3939	There was no response from the slave device for the ESC read command.	Check whether the salve device designated as Adp is installed properly, or the Ado address value is in the read-permission area.
0F70	3952	The slave device address (Adp) setting value of ESC write command exceeded the range.	Check the slave device address (Adp) range according to the EtherCAT command code(EcatCmd) setting value to set it.
0F71	3953	The data size setting value of the ESC write command exceeded the range.	Set the data size setting value of the ESC read command to 1 ~ 4 (BYTE).
0F72	3954	EtherCAT command code(EcatCmd) setting value of the ESC write command was incorrect.	Set the EtherCAT command code to one among 2(APWR), 5(FPWR) and 8(BWR).
0F73	3955	There was no response from the slave device for the ESC write command.	Check whether the salve device designated as Adp is installed properly, or the Ado address value is in the read-permission area.
0F74	3956	You cannot write the specified area to the ESC address(Ado) during execution of the communication connection/disconnection command or in the communication connection state.	Set the ESC address (Ado) that can be written during execution of the communication connection/disconnection command or in the communication connection state.
0FF2	4082	The normal operation in relation to encoder input cannot be executed due to controller H/W abnormality.	Place requests for A/S if it occurs repeatedly when the power is supplied again.
1000	4096	The axis is not ready for driving. (It is not connected to EtherCAT network.)	Execute the command when the axis is ready for operation.
1001	4097	It cannot be executed in "Disabled" state.	Check the operable axis status of the command and execute the command when the command can be run.
1002	4098	It cannot be executed in "Standstill" state.	Check the operable axis status of the command and execute the command when the command can be run.
1003	4099	It cannot be executed in "Discrete" state.	Check the operable axis status of the command and execute the command when the command can be run.
1004	4100	It cannot be executed in "Continuous" state.	Check the operable axis status of the command and execute the

Error	code		
Hex	Dec	Error Description	Solutions
			command when the command can be run.
1005	4101	It cannot be executed in "Synchronized" state.	Check the operable axis status of the command and execute the command when the command can be run.
1006	4102	It cannot be executed in "Homing" state.	Check the operable axis status of the command and execute the command when the command can be run.
1007	4103	It cannot be executed in "Stopping" state.	Check the operable axis status of the command and execute the command when the command can be run.
1008	4104	It cannot be executed in "Errorstop" state.	Check the operable axis status of the command and execute the command when the command can be run.
100A	4106	Motion command cannot be executed when the belonging axis group is active.	Execute the command after changing the axis group to GroupDisabled state with the axis group disable command.
100B	4107	This command cannot be given to a virtual axis.	The command cannot be executed on a virtual axis. Check whether the command is executed on the virtual axis.
100C	4108	The command cannot be executed if it is registered as an NC channel/axis and is in NC control operation.	Check the operable axis status of the command and execute the command when the command can be run.
100D	4109	The command cannot be executed because the axis is not enabled.	Check whether the setting axis of the command is registered in axis parameter. The axis can be registered in the axis parameter among the motion data items of XG5000.
100E	4110	It is changed to 'run' state during execution of motion test run command, and thus the operation cannot continue.	Check whether the controller was changed to the 'run' state while the axis is running.
100F	4111	The axis operation cannot continue because the controller is stopped by the ESTOP command.	Check whether the controller was stopped by the ESTOP command during the axis operation.
1010	4112	The controller was changed to 'Stop' or 'Error' state, and thus operation cannot continue.	Check whether the controller has been changed to 'Stop' or 'Error' state while the axis is running.
1011	4113	The EtherCAT network connection was lost, and thus operation cannot continue.	Check whether the EtherCAT network connection has been disconnected due to slave power supply error, network cable error and noise inflow on network cable while the axis is running.
1012	4114	The position setting value of the command was out of the range of pulse unit expression value.	It exceeded a 32-bit area when the command position value was converted in pulse unit. Set the value in the range of -2,147,483,648 to 2,147,483,647 when converting the command position value to pulse. (When using the 'Position Control Range Expansion' function, it is possible to set the range to 48-bit INT)
1013	4115	The operation speed value was less than 0, or it exceeded the maximum speed value.	Set the operation speed value to be larger than 0 and less than the maximum speed value set in the axis.
1014	4116	The acceleration was set as the negative number.	Set the acceleration value to a value greater than or equal to 0.
1015	4117	The deceleration was set as the negative number.	Set the deceleration value to a value greater than or equal to 0.
1016	4118	The jerk was set as the negative number.	Set the jerk value to a value greater than or equal to 0.
1017	4119	The direction specification exceeded the range.	Check the range of the direction setting value of the command and set the value within the range. (Refer to Chapter 6 Commands and Functions)
1018	4120	The torque setting value exceeded the range.	Set the torque setting value within 1000%.
1019	4121	The torque ramp setting value exceeded the range.	Set the torque ramp setting value to a value greater than or equal to 0.

Error	rcode		
Hex	Dec	Error Description	Solutions
101A	4122	Buffer Mode setting value exceeded the input range.	Set value (0 ~ 5) that can be set in the Buffer Mode.
101B	4123	Execution Mode setting value exceeded the input range.	Set value (0 ~ 1) that can be set in the Execution Mode.
101C	4124	Tracking error-over range occurred, and thus operation cannot continue.	Deviation between command position and current position exceeded 'Tracking error-over range value'. To prevent an alarm from occurring, tune the servo drive or set the 'Tracking error-over range value' to a larger value.
101D	4125	Tracking error-over range occurred.	Deviation between command position and current position exceeded 'Tracking error-over range value'. To prevent an alarm from occurring, tune the servo drive or set the 'Tracking error-over range value' to a larger value.
101F	4127	The command position value transmitted to the servo driver was out of the range of pulse unit expression value.	It exceeded a 32-bit area when the command position value was converted in pulse unit. Set the value in the range of - 2,147,483,648 to 2,147,483,647 when converting the command position value to pulse. (When using the 'Position Control Range Expansion' function, it is possible to set the range to 48-bit INT)
1020	4128	It is the undefined axis command.	This command is not performed in the current version of the controller. Please contact customer support team of our company after checking the version in which the command can be executed.
1021	4129	The same command was executed, and thus the previously executed command was canceled.	The motion command can be executed only once per scan. Change the operation condition of the program so that one motion command can be executed in one scan.
1022	4130	It exceeded the number of commands that can execute a Buffered command.	The command cannot be executed because the command buffer of the axis is full. The number of commands that can be executed with the Buffered command is 100. Adjust the timing of the command execution.
1030	4144	Axis parameters cannot be written when the axis is in operation.	Perform parameter writing when the axis is not in operation.
1040	4160	Axis parameter data is abnormal.	Download the data again from XG5000 and place requests for A/S if the error occurs repeatedly after re-execution.
1041	4161	It is not possible to execute operation due to axis parameter error.	Check the axis parameter and set it again.
1042	4162	The speed limit of the axis parameter cannot be set to the value less than 0.	Set the speed limit of the basic parameter to a value greater than 0.
1043	4163	The soft upper/lower limit value of axis parameter exceeded the range.	Set the soft upper limit value of the axis parameter to be greater than or equal to the soft lower limit value.
1044	4164	The current speed filter time constant value of axis parameter exceeded the range.	Set the parameter setting value to 0 ~ 100.
1045	4165	The error reset monitoring time of axis parameter exceeded the range.	Set the parameter setting value to 1 ~ 1000.
1046	4166	The setting value of transfer distance per rotation exceeded the range.	Set the parameter setting value to more than 0.000000001 and less than 4294967295.
1047	4167	The setting value of infinite length repeat position exceeded the range.	Set the parameter setting value to more than 0 and less than 2,147,483,647 in pulse unit.
1048	4168	The setting value of in-position width exceeded	Set the parameter setting value to more than 0 and less than

Frro	code		
Hex	Dec	Error Description	Solutions
		the range.	2,147,483,647 in pulse unit.
1049	4169	The setting value of tracking error-over range exceeded the range.	Set the parameter setting value to more than 0 and less than 2,147,483,647 in pulse unit.
104A	4170	The setting value of current position display compensation amount exceeded the range.	Set the parameter setting value to more than 0 and less than 2,147,483,647 in pulse unit.
104B	4171	The setting value of jog high speed exceeded the range.	Set the parameter setting value to more than 0, larger than the jog low speed value and less than the speed limit.
104C	4172	The setting value of jog low speed exceeded the range.	Set the parameter setting value to more than 0, smaller than the jog high speed value and less than the speed limit.
104D	4173	The setting value of jog acceleration exceeded the range.	Set the parameter setting value to more than 0.
104E	4174	The setting value of jog deceleration exceeded the range.	Set the parameter setting value to more than 0.
104F	4175	The setting value of jog jerk exceeded the range.	Set the parameter setting value to more than 0.
1050	4176	Motor-side gear ratio setting value exceeded the range.	Set the parameter setting value to 1 ~ 65535.
1051	4177	Machine-side gear ratio setting value exceeded the range.	Set the parameter setting value to 1 ~ 65535.
1052	4178	The setting value for the number of pulses per rotation exceeded the range.	Set the parameter setting value to be greater than 0 and less than or equal to 4294967295.
1053	4179	Connection device setting value exceeded the range.	Set the device number of the slave that can be supported. The node setting range is 0(no connection device), and 1 ~ 64.
1054	4180	Axis type setting value exceeded the range.	Set the parameter setting value to '0: actual axis' or '1: virtual axis'.
1055	4181	Speed command unit setting value exceeded the range.	Set the parameter setting value from '0: unit/sec', '1: unit/min', '2: rpm'.
1056	4182	The backlash compensation amount setting value exceeded the range.	Set the parameter setting value to 0 or more and the pulse unit to 65,535 or less.
1060	4192	Servo On cannot be executed due to occurrence of servo drive errors.	Execute Servo On after checking the error factor of the servo drive and removing the servo drive error.
1061	4193	Servo On command was executed again in the middle of processing Servo On.	Check whether the Servo On command was performed again in the middle of processing Servo On in program or XG5000.
1062	4194	It is not possible to complete Servo On because the servo drive cannot be changed to "ReadyToSwitchON" state.	Check the status of the servo drive. The Servo On command may not be executed in certain circumstances.
1063	4195	It is not possible to complete Servo On because the servo drive cannot be changed to "Switched on" stage.	Check the status of the servo drive. The Servo On command may not be executed in certain circumstances.
1064	4196	It is not possible to complete Servo On because the servo drive cannot be changed to "Operation enabled" state.	Check the status of the servo drive. The Servo On command may not be executed in certain circumstances.
1065	4197	It is not possible to complete Servo On because "Quick Stop" of servo drive is enabled.	Check the status of the servo drive. The Servo On command may not be executed in certain circumstances.
1066	4198	Servo Off command was executed again in the middle of processing Servo Off.	Check whether the Servo Off command was performed again in the middle of processing Servo Off in program or XG5000.
1067	4199	The execution of Servo Off command was not completed.	Check the status of the servo drive.

Error code			
Hex	Dec	Error Description	Solutions
1070	4208	It exceeded the servo error reset monitoring time.	The servo drive error has not been cleared even after the error reset monitoring time set in the axis parameter went by. Execute the error reset command again after removing the servo drive error factor.
1080	4224	Commands that use absolute coordinates cannot be executed at absolute coordinates of the state of undetermined origin.	Execute the absolute coordinate operation command after making the determined origin state with homing command or current position setting command.
1081	4225	In infinite length repeat enable state, the target position was beyond the range of infinite length repeat position from the direction specification.	Set the target position within the infinite length repeat position from the direction specification.
1082	4226	SuperImposed command cannot be executed during operation with speed control or torque control.	Execute the SuperImposed command when it is not in operation with speed control or torque control.
1083	4227	SuperImposed operation stop command cannot be executed when the SuperImposed operation is not working.	Execute the SuperImposed operation stop command when the SuperImposed operation is in progress.
1090	4240	The position value of the current position change command exceeded the range.	Execute the current position preset command after setting the position setting value to more than the soft lower limit value of the extended parameter and less than the soft upper limit value.
1091	4241	The current position change command cannot be executed in case of operation with homing, speed synchronization, cam and torque control.	Execute the current position change when the axis is not in operation of among one of homing, speed synchronization, cam and torque control.
1092	4242	If the spindle axis is automatically controlled by the NC function module, if the item 'Spindle Encoder Selection' of the axis parameter is '0: Disable', the axis' current position setting command cannot be executed.	After correctly setting the connection method of the encoder connected to the spindle axis in the item 'Spindle Encoder Selection' of the axis parameter, execute the axis' current position setting command.
1093	4243	If the item 'Spindle Encoder Selection' of the axis parameter is '1: motor ENC', as there is not a 'Position actual value (0x6064)' object in the TxPDO setting of the EtherCAT slave connected to the spindle axis, the axis' current position setting command cannot be executed.	If the item 'Spindle Encoder Selection' of the axis parameter is '1: motor ENC', after reconnecting the EtherCAT by adding the 'Position actual value (0x6064)' object to the TxPDO setting of the EtherCAT slave connected to the spindle axis, execute the axis' current position setting command.
1094	4244	If the item 'Spindle Encoder Selection' of the axis parameter is '2: Built-in ENC1', as the encoder1 parameter setting is wrong, the axis' current position setting command cannot be executed.	If the item 'Spindle Encoder Selection' of the axis parameter is '2: Built-in ENC1', after setting the encoder1 unit of the encoder parameter = pulse, the maximum value of the encoder1 = 2147483647 and the minimum value of the encoder1 = -2147483648, execute the axis' current position setting command.
1095	4245	If the item 'Spindle Encoder Selection' of the axis parameter is '3: Built-in ENC2', as the encoder2 parameter setting is wrong, the axis' current position setting command cannot be executed.	If the item 'Spindle Encoder Selection' of the axis parameter is '3: Built-in ENC2', after setting the encoder2 unit of the encoder parameter = pulse, the maximum value of the encoder2 = 2147483647 and the minimum value of the encoder2 = -2147483648, execute the axis' current position setting command.
10A0	4256	Servo drive does not support torque control mode.	Perform torque control by using serve drive that supports CST mode of EtherCAT CoE.

Error	code		
Hex	Dec	Error Description	Solutions
10A1	4257	There is no target torque object (0x6071) setting that can execute the torque control on RxPDO entry setting in slave data of the EtherCAT parameter.	Set the target torque object (0x6071) that supports torque control to the RxPDO entry of the EtherCAT parameter slave data in XG5000, and then send it to the controller.
10B0	4272	Servo drive does not support homing mode.	Perform homing by using servo drive that supports homing mode of EtherCAT CoE.
10B1	4273	An error occurred during the execution of the homing in the servo drive.	Check the error factor of the servo drive and perform homing after removing the servo drive error.
10B2	4274	The homing command cannot be executed when axis is running.	Perform the homing command again in the standstill state after the axis stops.
10C0	4288	The override command cannot be executed when the position /speed control is not in operation.	Execute override command during operation with position control or speed control.
10C1	4289	The override factor of the override command exceeded the range.	Set the VelFactor, AccFactor and JerkFactor values of the override command to be 0 or more and then execute the override command.
10C2	4290	The operation speed value exceeded the maximum speed value after reflecting the factor of the override command.	Perform override within the range that does not exceed the maximum speed value of the axis.
10D0	4304	The gear ratio denominator value cannot be zero.	Execute the command after setting the gear ratio denominator to a value other than 0.
10D1	4305	Gear operation MasterValueSource setting value exceeded the range.	Execute the command after setting the MasterValueSource input value to a value between 0 and 1.
10D2	4306	Gear operation main axis setting was out of the range.	Set axis and encoder numbers with a range by product.
10D3	4307	The gear operation main axis setting is identical with the subordinate axis.	Execute the command after setting the main axis to the different axis from the subordinate axis(command axis).
10D4	4308	The gear operation main axis was not ready.	Execute the command when the main axis is ready.
10D5	4309	In case the gear operation main axis is set as an encoder, the gear operation command cannot be executed if the encoder parameter setting error of the built-in parameter occurs.	Confirm the encoder-related items of the encoder parameters, check if they are set to values within the range and set the encoder parameters to normal values by using XG5000.
10D6	4310	The MC_GearInPos command cannot be executed when the main axis is running with torque control.	Execute the MC_GearInPos command while the main axis is not operating in torque control.
10D7	4311	The speed of the gear operation subordinate axis exceeded the speed limit.	Reduce the speed of the main axis or change the gear ratio lest the speed of the subordinate axis in gear operation should exceed the speed limit set on the subordinate axis.
10D8	4312	The gear release command cannot be executed if it is not gear operation.	The gear release command can be used only when the gear is in operation.
10D9	4313	The command cannot be executed because the target speed setting value of MC_GearInPos command is smaller than the current operation speed or the gear operation speed.	Execute the command after setting the target speed setting value of MC_GearInPos command to the current operation speed or gear operation speed or more.
10DA	4314	It will not be able to reach the subordinate axis synchronization position within the time when the main axis operates to the main axis	Execute the command after increasing the target speed setting value MC_GearInPos command or adjusting MasterStartDistance so that the subordinate axis moves to the

Error	code	Email Broadston	Outstand
Hex	Dec	Error Description	Solutions
		synchronization position during the	subordinate axis synchronization position within the time when
		MC_GearInPos operation.	the main axis operates to the main axis synchronization position.
10DB	4315	The synchronous operation command (gear,	Execute the synchronous operation (gear, cam, etc.) when the
		cam, etc.) cannot be executed if the main axis is	main axis is not in homing operation.
		in homing operation.	
10E0	4320	There are no object settings in the slave data of	Set the object that supports touch probe to the PDO entry of the
		the EtherCAT parameter than enable the touch	EtherCAT parameter slave data in XG5000 and then send it to
4054	1001	probe to PDO entry settings.	the controller.
10E1	4321	TriggerInput input setting value was out of the	Set the TriggerInput setting value to 0(Touch Probe1) or 1(Touch
4050	4000	range.	Probe2).
10F0	4336	The parameter number setting value of the	Execute the command after setting the parameter number setting value of parameter read/write command to be between
		parameter read/write command was out of the	0~28, 100~106 and 200~206.
10F1	4337	range. The data setting value of the set parameter of the	Check the data setting range of the parameter to be set.
101 1	4557	parameter write command was out of the range.	Check the data setting range of the parameter to be set.
10F2	4338	The parameter cannot be changed because the	Change the maximum value of encoder 1 in advance to prevent
101 2	4000	maximum value of encoder 1 is out of the pulse	errors when converted in pulse unit, and then change the
		unit expression value when the encoder	parameter.
		parameter is changed.	parameter
10F3	4339	The parameter cannot be changed because the	Change the minimum value of encoder 1 in advance to prevent
		minimum value of encoder 1 is out of the pulse	errors when converted in pulse unit, and then change the
		unit expression value when the encoder	parameter.
		parameter is changed.	·
10F4	4340	The parameter cannot be changed because the	Change the maximum value of encoder 2 in advance to prevent
		maximum value of encoder 2 is out of the pulse	errors when converted in pulse unit, and then change the
		unit expression value when the encoder	parameter.
		parameter is changed.	
10F5	4341	The parameter cannot be changed because the	Change the minimum value of encoder 2 in advance to prevent
		minimum value of encoder 2 is out of the pulse	errors when converted in pulse unit, and then change the
		unit expression value when the encoder	parameter.
		parameter is changed.	
1100	4352	The jog operation command cannot be executed	Execute the jog command when the axis is in stop state.
		when the axis is running.	
1101	4353	If the 'Tool Retract' command is executed on the	If aborting the 'Tool Retract' command or using the 'Tool Retract'
		NC channel, the jog operation command cannot	command of the NC channel, execute one jog operation
		be simultaneously executed on more than 2	command on one axis.
4440	4000	There is an array in the case arrayation	Valuation at the Master Casting in the day
1110	4368	There is an error in the cam operation	You cannot put 0 in the MasterScaling input value.
1111	4260	MasterScaling input value.	Sat the Mester Start Dictance input value to a value greater than 0
1111	4369	There is an error in the cam operation MasterStartDistance input value.	Set the MasterStartDistance input value to a value greater than 0 and execute the command.
1112	4370	There is an error in the cam operation	Set the MasterSyncPosition input value to a value greater than 0
1114	73/0	MasterSyncPosition input value.	and execute the command.
1113	4371	The cam operation StartMode input value	Set the StartMode input value to a value between 0 and 1 and
1113	75/ 1	exceeded the range.	execute the command.
1114	4372	The cam operation MasterValueSource input	Set the MasterValueSource input value to a value between 0
	7012	value exceeded the range.	and 1 and execute the command.
		value exceeded the range.	and rand execute the command.

Error	code		
Hex	Dec	Error Description	Solutions
1115	4373	The specified cam table does not exist.	Adjust the cam table number to a valid cam table number and execute the command.
1116	4374	The cam operation main axis setting was out of the range.	Execute the command after setting the main axis in the area of 1~36 (axis) and 1001~1002(encoder). Check whether the VarOffset value deviates from the memory area if the main axis is a variable.
1117	4375	The cam operation main axis setting is identical with the subordinate axis.	Execute the command after setting the main axis to the different axis from the subordinate axis(command axis).
1118	4376	The cam operation main axis was not ready.	Execute the command when the main axis is ready.
1119	4377	In case the cam operation main axis is set as an encoder, the command cannot be executed if the encoder parameter error of the built-in parameter occurs.	Confirm the encoder-related items of the encoder parameter check if they are set to values within the range and set the encoder parameter to normal values by using XG5000.
111A	4378	The speed of the cam operation main axis exceeded the speed limit.	Reduce the speed of the main axis or adjust the cam table lest the speed of the subordinate axis in cam operation should exceed the speed limit set on the subordinate axis.
111B	4379	The cam release command cannot be executed if it is not cam operation.	The cam release command can be used only when the cam is in operation.
111C	4380	The value for setting the number of cam data of the cam data write command exceeded the range.	Set the value for setting the number of cam data of the cam data write command to less than the number of registered cam points. Add a cam table if the cam table is not registered.
111D	4381	The specified cam table data of the cam data read command is abnormal.	Reset the cam data and place requests for A/S if it occurs again after re-execution.
111E	4382	The cam skip command cannot be executed if the cam is not in operation.	Execute the cam skip command when the cam is running.
111F	4383	The number of cam cycles to be skipped by the cam skip command was set to 0.	Set the number of cam cycles to be skipped by the cam skip command to be greater than 0.
1121	4385	The skip mode setting value of the cam skip command exceeded the range.	Execute the command after setting the skip mode setting value of the cam skip command to a value between 0 and 2.
1122	4386	The cam table is not registered.	Register the cam table or set the data again to execute the command.
1123	4387	The cam data of the cam data write command is abnormal.	Set the data of the cam data write command correctly.
1124	4388	Cam main axis value does not exist within the specified range.	Check the MasterStartPos and MasterEndPos values and run the command again.
1130	4400	The phase correction command cannot be executed if the command axis is not InSync or InGear status of synchronous control(cam, gear operation)operation.	Execute the phase correction command when the command axis of the phase correction command is in synchronous control operation and InSync or InGear state.
1131	4401	There is an error in setting the main axis of the phase correction command.	Execute the command after setting the main axis of the phase correction command to the same as the actual axis of the current synchronous operation.
1132	4402	The phase correction amount of the phase correction command was out of the position expression range.	Execute the command after setting the phase correction amount so that the phase correction amount is within the range from more than -2,147,483,648 to less than 2,147,483,647 in pulse unit.
1133	4403	The speed setting value of the phase correction	Execute the command after setting the speed value of the phase

Error	code		
Hex	Dec	Error Description	Solutions
		command was out of the range.	correction command to be larger than 0 and less than the speed limit of the main axis.
1140	4416	The connected slave device does not support the speed control mode.	Perform the speed control by using the slave device that supports the velocity mode of the EtherCAT CoE.
1150	4432	The connected slave device does not support the position control mode.	Perform the position control by using the slave device that supports the CSP mode of the EtherCAT CoE.
1160	4448	The connected slave device does not support the Cyclic Synchronous Velocity (CSV) mode.	Control the speed by using a slave device that supports the EtherCAT CoE CSV mode.
1161	4449	There is no target speed object (0x60FF) setting that can execute the Cyclic Synchronous Velocity (CSV) on the RxPDO entry setting in the slave parameter.	Set the target speed object (0x60FF) that supports the Cyclic Synchronous Velocity (CSV) on the RxPDO entry setting of the EtherCAT parameter slave data in XG5000, and then send it to the controller.
1162	4450	The CmdPosMode setting value of the Cyclic Synchronous Velocity (CSV) operation exceeded the input range.	The CmdPosMode supports the value of 0 (the current position is applied to the command position). After setting the CmdPosMode to 0, execute the command again.
1200	4608	The hardware upper limit error occurred.	Remove the error by executing the error reset command after breaking away from the external upper limit signal range with the use of reverse jog command.
1201	4609	The hardware lower limit error occurred.	Remove the error by executing the error reset command after breaking away from the external lower limit signal range with the use of forward jog command.
1203	4611	The command cannot be executed due to servo drive error during operation.	Remove the servo error with the error reset command after eliminating the servo error factor.
1204	4612	The command cannot be executed due to servo- off during operation.	Re-execute the command after changing the command axis to servo-on state with the servo-on command.
1205	4613	The software upper limit error occurred.	Remove the error by executing the error reset command after breaking away from the software upper limit range with the use of reverse jog command.
1206	4614	The software lower limit error occurred.	Remove the error by executing the error reset command after breaking away from the software lower limit range with the use of forward jog command.
1210	4624	If the spindle axis is automatically controlled by the NC function module, motion commands related to transfer cannot be executed.	After confirming the motion commands that can be executed on the axis allocated to the NC spindle axis, execute the motion commands allowed to the NC spindle axis.
1F00	7936	The periodic communication error occurred. (The communication error exceeding the master parameter periodic communication timeout count occurred)	Check whether servo power is off during communication, communication cable is normally installed and communication cable is exposed to noise.
1F10	7952	SDO commands can no longer be executed due to the SDO processing failure of slave device that was performed previously	Reset the connection after checking whether the status of the slave device is normal.
1F11	7953	The SDO parameter write command cannot be executed during operation.	Execute the SDO parameter write command when the axis is not in operation.
1F12	7954	The range of data such as SDO parameter Index, subIndex and etc. was out of the allowed value.	Execute the SDO parameter write command after setting the SDO parameter Index to 0x0000~0x9FFF, SubIndex to 0x00~0xFF and data size within 4 words.
1F13	7955	Abort occurred during SDO parameter write	Stop of writing operation was done in the middle of writing SDO

Error	code		
Hex	Dec	Error Description	Solutions
		command.	parameter in slave device. Check the writting data and the status of slave device.
1F14	7956	There is no response of the slave device regarding the command to write SDO parameter.	There is no response from slave device in the middle of writing SDO parameter. Check the status of slave device.
1F16	7958	Abort occurred while saving SDO parameter EEPROM.	Cancelation was done in the middle of saving SDO parameter EEPROM in slave device. Check the status of slave device.
1F17	7959	There is no response of the slave device regarding the parameter to save SDO parameter EEPROM.	There is no response from slave device in the middle of saving SDO parameter EEPROM. Check the status of slave device.
1F19	7961	Other commands cannot be executed while writing SDO parameter or saving SDO parameter EEPROM.	Execute other commands after saving SDO parameter EEPROM.
1F20	7968	Abort occurred in the middle of the command to write SDO parameter.	Stop of writing operation was done in the middle of writing SDO parameter in slave device. Check the writting data and the status of slave device.
1F21	7969	There is no response of the slave device regarding the command to read SDO parameter.	There is no response from slave device in the middle of reading SDO parameter EEPROM. Check the status of slave device.
1F22	7970	The SDO parameter read/write commands cannot be executed while the SDO parameter read/write commands are being executed.	Execute the command after the currently executed SDO parameter read/write is completed.
1F33	7987	It failed to change the operation mode of the servo drive to the position control(CSP) mode	Confirm whether the servo drive supports EtherCAT CoE CSP mode and check the status of servo drive.
1F34	7988	It failed to change the operation mode of the servo drive to the homing mode	Confirm whether the servo drive supports EtherCAT CoE Homing mode and check the status of servo drive.
1F35	7989	It failed to change the operation mode of the servo drive to the torque control (CST) mode.	Confirm whether the servo drive supports EtherCAT CoE CST mode and check the status of servo drive.
1F36	7990	It failed to change the operation mode of the servo drive to the speed control (CSV) mode.	Confirm whether the servo drive supports the EtherCAT CoE CSV mode and check the status of the servo drive.
1F50	8016	The XG5000 manual tuning function cannot be executed in case the controller is in the RUN state.	Perform manual tuning of XG5000 after changing the controller to STOP state.
1F60	8032	It is the command that is not available in the operation mode of the current slave.	Execute the command after setting the slave to the Boot state.
1F61	8033	Transmission timeout occurred during file transfer.	Check the status of the transmission line or slave and execute the command.
1F62	8034	Receive timeout occurred during file transfer.	Check the status of the transmission line or slave and execute the command.
1F63	8035	Packet error occurred during file transfer.	Check the status of the transmission line or slave and execute the command.
1F64	8036	There is a memory shortage in slave.	Check the transferred file and execute the command.
1F65	8037	The device does not exist.	Check whether the FOE function is available slave and execute the command.
1F66	8038	Access to the slave is defied.	Check whether the FOE function is available slave and execute the command.
1F67	8039	The password does not match.	Check the password and execute the command.
1F68	8040	Data to be downloaded by the FoE function was not transferred to the controller.	Check the communication cable connection status and controller operation status.

Error	code		
Hex	Dec	Error Description	Solutions
1F6F	8047	There was a slave error during file transfer.	Remove the slave error and execute the command.
1170	4464	PartLength value is invalid.	The PartLength cannot be smaller than 0.
1171	4465	Circumference value is invalid.	The Circumference cannot be smaller than 0.
1172	4466	The value for the cutting start position is invalid.	The cutting start position cannot be smaller than 1/4 of the Circumference.
1173	4467	The value for the cutting end position is invalid.	The cutting end position cannot be bigger than 1/4 of the Circumference or bigger than the cutting start position.
1174	4468	The value for the synchronization speed ratio is invalid.	The synchronization speed ratio value must be between 50-200.
1175	4469	The ratio for the 0 speed region is invalid.	The ratio for the 0 speed region must be between 0-50.
1176	4470	The value for the cam profile type is invalid.	Change the cam profile type and run the command.
1177	4471	The value for the cam point number is invalid.	Change the cam point number and run the command.
1178	4472	The value for the cam curve type is invalid.	Change the cam curve type and run the command.
1179	4473	The cutting region is too wide.	Change the length of the cutting region or the speed ratio and run the command.
2000	8192	The axis group was not ready for operation.	Execute the command when the axis group is ready for operation.
2001	8193	The axis group cannot be executed in "Disabled"	Check the operable axis status of the command and execute the
		state.	command when the command can be run.
2002	8194	The axis group cannot be executed in "Standby"	Check the operable axis status of the command and execute the
		state.	command when the command can be run.
2003	8195	The axis group cannot be executed in "Moving"	Check the operable axis status of the command and execute the
		state.	command when the command can be run.
2004	8196	The axis group cannot be executed in "Homing"	Check the operable axis status of the command and execute the
2005	8197	State.	command when the command can be run.
2005	0197	The axis group cannot be executed in "Stopping" state.	Check the operable axis status of the command and execute the command when the command can be run.
2006	8198	The axis group cannot be executed in "Errorstop"	Check the operable axis status of the command and execute the
	0.00	state.	command when the command can be run.
2007	8199	The axis configuration of the axis group is not	Check the operable axis status of the command and execute the
		servo-on state.	command when the command can be run.
200F	8207	The axis group operation cannot continue	Check whether the controller was stopped by the ESTOP
		because the controller is stopped by the ESTOP command.	command during the axis group operation.
2010	8208	The controller was changed to 'Stop' or 'Error'	Check whether the controller was changed to 'Stop' or 'Error'
		state, and thus operation cannot continue.	state during operation of the axis group.
2011	8209	The EtherCAT network connection was lost, and	Check whether the EtherCAT network connection has been
		thus operation cannot continue.	disconnected due to slave power supply error, network cable
			error and noise inflow on network cable during operation of the
0040	2010		axis group.
2012	8210	The position setting value of the command was	It exceeded a 32-bit area when the command position value was
		out of the pulse unit expression value.	converted in pulse unit. Set the value in the range of -
			2,147,483,648 to 2,147,483,647 when converting the command
			position value to pulse. (When using the 'Position Control Range
2013	8211	The operation speed value was less than 0, or it	Expansion' function, it is possible to set the range to 48-bit INT) Set the operation speed value to a value that is greater than 0
2013	0211	exceeded the maximum speed value.	and less than or equal to the maximum speed value set in the
		exceeded the maximum speed value.	and less than or equal to the maximum speed value set in the

Error	code		
Hex	Dec	Error Description	Solutions
			axis group.
2014	8212	The acceleration was set as the negative number.	Set the acceleration value to a value greater than or equal to 0.
2015	8213	The deceleration was set as the negative number.	Set the deceleration value to a value greater than or equal to 0.
2016	8214	The jerk was set as the negative number.	Set the jerk value to a value greater than or equal to 0.
201A	8218	Buffer Mode setting value exceeded the range.	Set the value that can be set in Buffer Mode.
201B	8219	Execution Mode setting value exceeded the input range.	Set the value that can be set (0 ~ 1) in Execution Mode.
201C	8220	Transition Mode setting value exceeded the range.	Set the value that can be set in Transition Mode in the command.
201D	8221	Transition Parameter setting value exceeded the range.	Set the value that can be set in Transition Parameter in the command.
201E	8222	The axis group operation was stopped due to the error occurrence of axis group configuration axis.	Execute the command after eliminating the error factor and removing the error with the axis or axis group reset command.
201F	8223	The command position value transmitted to the servo drive was out of the pulse unit expression value.	It exceeded the 31-bit area when the command position value was converted in pulse unit. Set the value in the range of - 2,147,483,648 ~ 2,147,483,647 when converted in pulse unit. (When using the 'Position Control Range Expansion' function, it is possible to set the range to 48-bit INT)
2020	8224	It is undefined axis group command.	This command is not performed in the current version of the controller. Please contact customer support team of our company after checking the version in which the command can be executed.
2021	8225	The previously executed command was canceled because the same command was executed.	Check whether the command was executed again during execution of the same command.
2022	8226	It exceeded the number of commands that can execute Buffered command.	The command cannot be executed because the command buffer of the axis is full. The number of commands that can be executed with the Buffered command is 100. Adjust the timing of the command execution.
2030	8240	Axis group parameters cannot be written if the axis group is in operation.	Perform the axis group parameter writing when the axis group is not in operation.
2040	8256	Axis group parameter data is abnormal.	Download the data again from XG5000 and place requests for A/S if the error occurs repeatedly after re-execution.
2041	8257	Operation cannot be executed due to error of the axis group parameter.	Check the axis group parameter and set it again.
2042	8258	The speed limit of the axis group parameter cannot be set to a value less than or equal to 0.	Set the speed limit to a value greater than 0.
2043	8259	The configuration axis number setting value of the axis group parameter exceeded the range.	Set the configuration axis (axis and encoder number) of the axes group to the range by product.
2051	8273	The axis which you are going to add is already registered in the axis group.	Check whether the same axis number exists in the axis group and then set another axis.
2052	8274	The current axis group is active, and the axis you want to add is already included in the other activated axis group.	Execute the command after changing the enabled axis group that includes the axis to GroupDisabled state.
2053	8275	The IdentInGroup setting value of axis group	Set the IdentInGroup setting value in the range of 1 to 10.

Error	code		A
Hex	Dec	Error Description	Solutions
		add/remove command exceeded the range.	
2060	8288	There is no axis setting in the specified axis	Set one or more axes in the axis group and execute the
		group of the axis group enable/disable	command.
		command.	
2061	8289	The axis group cannot be enabled because	Execute the command while all axes belonging to the axis group
		there is an operating axis among the	are not in operation.
		configuration axes of the current axis group.	
2062	8290	The specified axis group cannot be enabled	Check whether the axis belonging to the axis group is included
		because the configuration axis of the current axis	in another enabled axis group.
		group is the configuration axis of another	
		enabled axis group.	
2063	8291	The axis group operation cannot be executed	Set the unit of the configuration axis belonging to the axis group
		because the configuration axes of the axis group	to the same value in order to execute the operation.
0004	2000	have different units.	
2064	8292	The axis group cannot be enabled due to the	Set the parameter of the configuration axis belonging to the axis
		parameter error of the axis group configuration	group within the normal range.
2065	8293	axis.	Cat the game aread command unit for the configuration even
2005	0293	The axis group cannot be enabled because the speed command units of the axis group	Set the same speed command unit for the configuration axes belonging to the axis group.
		configuration axes are different from each other.	belonging to the axis group.
2066	8294	The axis group cannot be enabled because	The speed command unit of the configuration axes belonging to
2000	0254	there is an axis whose speed command unit is	the axis group cannot be set to rpm. Set it to a value other than
		rpm among the axis group configuration axes.	rpm.
2067	8295	The coordinate system operation cannot be	Set the unit of the configuration axis belonging to the axis group
		executed because the unit of the axis group	to match the coordinate system type in order to execute the
		configuration axes is different from the coordinate	command.
		type.	
206F	8303	The axis group cannot be activated if the axis	Execute the command when configuration axis belonging to the
		group configuration axis is in NC control	axis group is not in NC control operation.
		operation.	
2070	8304	The servo drive of the configuration axis does not	Confirm whether the servo drive supports EtherCAT CoE
		support homing mode.	Homing mode and check the status of servo drive.
2071	8305	There is an axis where homing is not completed	Execute the command again after eliminating the error factor by
		normally among configuration axes.	checking the configuration axis error code.
2072	8306	The axis group homing command cannot be	Execute the axis group homing command again in
		executed when the axis group is in operation.	GroupStandby state after axis group operation stops.
2080	8320	There is an axis that has an error during the	Execute the command again after eliminating the error factor by
		setting of the current position among the	checking the configuration axis error code.
0000	0000	configuration axes.	For tall and the first of the second of the
2090	8336	The absolute coordinate linear interpolation	Execute the command after making origin determination state
		command cannot be executed if the	with the homing command or the current position setting
		configuration axis is in the undetermined origin	command.
2091	8337	It exceeded the speed limit of the linear	Evacute the command at a lower command aread as as set to
2091	0337	It exceeded the speed limit of the linear interpolation configuration axis.	Execute the command at a lower command speed so as not to exceed the speed limit of the configuration axis.
2092	8338	In the case of a specified corner distance	Set the corner distance value specified in the transition
2032	0000	transition, transition operation cannot be	parameter to be smaller than the moving distance to the target
		ransidon, transidon operadon carmorbe	parameter to be smaller trial rifle moving distance to the target

Error code			
Hex	Dec	Error Description	Solutions
TICX	D 00	executed because the corner distance specification value is larger than the moving distance to the target position.	position.
2093	8339	In the case of a specified corner distance transition, transition operation cannot be executed because the radius of an arc to be inserted exceeds 2,147,483,647 pulse.	Execute the linear interpolation by resetting the target position or changing the transition mode so that the two straight lines cannot be located on a straight line.
2094	8340	Linear interpolation operation cannot be executed when the main axis or subordinate axis is in infinite length repeat "allowable" state	Execute the command after changing the infinite length repeat setting of the main axis or subordinate axis to "0: Disable".
20A0	8352	Absolute coordinate circular interpolation command cannot be executed when the configuration axis is in undetermined origin state.	Execute the command after making the determined origin state with homing command or current position setting command.
20A1	8353	Circular interpolation mode setting value exceeded the range.	Set the circular interpolation mode to a value between 0 and 2 (0: auxiliary point, 1: center point, 2: radius).
20A2	8354	Circular interpolation pass selection setting value exceeded the range.	Set the circular interpolation pass selection to a value between 0 and 1 (0: CW, 1: CCW).
20A3	8355	The radius setting exceeded the range in the circular interpolation radius method.	Set the radius setting value of the circular interpolation main axis operation data to be more than 80% of the half of the length from the start point to the end point.
20A4	8356	In circular interpolation, operation cannot be executed if start point = center point(midpoint) or center point(midpoint) = end point.	Execute the circular interpolation after setting the center point(or midpoint) to a different position from the start point(or end point).
20A5	8357	In circular interpolation, the start point and the end point cannot be the same in midpoint(or radius) method.	If you set the circular interpolation to midpoint (or radius), set the position of the start point differently from that of the end point and then execute the circular interpolation.
20A6	8358	It is radius setting error in circular interpolation.	The radius of a circle where the circular interpolation operation can be executed is greater than 0 and less than 2,147,483,647 pulse. Execute the command after setting the input value so that the radius can be calculated within the setting range. (When using the 'Position Control Range Expansion' function, it is possible to set the range to 48-bit INT)
20A7	8359	The operation cannot be executed because linear profile appears in circular interpolation.	Execute the circular interpolation changing the midpoint so that it cannot be located on the straight line of the start point and the end point in the case of a circular interpolation midpoint method.
20A8	8360	Linear interpolation operation cannot be executed when the main axis or subordinate axis is in infinite length repeat "allowable" state.	Execute the command after changing the infinite repeat setting of the main axis or subordinate axis to "0: Disable".
20A9	8361	Circular interpolation cannot be executed if there are more than four axes constituting the axis group.	Set the axis group to 2-axis for circular interpolation and 3-axis for helical interpolation.
20AA	8362	Circular interpolation cannot be executed if the axis configuration of the axis group is not configured in regular sequence.	For circular interpolation, set the configuration axis for the axis group in regular sequence.
20AB	8363	It exceeded the speed limit of the circular interpolation configuration axis.	Execute the command with the command speed lowered so as not to exceed the speed limit of the configuration axis.
20AC	8364	In circular interpolation, the midpoint(center point)	Execute the circular interpolation after setting the center point (or

Error	code		
Hex	Dec	Error Description	Solutions
		must be in the same XY plane as the start point	midpoint) to the position in the same the XY plane as the start
		in the midpoint(or radius) method.	point (end point) in circular interpolation.
20C0	8384	The coordinate system operation command	Execute the command after making the determined origin state
		cannot be executed when the constituent axis is	with the homing command or the current position setting
		in the undetermined origin state.	command.
20C1	8385	The PCS setting parameter data of the	Check the PCS setting parameter and set it again.
		coordinate system parameter is abnormal.	
20C2	8386	Coordinate system parameter, coordinate	Check the coordinate system-type parameter and set it again.
		system-type parameter data is abnormal.	
20C3	8387	Coordinate system parameter, coordinate	Check the instrument parameter and set it again.
0004	0000	system-type parameter data is abnormal.	
20C4	8388	Coordinate system parameter, workspace-type	Check the workspace-type parameter and set it again.
2005	0200	data is abnormal.	Charly the workeness perspector and set it again
20C5	8389	Coordinate system parameter, workspace	Check the workspace parameter and set it again.
20C6	8390	parameter data is abnormal.	Mayo to the position where you can start the coordinate quotam
2000	0390	It is the position where you cannot start the coordinate system operation.	Move to the position where you can start the coordinate system operation and execute the command.
20C7	8391	It is the target position that cannot be reached by	Check whether there is abnormality in the target position or
2007	0391	the coordinate system operation.	coordinate system parameter and set it again.
20C8	8392	It is the operation out of the workspace.	Check whether there is abnormality in the workspace parameter
2000	0002	it is the operation out of the workspace.	or target position and set it again.
20C9	8393	The axis group cannot be activated because the	Make sure that the unit of the configuration axis belonging to the
		unit of the axis group configuration axis is	axis group matches the coordinate system time.
		different from the coordinate system type.	
20CA	8394	The coordinate system operation exceeded the	Execute the command by lowering the command speed so as
		maximum interpolation speed.	not to exceed the maximum interpolation speed.
20CB	8395	The coordinate system operation cannot be	Execute the command after changing the infinite length repeat
		executed when the configuration axis is in infinite	setting of the configuration axis to "0: Disable".
		length repeat "allowable" state.	
20CC	8396	It is the CoordSystem that is not supported.	Execute the command after setting the supported CoordSystem.
20CD	8397	It is the TrajType that is not supported.	Execute the command after setting the supported TrajType.
20D0	8400	The conveyor axis setting value exceeded the	Set the conveyor axis (axis and encoder number) to the range
		range.	by product.
20D1	8401	The axis set as the conveyor axis was set as the	Execute the command when the conveyor axis is set to another
		axis group configuration axis.	axis.
20D2	8402	There is an error in setting the conveyor axis unit.	Set the unit of the conveyor axis to mm/inch.
20D3	8403	The conveyor axis was not ready.	Execute the command when the conveyor axis is ready for
			operation.
20D4	8404	The conveyor synchronization command cannot	Execute the command when the conveyor axis is not in homing
		be executed if the main axis is in homing	operation.
		operation.	
20D5	8405	The conveyor synchronization command cannot	Execute the command when the conveyor axis is not in
		be executed if the main axis is operating with	operation with torque control.
007		torque control.	
20D6	8406	Conveyor synchronization function cannot be	Execute the command after changing the infinite length repeat
		executed if the conveyor axis is in infinite length	setting of the conveyor axis to "1: Permit".
		repeat "Disable" state.	

Frrom	code		
Hex	Dec	Error Description	Solutions
20E0	8416	The SETP value of the coordinate system path	Set the STEP value of the coordinate system path operation to a
2020	0110	operation exceeded the range.	value between 0 and 99 and execute the command.
20E1	8417	The CommandType value of the coordinate	Set the CommandType value of the coordinate system path
		system path operation exceeded the range.	operation to a value between 0 and 4 and execute the
			command.
20E2	8418	The Mode value of the coordinate system path	Set the Mode value of the coordinate system path operation to a
		operation exceeded the range.	value between 0 and 2 and execute the command.
20E3	8419	It exceeded the number of paths that can be	Set the STEP value of the coordinate system path operation to a
		performed by the coordinate system path	value between 0 and 99 and execute the command.
		operation.	
3000	12288	The NC channel was not ready for operation.	Check whether the NC channel is ready for operation. In order to
			use the NC channel, the NC channel should be registered in NC
			parameter in XG5000.
3001	12289	NC program data is abnormal.	Download the data again from XG5000 and place requests for
2002	10000	Dreament connect he symitten when NC showed in	A/S if it occurs repeatedly after re-execution.
3002	12290	Program cannot be written when NC channel is	Execute the program writing when the automatic operation stops if the NC channel is in automatic operation.
3003	12291	running automatically. NC program writing was not completed normally.	Download the data again from XG5000 and place requests for
3003	12291	(File processing (DELETE) failure in NC program	A/S if it occurs repeatedly after re-execution.
		writing)	70 ii ii occurs repeatedry and re-execution.
3004	12292	NC program writing was not completed normally.	Download the data again from XG5000 and place requests for
0001	12202	(File processing(OPEN) failure in writing NC	A/S if it occurs repeatedly after re-execution.
		program)	, , , , , , , , , , , , , , , , , , , ,
3005	12293	NC program writing was not completed normally.	Download the data again from XG5000 and place requests for
		(File processing(WRITE) failure in writing NC	A/S if it occurs repeatedly after re-execution.
		program)	
3006	12294	NC program writing was not completed normally.	Download the data again from XG5000 and place requests for
		(File processing(CLOSE) failure in writing NC	A/S if it occurs repeatedly after re-execution.
		program)	
3007	12295	Parameters cannot be written when NC channel	Execute the program writing when the automatic operation stops
2000	40000	is running automatically.	if the NC channel is in automatic operation.
3008	12296	The automatic operation cannot continue	Check whether the controller's mode is changed to STOP or
		because the controller's mode is changed to STOP or ERROR state during the NC channel	ERROR state during the NC channel automatic operation.
		automatic operation.	
3009	12297	The automatic operation cannot continue	Check whether the EtherCAT network connection has been
0000		because EtherCAT network connection is	disconnected due to slave power supply error, network cable
		disconnected during the NC channel automatic	error and noise inflow on network cable during the NC channel
		operation.	automatic operation.
300A	12298	The automatic operation cannot continue	Check whether the controller was stopped by the ESTOP
		because the controller is stopped by the ESTOP	command during the NC channel automatic operation.
		command during the NC channel automatic	
		operation.	
3011	12305	The automatic operation cannot continue	Check whether the NC X axis is in servo-off state or drive alarm
		because NC X axis is not ready for operation.	state. The NC channel automatic operation can be executed
			when the configuration axis is in servo-on state, or drive alarm
			does not occur.

Erro	r code		
Hex	Dec	Error Description	Solutions
3012	12306	The automatic operation cannot continue because NC Y axis is not ready for operation.	Check whether the NC Y axis is in servo-off state or drive alarm state. The NC channel automatic operation can be executed when the configuration axis is in servo-on state, or drive alarm does not occur.
3013	12307	The automatic operation cannot continue because NC Z axis is not ready for operation.	Check whether the NC Z axis is in servo-off state or drive alarm state. The NC channel automatic operation can be executed when the configuration axis is in servo-on state, or drive alarm does not occur.
3014	12308	The automatic operation cannot continue because NC A axis is not ready for operation.	Check whether the NC A axis is in servo-off state or drive alarm state. The NC channel automatic operation can be executed when the configuration axis is in servo-on state, or drive alarm does not occur.
3015	12309	The automatic operation cannot continue because NC B axis is not ready for operation.	Check whether the NC B axis is in servo-off state or drive alarm state. The NC channel automatic operation can be executed when the configuration axis is in servo-on state, or drive alarm does not occur.
3016	12310	The automatic operation cannot continue because NC C axis is not ready for operation.	Check whether the NC C axis is in servo-off state or drive alarm state. The NC channel automatic operation can be executed when the configuration axis is in servo-on state, or drive alarm does not occur.
3017	12311	The automatic operation cannot continue because NC U axis is not ready for operation.	Check whether the NC U axis is in servo-off state or drive alarm state. The NC channel automatic operation can be executed when the configuration axis is in servo-on state, or drive alarm does not occur.
3018	12312	The automatic operation cannot continue because NC V axis is not ready for operation.	Check whether the NC V axis is in servo-off state or drive alarm state. The NC channel automatic operation can be executed when the configuration axis is in servo-on state, or drive alarm does not occur.
3019	12313	The automatic operation cannot continue because NC W axis is not ready for operation.	Check whether the NC W axis is in servo-off state or drive alarm state. The NC channel automatic operation can be executed when the configuration axis is in servo-on state, or drive alarm does not occur.
301A	12314	The automatic operation cannot continue because NC S axis is not ready for operation.	Check whether the NC S axis is in servo-off state or drive alarm state. The NC channel automatic operation can be executed when the configuration axis is in servo-on state, or drive alarm does not occur.
3020	12320	It is undefined NC channel command.	The NC command cannot be supported in the current controller version. Check the version in which the command can be executed and contact the customer support team of our company.
3021	12321	The previously executed command was canceled because the same NC channel command was executed.	The NC channel command can be executed only once per scan. Change the operating condition of the program so that one NC channel command can be executed in one scan.
3030	12336	The automatic operation cannot continue because interpreter (IPR) alarm occurs during the NC channel automatic operation.	Check the interpreter (IPR) error code among the NC channel flags. You can execute the automatic operation start command (NC_CycleStart) again after resetting the NC channel with the NC reset command(NC_Reset).

Erro	r code		
Hex	Dec	Error Description	Solutions
3031	12337	The automatic operation cannot continue because program processor(PA) alarm occurs during the NC channel automatic operation.	Check the program processor (PA) error code among the NC channel flags. You can execute the automatic operation start command (NC_CycleStart) again after resetting the NC channel with the NC reset command(NC_Reset).
3040	12352	The command position setting value was out of the pulse unit expression value during NC channel automatic operation.	It exceeded a 32-bit area when the command position value was converted in pulse unit. Set the value in the range of - 2,147,483,648 to 2,147,483,647 when converting the command position value to pulse. (When using the 'Position Control Range Expansion' function, it is possible to set the range to 48-bit INT)
3041	12353	The command position setting value of NC X axis was out of the pulse unit expression value.	It exceeded a 32-bit area when the command position value of NC X axis was converted in pulse unit. Set the value in the range of -2,147,483,648 to 2,147,483,647 when converting the command position value to pulse. (When using the 'Position Control Range Expansion' function, it is possible to set the range to 48-bit INT)
3042	12354	The command position setting value of NC Y axis was out of the pulse unit expression value.	It exceeded a 32-bit area when the command position value of NC Y axis was converted in pulse unit. Set the value in the range of -2,147,483,648 to 2,147,483,647 when converting the command position value to pulse. (When using the 'Position Control Range Expansion' function, it is possible to set the range to 48-bit INT)
3043	12355	The command position setting value of NC Z axis was out of the pulse unit expression value.	It exceeded a 32-bit area when the command position value of NC Z axis was converted in pulse unit. Set the value in the range of -2,147,483,648 to 2,147,483,647 when converting the command position value to pulse. (When using the 'Position Control Range Expansion' function, it is possible to set the range to 48-bit INT)
3044	12356	The command position setting value of NC A axis was out of the pulse unit expression value.	It exceeded a 32-bit area when the command position value of NC A axis was converted in pulse unit. Set the value in the range of -2,147,483,648 to 2,147,483,647 when converting the command position value to pulse. (When using the 'Position Control Range Expansion' function, it is possible to set the range to 48-bit INT)
3045	12357	The command position setting value of NC B axis was out of the pulse unit expression value.	It exceeded a 32-bit area when the command position value of NC B axis was converted in pulse unit. Set the value in the range of -2,147,483,648 to 2,147,483,647 when converting the command position value to pulse. (When using the 'Position Control Range Expansion' function, it is possible to set the range to 48-bit INT)
3046	12358	The command position setting value of NC C axis was out of the pulse unit expression value.	It exceeded a 32-bit area when the command position value of NC C axis was converted in pulse unit. Set the value in the range of -2,147,483,648 to 2,147,483,647 when converting the command position value to pulse. (When using the 'Position Control Range Expansion' function, it is possible to set the range to 48-bit INT)
3047	12359	The command position setting value of NC U axis was out of the pulse unit expression value.	It exceeded a 32-bit area when the command position value of NC U axis was converted in pulse unit. Set the value in the

Erro	code		
Hex	Dec	Error Description	Solutions
			range of -2,147,483,648 to 2,147,483,647 when converting the command position value to pulse. (When using the 'Position Control Range Expansion' function, it is possible to set the range to 48-bit INT)
3048	12360	The command position setting value of NC V axis was out of the pulse unit expression value.	It exceeded a 32-bit area when the command position value of NC V axis was converted in pulse unit. Set the value in the range of -2,147,483,648 to 2,147,483,647 when converting the command position value to pulse. (When using the 'Position Control Range Expansion' function, it is possible to set the range to 48-bit INT)
3049	12361	The command position setting value of NC W axis was out of the pulse unit expression value.	It exceeded a 32-bit area when the command position value of NC W axis was converted in pulse unit. Set the value in the range of -2,147,483,648 to 2,147,483,647 when converting the command position value to pulse. (When using the 'Position Control Range Expansion' function, it is possible to set the range to 48-bit INT)
304A	12362	The command position setting value of NC S axis was out of the pulse unit expression value.	It exceeded a 32-bit area when the command position value of NC S axis was converted in pulse unit. Set the value in the range of -2,147,483,648 to 2,147,483,647 when converting the command position value to pulse. (When using the 'Position Control Range Expansion' function, it is possible to set the range to 48-bit INT)
3050	12368	The command position of the NC channel configuration axis was out of the software upper limit position.	Deviate from the software upper limit range by using the reverse jog command in the NC configuration axis where the error occurred, and then remove the error by executing the error reset command.
3051	12369	The command position of NC X axis was out of the software upper limit position.	Deviate from the software upper limit range by using the reverse jog command in NC X axis, and then remove the error by executing the error reset command.
3052	12370	The command position of NC Y axis was out of the software upper limit position.	Deviate from the software upper limit range by using the reverse jog command in NC Y axis, and then remove the error by executing the error reset command.
3053	12371	The command position of NC Z axis was out of the software upper limit position.	Deviate from the software upper limit range by using the reverse jog command in NC Z axis, and then remove the error by executing the error reset command.
3054	12372	The command position of NC A axis was out of the software upper limit position.	Deviate from the software upper limit range by using the reverse jog command in NC A axis, and then remove the error by executing the error reset command.
3055	12373	The command position of NC B axis was out of the software upper limit position.	Deviate from the software upper limit range by using the reverse jog command in NC B axis, and then remove the error by executing the error reset command.
3056	12374	The command position of NC C axis was out of the software upper limit position.	Deviate from the software upper limit range by using the reverse jog command in NC C axis, and then remove the error by executing the error reset command.
3057	12375	The command position of NC U axis was out of the software upper limit position.	Deviate from the software upper limit range by using the reverse jog command in NC U axis, and then remove the error by executing the error reset command.

Frroi	r code		
Hex	Dec	Error Description	Solutions
3058	12376	The command position of NC V axis was out of the software upper limit position.	Deviate from the software upper limit range by using the reverse jog command in NC V axis, and then remove the error by executing the error reset command.
3059	12377	The command position of NC W axis was out of the software upper limit position.	Deviate from the software upper limit range by using the reverse jog command in NC W axis, and then remove the error by executing the error reset command.
305A	12378	The command position of NCS axis was out of the software upper limit position.	Deviate from the software upper limit range by using the reverse jog command in NC S axis, and then remove the error by executing the error reset command.
305B	12379	The command position of the NC channel/axis was out of the inner range of G22 traverse prohibited area.	Deviate from the range of G22 traverse prohibited area by using the jog command in the NC configuration axis where the error occurred, and then remove the error by executing the error reset command.
305C	12380	The command position of the NC channel/axis was out of the outer range of G22 traverse prohibited area.	Deviate from the range of G22 traverse prohibited area by using the jog command in the NC configuration axis where the error occurred, and then remove the error by executing the error reset command.
305D	12381	The command position of the NC channel/axis was outside the range of the third traverse prohibited area.	Deviate from the range of the third traverse prohibited area by using the jog command in the NC configuration axis where the error occurred, and then remove the error by executing the error reset command.
3060	12384	The command position of the NC channel configuration axis was out of the software lower limit position.	Deviate from the software lower limit range by using the forward jog command in the NC configuration axis where the error occurred, and then remove the error by executing the error reset command.
3061	12385	The command position of NC X axis was out of the software lower limit position.	Deviate from the software lower limit range by using the forward jog command in NC X axis, and then remove the error by executing the error reset command.
3062	12386	The command position of NC Y axis was out of the software lower limit position.	Deviate from the software lower limit range by using the forward jog command in NC Y axis, and then remove the error by executing the error reset command.
3063	12387	The command position of NC Z axis was out of the software lower limit position.	Deviate from the software lower limit range by using the forward jog command in NC Z axis, and then remove the error by executing the error reset command.
3064	12388	The command position of NC A axis was out of the software lower limit position.	Deviate from the software lower limit range by using the forward jog command in NC A axis, and then remove the error by executing the error reset command.
3065	12389	The command position of NC B axis was out of the software lower limit position.	Deviate from the software lower limit range by using the forward jog command in NC B axis, and then remove the error by executing the error reset command.
3066	12390	The command position of NC C axis was out of the software lower limit position.	Deviate from the software lower limit range by using the forward jog command in NC C axis, and then remove the error by executing the error reset command.
3067	12391	The command position of NC U axis was out of the software lower limit position.	Deviate from the software lower limit range by using the forward jog command in NC U axis, and then remove the error by executing the error reset command.
3068	12392	The command position of NC V axis was out of	Deviate from the software lower limit range by using the forward

Erro	r code		
Hex	Dec	Error Description	Solutions
		the software lower limit position.	jog command in NC V axis, and then remove the error by
			executing the error reset command.
3069	12393	The command position of NC W axis was out of	Deviate from the software lower limit range by using the forward
		the software lower limit position.	jog command in NC W axis, and then remove the error by
			executing the error reset command.
306A	12394	The command position of NCS axis was out of	Deviate from the software lower limit range by using the forward
		the software lower limit position.	jog command in NC S axis, and then remove the error by
			executing the error reset command.
3071	12401	The automatic operation cannot continue	Check whether NC X axis is in the undetermined origin state.
		because NC X axis is not in the origin	You can change the axis to the determined origin state by using
		determination complete state.	the homing command(MC_Home, NC_Home).
3072	12402	The automatic operation cannot continue	Check whether NC Y axis is in the undetermined origin state.
		because NC Y axis is not in the origin	You can change the axis to the determined origin state by using
		determination complete state.	the homing command(MC_Home, NC_Home).
3073	12403	The automatic operation cannot continue	Check whether NC Z axis is in the undetermined origin state.
		because NC Z axis is not in the origin	You can change the axis to the determined origin state by using
		determination complete state.	the homing command(MC_Home, NC_Home).
3074	12404	The automatic operation cannot continue	Check whether NC A axis is in the undetermined origin state.
		because NC A axis is not in the origin	You can change the axis to the determined origin state by using
		determination complete state.	the homing command(MC_Home, NC_Home).
3075	12405	The automatic operation cannot continue	Check whether NC B axis is in the undetermined origin state.
		because NC B axis is not in the origin	You can change the axis to the determined origin state by using
		determination complete state.	the homing command(MC_Home, NC_Home).
3076	12406	The automatic operation cannot continue	Check whether NC C axis is in the undetermined origin state.
		because NC C axis is not in the origin	You can change the axis to the determined origin state by using
		determination complete state.	the homing command(MC_Home, NC_Home).
3077	12407	The automatic operation cannot continue	Check whether NC U axis is in the undetermined origin state.
		because NC U axis is not in the origin	You can change the axis to the determined origin state by using
		determination complete state.	the homing command(MC_Home, NC_Home).
3078	12408	The automatic operation cannot continue	Check whether NC V axis is in the undetermined origin state.
		because NC V axis is not in the origin	You can change the axis to the determined origin state by using
		determination complete state.	the homing command(MC_Home, NC_Home).
3079	12409	The automatic operation cannot continue	Check whether NC W axis is in the undetermined origin state.
		because NC W axis is not in the origin	You can change the axis to the determined origin state by using
	10110	determination complete state.	the homing command(MC_Home, NC_Home).
307A	12410	The automatic operation cannot continue	Check whether NC S axis is in the undetermined origin state.
		because NC S axis is not in the origin	You can change the axis to the determined origin state by using
0000	40440	determination complete state.	the homing command(MC_Home, NC_Home).
3080	12416	The automatic operation cannot continue	Remove the cause for abnormal condition after checking
		because drive abnormal condition (upper/lower	whether the drive status of the NC configuration axis was
		limit, alarm, servo off) of the NC configuration	changed to the upper limit/lower limit, or alarm occurrence or
		axis occurs during the NC channel automatic	servo-off state during the NC channel automatic operation.
2004	10117	operation.	Demove the equal for charged and lities of the short in
3081	12417	The automatic operation cannot continue	Remove the cause for abnormal condition after checking
		because drive abnormal condition (upper/lower	whether the drive status of NC X axis was changed to the upper
		limit, alarm, servo off) of NC X axis occurs during	limit/lower limit, or alarm occurrence or servo-off state during the
		the NC channel automatic operation.	NC channel automatic operation.

Error	code		
Hex	Dec	Error Description	Solutions
3082	12418	The automatic operation cannot continue because drive abnormal condition (upper/lower limit, alarm, servo off) of NC Y axis occurs during the NC channel automatic operation.	Remove the cause for abnormal condition after checking whether the drive status of NC Y axis was changed to the upper limit/lower limit, or alarm occurrence or servo-off state during the NC channel automatic operation.
3083	12419	The automatic operation cannot continue because drive abnormal condition (upper/lower limit, alarm, servo off) of NC Z axis occurs during the NC channel automatic operation.	Remove the cause for abnormal condition after checking whether the drive status of NC Z axis was changed to the upper limit/lower limit, or alarm occurrence or servo-off state during the NC channel automatic operation.
3084	12420	The automatic operation cannot continue because drive abnormal condition (upper/lower limit, alarm, servo off) of NC A axis occurs during the NC channel automatic operation.	Remove the cause for abnormal condition after checking whether the drive status of NC A axis was changed to the upper limit/lower limit, or alarm occurrence or servo-off state during the NC channel automatic operation.
3085	12421	The automatic operation cannot continue because drive abnormal condition (upper/lower limit, alarm, servo off) of NC B axis occurs during the NC channel automatic operation.	Remove the cause for abnormal condition after checking whether the drive status of NC B axis was changed to the upper limit/lower limit, or alarm occurrence or servo-off state during the NC channel automatic operation.
3086	12422	The automatic operation cannot continue because drive abnormal condition (upper/lower limit, alarm, servo off) of NC C axis occurs during the NC channel automatic operation.	Remove the cause for abnormal condition after checking whether the drive status of NC C axis was changed to the upper limit/lower limit, or alarm occurrence or servo-off state during the NC channel automatic operation.
3087	12423	The automatic operation cannot continue because drive abnormal condition (upper/lower limit, alarm, servo off) of NC U axis occurs during the NC channel automatic operation.	Remove the cause for abnormal condition after checking whether the drive status of NC U axis was changed to the upper limit/lower limit, or alarm occurrence or servo-off state during the NC channel automatic operation.
3088	12424	The automatic operation cannot continue because drive abnormal condition (upper/lower limit, alarm, servo off) of NC V axis occurs during the NC channel automatic operation.	Remove the cause for abnormal condition after checking whether the drive status of NC V axis was changed to the upper limit/lower limit, or alarm occurrence or servo-off state during the NC channel automatic operation.
3089	12425	The automatic operation cannot continue because drive abnormal condition (upper/lower limit, alarm, servo off) of NC W axis occurs during the NC channel automatic operation.	Remove the cause for abnormal condition after checking whether the drive status of NC W axis was changed to the upper limit/lower limit, or alarm occurrence or servo-off state during the NC channel automatic operation.
308A	12426	The automatic operation cannot continue because drive abnormal condition (upper/lower limit, alarm, servo off) of NC S axis occurs during the NC channel automatic operation.	Remove the cause for abnormal condition after checking whether the drive status of NC S axis was changed to the upper limit/lower limit, or alarm occurrence or servo-off state during the NC channel automatic operation.
3100	12544	NC channel parameter data is abnormal.	Download the data again from XG5000 and place requests for A/S if it occurs repeatedly after re-execution.
3101	12545	Operation cannot be executed due to the NC parameter abnormality.	Check the NC parameter and reset it if the settings such as the data range are not correct.
3102	12546	The cutting feed upper/lower limit rate setting value of NC channel parameter exceeded the range.	Set the cutting feed upper/lower limit rate value of the NC channel parameter to a value greater than 0. Set the cutting feed upper limit rate value to be larger than the cutting feed lower limit rate value.
3103	12547	The circular processing speed limit upper/lower limit cutting feed rate setting value of NC channel parameter exceeded the range.	Set the arc processing speed limit upper/lower limit cutting speed value of the NC channel parameter to a value greater than 0. Set the arc processing speed limit upper limit speed value to be larger than the arc processing speed limit lower limit

Error	code		A
Hex	Dec	Error Description	Solutions
			speed value.
3104	12548	When controlling the constant surface speed of	When controlling the constant surface speed of the NC channel
		the NC channel parameter, the setting value of	parameter, set the value of the maximum rotation number in the
		the maximum/minimum rotation number in the	spindle larger than the value of the minimum rotation number in
		spindle exceeded the range.	the spindle.
3200	12800	NC channel/axis parameter data is abnormal.	Download the data again from XG5000 and place requests for
			A/S if it occurs repeatedly after re-execution.
3310	13072	NC Feed Hold command was executed in a	Execute NC Feed Hold command (NC_FeedHold) when the
		state other than automatic operation, or the	NC channel is in automatic operation. Check whether the
		currently executed program block cannot execute NC Feed Hold.	currently executed program block is ready for Feed Hold if it is in
2220	12000		automatic operation.
3320	13088	The override factor of the NC rapid traverse override command exceeded the range.	Execute the override command after setting the VelFactor, AccFactor and JerkFactor value of the override command to be
		override command exceeded the range.	greater than 0.
3321	13089	The operation speed value of NC X axis	Perform the override within the range that does not exceed the
5521	13003	exceeded the speed limit value after the override	speed limit value after checking the speed limit value of the axis
		factor of NC rapid traverse override command	connected to NC X axis.
		was reflected.	
3322	13090	The operation speed value of NC Y axis	Perform the override within the range that does not exceed the
		exceeded the speed limit value after the override	speed limit after checking the speed limit value of the axis
		factor of the NC rapid traverse override	connected to NC Y axis.
		command was reflected.	
3323	13091	The operation speed value of NC Z axis	Perform the override within the range that does not exceed the
		exceeded the speed limit value after the override	speed limit after checking the speed limit value of the axis
		factor of the NC rapid traverse override	connected to NC Z axis.
		command was reflected.	
3324	13092	The operation speed value of NC A axis	Perform the override within the range that does not exceed the
		exceeded the speed limit value after the override	speed limit after checking the speed limit value of the axis
		factor of the NC rapid traverse override	connected to NC A axis.
3325	13093	command was reflected. The operation speed value of NC B axis	Perform the override within the range that does not exceed the
3323	13093	exceeded the speed limit value after the override	speed limit after checking the speed limit value of the axis
		factor of the NC rapid traverse override	connected to NC B axis.
		command was reflected.	Connected to NO D axio.
3326	13094	The operation speed value of NC C axis	Perform the override within the range that does not exceed the
		exceeded the speed limit value after the override	speed limit after checking the speed limit value of the axis
		factor of the NC rapid traverse override	connected to NC C axis.
		command was reflected.	
3327	13095	The operation speed value of NC U axis	Perform the override within the range that does not exceed the
		exceeded the speed limit value after the override	speed limit after checking the speed limit value of the axis
		factor of the NC rapid traverse override	connected to NC U axis.
		command was reflected.	
3328	13096	The operation speed value of NC V axis	Perform the override within the range that does not exceed the
		exceeded the speed limit value after the override	speed limit after checking the speed limit value of the axis
		factor of the NC rapid traverse override	connected to NC V axis.
0000	1000=	command was reflected.	
3329	13097	The operation speed value of NC W axis	Perform the override within the range that does not exceed the

Frroi	code		
Hex	Dec	Error Description	Solutions
TICA	Dec	exceeded the speed limit value after the override factor of the NC rapid traverse override command was reflected.	speed limit after checking the speed limit value of the axis connected to NC W axis.
332A	13098	The operation speed value of NC S axis exceeded the speed limit value after the override factor of the NC rapid traverse override command was reflected.	Perform the override within the range that does not exceed the speed limit after checking the speed limit value of the axis connected to NC S axis.
332B	13099	The reset by NC_Reset or NC_Emergency command was executed, and thus the NC rapid traverse override command was canceled.	Execute the command again after NC_Reset or NC_Emergency command ends, if the NC rapid traverse override function was needed.
332C	13100	The NC_RapidTraverseOverride command cannot be executed when it is resetting by NC_Reset or NC_Emergency command.	Execute the NC command after NC_Reset or NC_Emergency command ends.
3330	13104	The override factor of NC cutting feed override command exceeded the range.	Execute the override command after setting the VelFactor, AccFactor and JerkFactor value of the override command to be greater than 0.
3331	13105	The operation speed value exceeded the cutting feed upper limit rate value after the override factor of NC cutting feed override command was reflected.	Perform the override within the range that does not exceed the cutting feed upper limit rate value after checking the cutting feed upper limit rate value of the NC channel parameter.
3332	13106	The reset by NC_Reset or NC_Emergency command was executed, and thus the NC cutting feed override command was canceled.	Execute the command again after NC_Reset or NC_Emergency command ends, if the NC cutting feed override function was needed.
3333	13107	The NC_CuttingFeedOverride command cannot be executed when it is resetting by NC_Reset or NC_Emergency command.	Execute the NC command after NC_Reset or NC_Emergency command ends.
350A	13578	The NC_CycleStart command cannot be executed when it is resetting by NC_Reset or NC_Emergency command.	Execute the NC command after NC_Reset or NC_Emergency command ends.
3340	13120	The override factor of NC spindle override command exceeded the range.	Execute the override command after setting the VelFactor, AccFactor and JerkFactor value of the override command to be greater than 0.
3341	13121	The operation speed value of the spindle exceeded the speed limit value after the override factor of the NC spindle override command was reflected.	Perform the override within the range that does not exceed the speed limit after checking the speed limit value of the axis connected to the spindle axis.
3342	13122	The NC_SpindleOverride command cannot be executed when it is resetting by NC_Reset or NC_Emergency command.	Execute the command again after NC_Reset or NC_Emergency command ends, if the NC spindle override function was needed.
3343	13123	The NC_SpindleOverride command cannot be executed when it is resetting by NC_Reset or NC_Emergency command.	Execute the NC command after NC_Reset or NC_Emergency command ends.
3344	13124	The Spindle Override command cannot be executed because the spindle axis (NC S axis) is not ready for operation.	Check whether the spindle axis (NC S axis) is in the servo-off state or drive alarm state.
3350	13136	The setting axis of the NC parameter read command was not enabled as the NC axis.	Check whether the setting axis of the NC parameter read command was registered as NC channel/axis parameter. The

Frro	r code		
Hex	Dec	Error Description	Solutions
			NC channel/axis can be registered in the NC channel parameter among the motion data items of XG5000.
3351	13137	The axis setting value of the NC parameter read command exceeded the allowable range.	Set the axis number to a value between 0 and 10. Perform channel parameter reading if the axis value is 0 and NC axis X ~ NC axis S reading if 1 ~ 10.
3352	13138	The parameter group setting value of the NC parameter read command exceeded the allowable range.	The setting range of the parameter group is 1 ~ 17 for the channel parameter, and 1 ~ 5 for the channel/axis parameter. Check the group number to which the parameter you want to read belongs, and then execute the parameter read command(NC_ReadParameter).
3353	13139	The parameter number set in the parameter group of the NC parameter read command is not supported.	Check whether the parameter number set in channel parameter or channel/axis parameter group is supported. Check the group number to which the parameter you want to read belongs and the parameter number, and then execute the parameter read command (NC_ReadParameter).
3360	13152	The NC_Mirrorlmage command cannot be executed if a channel is running automatically.	If the NC channel is run automatically, execute the mirror image (NC_MirrorImage) command in a state of stopping automatic operation.
3361	13153	The NC_MirrorImage command cannot be executed because the Feed Hold command is in the state of Enable.	Execute the mirror image (NC_MirrorImage) command after releasing the Enable input of the NC Feed Hold command (NC_FeedHold).
3370	13168	If the reverse operation buffer is 0, it cannot be executed.	Set the reverse operation buffer value of the NC channel parameter to a value between 1 and 50.
3380	13184	The block skip function is canceled as the reset by the NC_Reset or NC_Emergency command is executed.	If the block skip function is needed, execute the command again after the NC_Reset or NC_Emergency command ends.
3381	13185	Machine position gets out of a measurable range. (G37)	After confirming the measurable range of machine position, execute the automatic machine measurement (NC_BlockSkip) command.
3500	13568	The automatic operation start operation cannot be executed if the NC channel is in automatic operation.	Check whether NC channel is currently running automatically. The automatic operation can be restarted after the automatic operation is completed.
3501	13569	The automatic operation start operation cannot be executed because NC Feed Hold command is in Enable status.	Execute the automatic operation start command (NC_CycleStart) again after releasing the Enable input of the NC Feed Hold command (NC_FeedHold).
3502	13570	The automatic operation start operation cannot be executed because NC emergency stop command is in Enable status.	Execute the automatic operation start command (NC_CycleStart) again after releasing the Enable input of the NC emergency stop command (NC_Emergency).
3503	13571	The operation start command cannot be executed when NC interpreter(IPR) is not terminated normally.	Execute the automatic operation start command (NC_CycleStart) again after resetting the NC channel with the NC reset command(NC_Reset).
3504	13572	The automatic operation start command cannot be executed because NC interpreter(IPR) or program processor(PA) is in error state.	Check the interpreter(IPR) and program processor(PA) error code in the NC channel flags. The automatic operation start command (NC_CycleStart) can be executed again after the NC channel is reset with the NC reset command (NC_Reset).
3505	13573	The automatic operation start command cannot be executed because the program to be	Execute the automatic operation start command (NC_CycleStart) again after designating the program to be

Error	code		
Hex	Dec	Error Description	Solutions
		executed on the NC channel is not set.	executed with the NC program designation command(NC_LoadProgram).
3506	13574	The automatic operation start command cannot be executed because the NC channel reached the target processing quantity or the target processing quantity in M99 repeat processing.	Confirm the processing quantity of the NC channel flag or the processing quantity in M99 repeat processing, and then check whether it has reached the target processing quantity. Execute the automatic operation start command (NC_CycleStart) again after resetting the processing quantity or the processing quantity flag in M99 repeat processing
3507	13575	The automatic operation start command cannot be executed if NC M/S/T-code output strobe signal is on.	Execute the automatic operation start command (NC_CycleStart) after completing the NC M/S/T-code output strobe signal.
3508	13576	The NC channel interpreter (IPR) was not executed normally.	Execute the automatic operation start command (NC_CycleStart) again after resetting the NC channel with the NC reset command (NC_Reset).
3509	13577	The automatic operation start command cannot be executed when entered into the NC traverse prohibited area.	Deviate from the range of the traverse prohibited area by using the jog command in the NC configuration axis where an error occurred, and then remove the error by executing the error reset command.
350A	13578	The NC_CycleStart command cannot be executed when it is resetting by NC_Reset or NC_Emergency command.	Execute the NC command after NC_Reset or NC_Emergency command ends.
350B	13579	As the NC spindle device does not support csv or vl modes, the automatic operation start command cannot be executed.	Check if the slave connected to the spindle axis supports csv or vI operation modes. If the spindle device does not support csv or vI operation modes, the operation with the spindle axis cannot be performed.
350C	13580	As there is no essential object needed for the spindle operation in PDO setting of the EtherCAT slave connected to the spindle axis, the automatic operation start command cannot be executed.	After reconnecting the EtherCAT slave connection by setting the essential object needed for the spindle operation in PDO setting of the EtherCAT slave connected to the spindle axis, execute the automatic operation start command (NC_CycleStart). (See the essential PDO setting of the spindle device in the User Manual)
350D	13581	As the reverse operation buffer is all consumed during reverse operation, the automatic operation start command cannot be executed.	After releasing the Enable input of the NC_Reset or NC_RetraceMove commands, execute the automatic operation start command (NC_CycleStart) again.
3510	13584	The automatic operation start command cannot be executed because NC channel configuration axis is not ready.	Execute the automatic operation start command (NC_CycleStart) when the NC channel configuration axes are all ready. In order to start the automatic operation, the NC channel configuration axes should be connected to the EtherCAT network or set as virtual axes.
3511	13585	The automatic operation start command cannot be executed because NC X axis is not ready.	Execute the automatic operation start command (NC_CycleStart) when the NC channel configuration axes are all ready. In order to start the automatic operation, the NC channel configuration axes should be connected to the EtherCAT network or set as virtual axes.
3512	13586	The automatic operation start command cannot be executed because NC Y axis is not ready.	Execute the automatic operation start command (NC_CycleStart) when the NC channel configuration axes are all ready. In order to start the automatic operation, the NC channel configuration axes should be connected to the EtherCAT network or set as virtual axes.

Error	code		
Hex	Dec	Error Description	Solutions
3513	13587	The automatic operation start command cannot be executed because NC Z axis is not ready.	Execute the automatic operation start command (NC_CycleStart) when the NC channel configuration axes are all ready. In order to start the automatic operation, the NC channel configuration axes should be connected to the EtherCAT network or set as virtual axes.
3514	13588	The automatic operation start command cannot be executed because NC A axis is not ready.	Execute the automatic operation start command (NC_CycleStart) when the NC channel configuration axes are all ready. In order to start the automatic operation, the NC channel configuration axes should be connected to the EtherCAT network or set as virtual axes.
3515	13589	The automatic operation start command cannot be executed because NC B axis is not ready.	Execute the automatic operation start command (NC_CycleStart) when the NC channel configuration axes are all ready. In order to start the automatic operation, the NC channel configuration axes should be connected to the EtherCAT network or set as virtual axes.
3516	13590	The automatic operation start command cannot be executed because NC C axis is not ready.	Execute the automatic operation start command (NC_CycleStart) when the NC channel configuration axes are all ready. In order to start the automatic operation, the NC channel configuration axes should be connected to the EtherCAT network or set as virtual axes.
3517	13591	The automatic operation start command cannot be executed because NC U axis is not ready.	Execute the automatic operation start command (NC_CycleStart) when the NC channel configuration axes are all ready. In order to start the automatic operation, the NC channel configuration axes should be connected to the EtherCAT network or set as virtual axes.
3518	13592	The automatic operation start command cannot be executed because NC V axis is not ready.	Execute the automatic operation start command (NC_CycleStart) when the NC channel configuration axes are all ready. In order to start the automatic operation, the NC channel configuration axes should be connected to the EtherCAT network or set as virtual axes.
3519	13593	The automatic operation start command cannot be executed because NC W axis is not ready.	Execute the automatic operation start command (NC_CycleStart) when the NC channel configuration axes are all ready. In order to start the automatic operation, the NC channel configuration axes should be connected to the EtherCAT network or set as virtual axes.
351A	13594	The automatic operation start command cannot be executed because NC S axis is not ready.	Execute the automatic operation start command (NC_CycleStart) when the NC channel configuration axes are all ready. In order to start the automatic operation, the NC channel configuration axes should be connected to the EtherCAT network or set as virtual axes.
3520	13600	The automatic operation start command cannot be executed because NC channel configuration axis is in operation.	Execute the automatic operation start command (NC_CycleStart) when the NC channel configuration axis stops.
3521	13601	The automatic operation start command cannot be executed because NC X axis is in operation.	Execute the automatic operation start command (NC_CycleStart) when the NC channel configuration axis stops.
3522	13602	The automatic operation start command cannot be executed because NC Y axis is in operation.	Execute the automatic operation start command (NC_CycleStart) when the NC channel configuration axis stops.
3523	13603	The automatic operation start command cannot	Execute the automatic operation start command

Error	code		
Hex	Dec	Error Description	Solutions
		be executed because NC Z axis is in operation.	(NC_CycleStart) when the NC channel configuration axis stops.
3524	13604	The automatic operation start command cannot	Execute the automatic operation start command
		be executed because NC A axis is in operation.	(NC_CycleStart) when the NC channel configuration axis stops.
3525	13605	The automatic operation start command cannot	Execute the automatic operation start command
		be executed because NC B axis is in operation.	(NC_CycleStart) when the NC channel configuration axis stops.
3526	13606	The automatic operation start command cannot	Execute the automatic operation start command
		be executed because NC C axis is in operation.	(NC_CycleStart) when the NC channel configuration axis stops.
3527	13607	The automatic operation start command cannot	Execute the automatic operation start command
		be executed because NC U axis is in operation.	(NC_CycleStart) when the NC channel configuration axis stops.
3528	13608	The automatic operation start command cannot	Execute the automatic operation start command
		be executed because NC V axis is in operation.	(NC_CycleStart) when the NC channel configuration axis stops.
3529	13609	The automatic operation start command cannot	Execute the automatic operation start command
		be executed because NC W axis is in operation.	(NC_CycleStart) when the NC channel configuration axis stops.
352A	13610	The automatic operation start command cannot	Execute the automatic operation start command
		be executed because the NC S axis is in	(NC_CycleStart) when the NC channel configuration axis stops.
		operation.	
3530	13616	The automatic operation start command cannot	Execute the automatic operation start command
		be executed because NC channel configuration	(NC_CycleStart) with the NC channel configuration axis disabled
		axis is enabled as a motion axis group	as a motion axis group configuration axis.
		configuration axis.	
3531	13617	The automatic operation start command cannot	Execute the automatic operation start command
		be executed because NC X axis is enabled as a	(NC_CycleStart) with the NC channel configuration axis disabled
		motion axis group configuration axis.	as a motion axis group configuration axis.
3532	13618	The automatic operation start command cannot	Execute the automatic operation start command
		be executed because NC Y axis is enabled as a	(NC_CycleStart) with the NC channel configuration axis disabled
		motion axis group configuration axis.	as a motion axis group configuration axis.
3533	13619	The automatic operation start command cannot	Execute the automatic operation start command
		be executed because NC Z axis is enabled as a	(NC_CycleStart) with the NC channel configuration axis disabled
		motion axis group configuration axis.	as a motion axis group configuration axis.
3534	13620	The automatic operation start command cannot	Execute the automatic operation start command
		be executed because NC A axis is enabled as a	(NC_CycleStart) with the NC channel configuration axis disabled
		motion axis group configuration axis.	as a motion axis group configuration axis.
3535	13621	The automatic operation start command cannot	Execute the automatic operation start command
		be executed because NC B axis is enabled as a	(NC_CycleStart) with the NC channel configuration axis disabled
	10000	motion axis group configuration axis.	as a motion axis group configuration axis.
3536	13622	The automatic operation start command cannot	Execute the automatic operation start command
		be executed because NC C axis is enabled as a	(NC_CycleStart) with the NC channel configuration axis disabled
0507	40000	motion axis group configuration axis.	as a motion axis group configuration axis.
3537	13623	The automatic operation start command cannot	Execute the automatic operation start command
		be executed because NC U axis is enabled as a	(NC_CycleStart) with the NC channel configuration axis disabled
2522	40004	motion axis group configuration axis.	as a motion axis group configuration axis.
3538	13624	The automatic operation start command cannot	Execute the automatic operation start command
		be executed because NC V axis is enabled as a	(NC_CycleStart) with the NC channel configuration axis disabled
2522	40005	motion axis group configuration axis.	as a motion axis group configuration axis.
3539	13625	The automatic operation start command cannot	Execute the automatic operation start command
		be executed because NC W axis is enabled as a	(NC_CycleStart) with the NC channel configuration axis disabled
		motion axis group configuration axis.	as a motion axis group configuration axis.

Error	r code		
Hex	Dec	Error Description	Solutions
353A	13626	The automatic operation start command cannot	Execute the automatic operation start command
		be executed because NC S axis is enabled as a	(NC_CycleStart) with the NC channel configuration axis disabled
		motion axis group configuration axis.	as a motion axis group configuration axis.
3540	13632	The position unit or speed unit setting of NC	For NC operation, set the unit of the NC channel configuration
		channel configuration axis is invalid.	axis (except for spindle) to mm or deg. Set the unit of speed to
			RPM for spindle axis(S axis) and unit/min for other axes(X, Y, Z,
0544	40000	The marking with an arrandowith a thing of NOV	A, B, C, U, V, W).
3541	13633	The position unit or speed unit setting of NC X	For NC operation, set the unit of the NC channel configuration
2542	12624	axis is invalid.	axis to mm or deg. Set the unit of speed to unit/min.
3542	13634	The position unit or speed unit setting of NC Y	For NC operation, set the unit of the NC channel configuration
3543	13635	axis is invalid.	axis to mm or deg. Set the unit of speed to unit/min. For NC operation, set the unit of the NC channel configuration
3543	13033	The position unit or speed unit setting of NC Z axis is invalid.	axis to mm or deg. Set the unit of speed to unit/min.
3544	13636	The position unit or speed unit setting of NC A	For NC operation, set the unit of the NC channel configuration
3344	13030	axis is invalid.	axis to mm or deg. Set the unit of speed to unit/min.
3545	13637	The position unit or speed unit setting of NC B	For NC operation, set the unit of the NC channel configuration
3543	13037	axis is invalid.	axis to mm or deg. Set the unit of speed to unit/min.
3546	13638	The position unit or speed unit setting of NC C	For NC operation, set the unit of the NC channel configuration
0010	10000	axis is invalid.	axis to mm or deg. Set the unit of speed to unit/min.
3547	13639	The position unit or speed unit setting of NC U	For NC operation, set the unit of the NC channel configuration
30		axis is invalid.	axis to mm or deg. Set the unit of speed to unit/min.
3548	13640	The position unit or speed unit setting of NC V	For NC operation, set the unit of the NC channel configuration
		axis is invalid.	axis to mm or deg. Set the unit of speed to unit/min.
3549	13641	The position unit or speed unit setting of NC W	For NC operation, set the unit of the NC channel configuration
		axis is invalid.	axis to mm or deg. Set the unit of speed to unit/min.
354A	13642	The position unit or speed unit setting of NC S	For NC operation, set the speed unit of the spindle axis to RPM.
		axis is invalid.	
3600	13824	The program cannot be loaded because there is	Execute the program designation command
		no program set in NC program designation	(NC_LoadProgram) again after writing the NC program created
		command in the controller.	in XG5000 in the controller.
3601	13825	The program designation command cannot be	Check whether the NC channel is currently running
		executed if NC channel is in automatic operation.	automatically. You can designate a new program after the
			automatic operation ends.
3602	13826	The program designation command cannot be	Download the data again from XG5000 after checking whether
		executed due to the NC program data	NC program data abnormal error (0x3001) occurs and place
		abnormality.	requests for A/S if it occurs repeatedly after re-execution.
3603	13827	The LoadMode of the NC program designation	Execute the program designation command
		command was invalid.	(NC_LoadProgram) again after entering a value of 0 in the
			LoadMode of the NC program designation
0004	40000	The NO Lead December and according	command(NC_LoadProgram).
3604	13828	The NC_LoadProgram command cannot be	Execute the NC command after NC_Reset or NC_Emergency
		executed when it is resetting by NC_Reset or	command ends.
3610	13840	NC_Emergency command. The NC channel interpreter(IPR) was not reset	Poet the NC channel with the NC reset command (NC Poset)
3010	13040	normally.	Rest the NC channel with the NC reset command (NC_Reset). Place requests for A/S if it occurs repeatedly after re-execution.
3620	13856	The NC_Emergency command was executed in	Execute the NC emergency stop command (NC_Emergency)
3020	13030	a state other than automatic operation.	when the NC channel is in automatic operation.
	<u> </u>	מ אמופ טוויפו ווימוז מעוטוזומוט טףפומווטוז.	which the two charmers in automatic operation.

Erro	r code		
Hex	Dec	Error Description	Solutions
3630	13872	It is not the range of origin that can be specified in	The range of the origin(ReferenceNum) is from the first origin to
		NC homing operation.	the fourth origin. Specify it as a value between 1 and 4.
3631	13873	The NC homing command cannot be executed	Execute the homing command after the automatic operation is
		when the channel is in automatic operation.	completed.
3632	13874	The homing command cannot be executed	Execute the homing command (NC_Home) again after
		because the NC emergency stop command is in	releasing the Enable input of the NC emergency stop command
		Enable state.	(NC_Emergency)
3633	13875	The homing command cannot be executed	Execute the homing command(NC_Home) with all the NC
		because the NC channel configuration axis is not	channel configuration axes ready. In order to perform the homing
		ready.	command, the NC channel configuration axis should be
			connected to the EtherCAT network or set as a virtual axis.
3634	13876	The homing command cannot be executed	Execute the homing command (NC_Home) with the NC
		because the NC channel configuration axis is	channel configuration axis disabled as a motion axis group
		enabled as a motion axis group configuration	configuration axis.
		axis.	
3635	13877	Error occurred during homing operation in the	Check the error factor of the servo drive and perform homing
		servo drive.	after removing the servo drive error.
3636	13878	The NC_Home command cannot be executed	Execute the NC command after NC_Reset or NC_Emergency
		when it is resetting by NC_Reset or	command ends.
		NC_Emergency command.	
3637	13879	If the spindle axis is automatically controlled by	After correctly setting the connection method of the encoder
		the NC function module, if the item 'Spindle	connected to the spindle axis in the item 'Spindle Encoder
		Encoder Selection' of the axis parameter is '0:	Selection' of the axis parameter, execute the homing operation
		Disable', the homing operation cannot be	command.
		executed.	
3638	13880	If the item 'Spindle Encoder Selection' of the axis	If the item 'Spindle Encoder Selection' of the axis parameter is '1:
		parameter is '1: Motor ENC', as there is no	Motor ENC', after reconnecting the EtherCAT by adding the
		'Position actual value (0x6064)' object in the	'Position actual value (0x6064)'object to the TxPDO setting of
		TxPDO setting of the EtherCAT slave connected	the EtherCAT slave connected to the spindle axis, execute the
		to the spindle axis, the homing operation	homing operation command.
		command cannot be executed.	
3639	13881	If the item 'Spindle Encoder Selection' of the axis	If the item 'Spindle Encoder Selection' of the axis parameter is '2:
		parameter is '2: Built-in ENC1', as the encoder1	Built-in ENC1', after setting the encoder1 unit of the encoder
		parameter setting is wrong, the homing operation	parameter = pulse, the maximum value of the encoder1 =
		command cannot be executed.	2147483647 and the minimum value of the encoder1 = -
			2147483648, execute the homing operation command.
363A	13882	If the item 'Spindle Encoder Selection' of the axis	If the item 'Spindle Encoder Selection' of the axis parameter is '3:
		parameter is '3: Built-in ENC2', as the encoder2	Built-in ENC2', after setting the encoder2 unit of the encoder
		parameter setting is wrong, the homing operation	parameter = pulse, the maximum value of the encoder2 =
		command cannot be executed.	2147483647 and the minimum value of the encoder2 = -
00.40	40000	NOM as Is as a set	2147483648, execute the homing operation command.
3640	13888	NC M-code operation completion command	Execute the M-code operation completion command
		cannot be executed when M-code output Strobe	(NC_McodeComplete) with the M-code output Strobe signal on
		signal is off.	after checking the status of the M-code output Strobe signal
0011	40000	TI NO M LO	among the NC channel flags.
3641	13889	The NC_McodeComplete command cannot be	Execute the NC command after NC_Reset or NC_Emergency
		executed when it is resetting by NC_Reset or	command ends.
		NC_Emergency command.	

Erro	r code		
Hex	Dec	Error Description	Solutions
3650	13904	NC S-code operation completion command cannot be executed when S-code output Strobe signal is off.	Execute the S-code operation completion command (NC_McodeComplete) with the M-code output Strobe signal on after checking the status of the M-code output Strobe signal among the NC channel flags.
3651	13905	The NC_ScodeComplete command cannot be executed when it is resetting by NC_Reset or NC_Emergency command.	Execute the NC command after NC_Reset or NC_Emergency command ends.
3660	13920	NC T-code operation completion command cannot be executed when T-code output Strobe signal is off.	Execute the T-code operation completion command (NC_McodeComplete) with the T-code output Strobe signal on after checking the status of the T-code output Strobe signal among the NC channel flags.
3661	13921	The NC_TcodeComplete command cannot be executed when it is resetting by NC_Reset or NC_Emergency command.	Execute the NC command after NC_Reset or NC_Emergency command ends.
3670	13936	The NC parameter write command cannot be executed when the channel is in automatic operation.	Check whether NC channel is currently in automatic operation. Execute the NC parameter write command (NC_WriteParameter) in stop state after the automatic operation ends.
3671	13937	The setting axis of the NC parameter write command was not enabled as the NC axis.	Check whether the setting axis of the NC parameter write command was registered as NC channel/axis parameter. The NC channel/axis can be registered in the NC channel parameter among the motion data items of XG5000.
3672	13938	The axis setting value of the NC parameter write command exceeded the allowable range.	Set the axis number to a value between 0 and 10. Perform channel parameter writing if the axis value is 0 and NC axis X ~ NC axis S writing if 1 ~ 10.
3673	13939	The parameter group setting value of the NC parameter write command exceeded the allowable range.	The setting range of the parameter group is 1 ~ 17 for the channel parameter, and 1 ~ 5 for the channel/axis parameter. Check the group number to which the parameter you want to write belongs, and then execute the parameter write command(NC_WriteParameter).
3674	13940	The parameter number set in the parameter group of the NC parameter write command is not supported.	Check whether the parameter number set in channel parameter or channel/axis parameter group is supported. Check the group number to which the parameter you want to write belongs and the parameter number, and then execute the parameter write command(NC_WriteParameter).
3675	13941	The data setting value of the parameter set in the NC parameter write command exceeded the range.	Check the data setting range of the parameter to be set, and then execute the parameter write command(NC_WriteParameter) with a value within the range.
3690	13968	Only the tool retract/recover mode cancellation (0), the tool retract mode (1) or the tool recover mode (2) commands can be made.	After specifying the tool retract/recover mode cancellation (0), the tool retract mode (1) or the tool recover mode (2) in the ToolMode input, execute the tool retract/recover (NC_ToolMode) commands.
3691	13969	If it is not the tool retract mode, the tool recover command cannot be made.	After completing the tool retract in the tool retract mode (1), execute the tool recover mode (2) command.
3692	13970	If it is the tool retract mode, if tool retract is not operated, the tool recover command cannot be made.	After executing the tool retract operation with JOG operation in the tool retract mode, execute the tool recover mode (2) command.

Error code			
Hex	Dec	Error Description	Solutions
36A0	13984	The Block Optional Skip number gets out of range. (0~9)	Set the value to be set in SkipNum to one value among 0~9 and execute the command.
36B0	14000	The value to set the axis of the manual tool compensation command exceeded the tolerance range. (X, Y, Z)	Set one of X~Z (1~3) axes to NcAxis and execute the command.
36C1	14017	The maximum velocity value of the spindle axis Less than or equal to 0.	Set the MaxVelocity value of the NC_ChgSpindleGear command as a value greater than 0 and execute the command.
36C2	14018	The setting value of the gear ratio on the motor side is less than or equal to 0.	Set the GearOfMotor value of the NC_ChgSpindleGear command as a value greater than 0 and execute the command.
36C3	14019	The setting value of the gear ratio on the machine side is less than or equal to 0.	Set the GearOfMachine value of the NC_ChgSpindleGear command as a value greater than 0 and execute the command.
36C4	14020	The setting value of Backlash is less than 0.	Set the Backlash value of the NC_ChgSpindleGear command as a value greater than 0 and execute the command.
36C5	14021	The setting value of P Gain is less than 0 or greater than 500.	Set the P_Gain value of the NC_ChgSpindleGear command to a value from 0 to 500 and execute the command.
36C6	14022	The setting value of FF Gain is less than 0 or greater than 100.	Set the FF_Gain value of the NC_ChgSpindleGear command to a value from 0 to 100 and execute the command.
36C7	14023	The spindle axis is not in operation with NC automatic operation.	Operate the spindle axis with NC automatic operation and perform the NC_ChgSpindleGear operation.
36D0	14032	As the main spindle axis is not set to be automatically controlled by the NC function module, the spindle control command cannot be executed.	After setting the spindle axis (S axis) to the NC channel/axis of the NC parameter, set the number of the motor axis connected to the spindle axis (S axis) to the 'number of the main spindle axis' of the NC channel parameter.
36D1	14033	The spindle control command cannot be executed because the spindle axis is not ready for operation.	The motor axis connected to the spindle axis is not ready for operation. After making the axis ready for operation with the LS_Connect command, etc., execute the spindle control command.
36B1	14001	As the axis of the manual tool compensation command is not ready for a configuration axis, the command cannot be executed.	Set the axis set in NcAxis to a configuration axis and execute the command.
36B2	14002	The axis of the manual tool compensation command is not activated by the NC axis.	Allocate the NC axis set in NcAxis and execute the command.
36C0	14016	The setting value of the speed to change gears of the spindle axis exceeded speed limit values.	Set the velocity to be set in ChgVelocity of the NC_ChgSpindleGear command within the range of speed limit values of the relevant axis and execute the command.
3800	14336	In the NC rapid traverse command, the operation speed value of the configuration axis exceeded the speed limit value.	Set the rapid traverse rate within the range that does not exceed the speed limit value after checking the speed limit value of the axis connected to the NC configuration axis where error occurred.
3801	14337	In the NC rapid traverse command, the operation speed value of NC X axis exceeded the speed limit value.	Set the rapid traverse rate within the range that does not exceed the speed limit value after checking the speed limit value of the axis connected to NC X axis where error occurred.
3802	14338	In the NC rapid traverse command, the operation speed value of NC Y axis exceeded the speed limit value.	Set the rapid traverse rate within the range that does not exceed the speed limit value after checking the speed limit value of the axis connected to NC Y axis where error occurred.
3803	14339	In the NC rapid traverse command, the operation speed value of NC Z axis exceeded the speed	Set the rapid traverse rate within the range that does not exceed the speed limit after checking the speed limit value of the axis

Error	code		0.1.0
Hex	Dec	Error Description	Solutions
		limit value.	connected to NC Z axis.
3804	14340	In the NC rapid traverse command, the operation	Set the rapid traverse rate within the range that does not exceed
		speed value of NC A axis exceeded the speed	the speed limit after checking the speed limit value of the axis
		limit value.	connected to NC A axis.
3805	14341	In the NC rapid traverse command, the operation	Set the rapid traverse rate within the range that does not exceed
		speed value of NC B axis exceeded the speed	the speed limit after checking the speed limit value of the axis
		limit value.	connected to NC B axis.
3806	14342	In the NC rapid traverse command, the operation	Set the rapid traverse rate within the range that does not exceed
		speed value of NC C axis exceeded the speed	the speed limit after checking the speed limit value of the axis
		limit value.	connected to NC C axis.
3807	14343	In the NC rapid traverse command, the operation	Set the rapid traverse rate within the range that does not exceed
		speed value of NC U axis exceeded the speed	the speed limit after checking the speed limit value of the axis
		limit value.	connected to NC U axis.
3808	14344	In the NC rapid traverse command, the operation	Set the rapid traverse rate within the range that does not exceed
		speed value of NC V axis exceeded the speed	the speed limit after checking the speed limit value of the axis
		limit value.	connected to NC V axis.
3809	14345	In the NC rapid traverse command, the operation	Set the rapid traverse rate within the range that does not exceed
		speed value of NC W axis exceeded the speed	the speed limit after checking the speed limit value of the axis
		limit value.	connected to NC W axis.
380A	14346	In the NC rapid traverse command, the operation	Set the rapid traverse rate within the range that does not exceed
		speed value of NC S axis exceeded the speed	the speed limit after checking the speed limit value of the axis
		limit value.	connected to NC S axis.
380B	14347	In-position of rapid traverse component axes was	Check the command in-position width and the in-position
		not completed within in-position completion	completion monitoring time of the NC channel parameter among
		monitoring time during the NC rapid traverse	the parameters connected to the NC axis.
0000	4 40 40	operation.	
380C	14348	The automatic operation cannot continue	Check the axis where the error occurred among the NC
		because there is an axis that has an error among	configuration axes. You can check the error that occurred on the
		NC configuration axes during the NC rapid	NC axis in the axis error code number of the NC channel/axis
3810	14352	traverse operation.	flag. Set the rate of the cutting feed operation to a value other than 0
3010	14332	In NC feed per rotation mode, the cutting feed operation rate was set to 0.	in NC feed per rotation mode.
3811	14353	The operation speed of NC cutting feed	Set the cutting feed rate value(F) within the range that does not
3011	14333	command exceeded the cutting feed upper limit	exceed the parameter value after checking the cutting feed
		rate value of the NC channel parameter.	upper limit rate value of the NC channel parameter.
3812	14354	The in-position of the cutting feed configuration	Check the command in-position width and the in-position
3012	14004	axes was not completed within the in-position	completion monitoring time of the NC channel parameter among
		completion monitoring time during the NC cutting	the parameters connected to the NC axis.
		feed operation.	and parameters continuous to the two axio.
3820	14368	In the NC cutting feed command, the operation	Set the cutting feed rate within the range that does not exceed
		speed value of the configuration axis exceeded	the speed limit value after checking the speed limit value of the
		the speed limit value.	axis connected to the NC configuration axis where error
		,	occurred.
3821	14369	In the NC cutting feed command, the operation	Set the cutting feed rate within the range that does not exceed
		speed value of NC X axis exceeded the speed	the speed limit value after checking the speed limit value of the
		limit value.	axis connected to NC X axis.
3822	14370	In the NC cutting feed command, the operation	Set the cutting feed rate within the range that does not exceed

Error code			
Hex	Dec	Error Description	Solutions
TIOX		speed value of NC Y axis exceeded the speed limit value.	the speed limit value after checking the speed limit value of the axis connected to NC Y axis.
3823	14371	In the NC cutting feed command, the operation speed value of NC Z axis exceeded the speed limit value.	Set the cutting feed rate within the range that does not exceed the speed limit value after checking the speed limit value of the axis connected to NC Z axis.
3824	14372	In the NC cutting feed command, the operation speed value of NC A axis exceeded the speed limit value.	Set the cutting feed rate within the range that does not exceed the speed limit value after checking the speed limit value of the axis connected to NC A axis.
3825	14373	In the NC cutting feed command, the operation speed value of NC B axis exceeded the speed limit value.	Set the cutting feed rate within the range that does not exceed the speed limit value after checking the speed limit value of the axis connected to NC B axis.
3826	14374	In the NC cutting feed command, the operation speed value of NC C axis exceeded the speed limit value.	Set the cutting feed rate within the range that does not exceed the speed limit value after checking the speed limit value of the axis connected to NC C axis.
3827	14375	In the NC cutting feed command, the operation speed value of NC U axis exceeded the speed limit value.	Set the cutting feed rate within the range that does not exceed the speed limit value after checking the speed limit value of the axis connected to NC U axis.
3828	14376	In the NC cutting feed command, the operation speed value of NC V axis exceeded the speed limit value.	Set the cutting feed rate within the range that does not exceed the speed limit value after checking the speed limit value of the axis connected to NC V axis.
3829	14377	In the NC cutting feed command, the operation speed value of NC W axis exceeded the speed limit value.	Set the cutting feed rate within the range that does not exceed the speed limit value after checking the speed limit value of the axis connected to NC W axis.
382A	14378	In the NC cutting feed command, the operation speed value of NC S axis exceeded the speed limit value.	Set the cutting feed rate within the range that does not exceed the speed limit value after checking the speed limit value of the axis connected to NC S axis.
3840	14400	In NC circular interpolation, operation cannot be executed in case of start point = center point or center point = end point.	In NC circular interpolation, set the position of the center point to a different position from the start point(or end point).
3841	14401	The radius setting was incorrect in NC circular interpolation.	The radius value of the circle where the NC circular interpolation operation can be executed is greater than 0 and less than or equal to 2,147,483,647 pulse based on the pulse unit. Set the center point or radius input value so that the radius can be calculated within the setting range. (When using the 'Position Control Range Expansion' function
3850	14416	Axis designation was incorrect in NC cylindrical interpolation.	In performing circular interpolation operation in NC cylindrical interpolation, Y-axis should be designated in the XY plane, Z-axis in the YZ plane, and Z-axis in the ZX plane.
3860	14432	The rest method is specified as the number of rotations, but the number of rotations is 0.	Run the S-axis with MC_MoveVelocity in the NC program.
3870	14448	As an error occurred in the spindle axis during automatic operation of the NC channel, the automatic operation cannot continue.	After making the spindle axis ready for operation again by confirming the error code that occurred in the spindle axis, execute the automatic operation start command (NC_CycleStart).
3871	14449	The operation mode of the slave connected to the spindle axis cannot be changed.	Check if the slave connected to the spindle axis supports csv or vI operation modes. And confirm if the operation state of the slave is normal.

Erro	r code		
Hex	Dec	Error Description	Solutions
3872	14450	As the spindle axis is not in the state of homing completion, the orientation operation cannot be executed.	After making the homing state by executing NC_Home or MC_SetPosition commands on the spindle axis, execute the spindle orientation operation.
3873	14451	If the spindle axis is automatically controlled by the NC function module, if the item 'Spindle Encoder Selection' of the axis parameter is '0: Disable', the orientation operation (M19) cannot be executed.	After correctly setting the connection method of the encoder connected to the spindle axis in the item 'Spindle Encoder Selection' of the axis parameter, execute the orientation operation (M19).
3874	14452	If the item 'Spindle Encoder Selection' of the axis parameter is '1: Motor ENC', as there is no 'Position actual value (0x6064)' object in the TxPDO setting of the EtherCAT slave connected to the spindle axis, the orientation operation (M19) cannot be executed.	After reconnecting the EtherCAT by adding the 'Position actual value (0x6064)'object to the TxPDO setting of the EtherCAT slave connected to the spindle axis, execute the orientation operation (M19).
3875	14453	If the item 'Spindle Encoder Selection' of the axis parameter is '2: Built-in ENC1', as the encoder1 parameter setting is wrong, the orientation operation (M19) cannot be executed.	If the item 'Spindle Encoder Selection' of the axis parameter is '2: Built-in ENC1', after setting the encoder1 unit of the encoder parameter = pulse, the maximum value of the encoder1 = 2147483647 and the minimum value of the encoder1 = 2147483648, execute the orientation operation (M19).
3876	14454	If the item 'Spindle Encoder Selection' of the axis parameter is '3: Built-in ENC2', as the encoder2 parameter setting is wrong, the orientation operation (M19) cannot be executed.	If the item 'Spindle Encoder Selection' of the axis parameter is '3: Built-in ENC2', after setting the encoder2 unit of the encoder parameter = pulse, the maximum value of the encoder2 = 2147483647 and the minimum value of the encoder2 = 2147483648, execute the orientation operation (M19).
3880	14464	The reference axis of constant surface speed is not set. Shifting to the constant surface speed (G96) mode is not possible.	When controlling constant surface speed of the NC channel parameter, set the setting value of the reference axis to '1: X~ 9: W' range values and execute the command.
3F00	16128	Interpreter (IPR) parsing error - LEX MAIN TABLE configuration is invalid.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command (NC_Reset).
3F01	16129	Interpreter(IPR) parsing error - Undefined character exists.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).
3F02	16130	Interpreter (IPR) parsing error - Number exceeded the maximum buffer.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).
3F03	16131	Interpreter(IPR) parsing error - The number of LEX tokens exceeded the maximum buffer.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).
3F04	16132	Interpreter(IPR) parsing error - There are one or more decimal points.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).
3F05	16133	Interpreter (IPR) parsing error - The number of	Check whether there is a program error in the block after

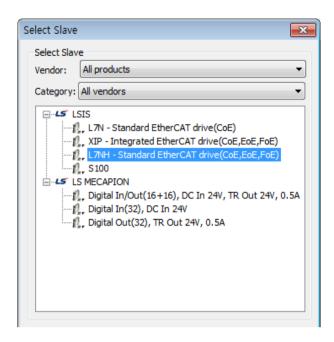
Frro	r code		
Hex	Dec	Error Description	Solutions
		brackets in the formula is incorrect.	confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).
3F06	16134	Interpreter(IPR) parsing error - There exist characters that cannot be used in the formula.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).
3F07	16135	Interpreter(IPR) parsing error - The syntax of the formula is incorrect.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).
3F08	16136	Interpreter (IPR) parsing error - It is not a permitted macro variable.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).
3F09	16137	Interpreter (IPR) parsing error - It is a TANGENT operation error.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).
3F0A	16138	Interpreter(IPR) parsing error - It is a SQUARE ROOT operation error.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).
3F0B	16139	Interpreter(IPR) parsing error - The denominator of division cannot be 0.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).
3F0C	16140	Interpreter(IPR) parsing error - Syntax is incorrect.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).
3F0D	16141	Interpreter(IPR) parsing error - YACC MAIN TABLE configuration is invalid.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).
3F0E	16142	Interpreter(IPR) parsing error - The number of YACC tokens exceeded the maximum buffer.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).
3F0F	16143	Interpreter (IPR) parsing error - It is not possible to open IPR semaphore.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).
3F10	16144	Interpreter(IPR) parsing error - It was terminated without M02 or M30.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).

Erro	r code		
Hex	Dec	Error Description	Solutions
3F11	16145	Interpreter(IPR) parsing error - It can be commanded only at the head of the block.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).
3F12	16146	Interpreter(IPR) parsing error - The same progress block exists.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).
3F13	16147	Interpreter(IPR) parsing error - The number of statement numbers exceeded the maximum buffer.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).
3F14	16148	Interpreter (IPR) parsing error - It is not possible to find the next block to proceed with.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).
3F15	16149	Interpreter(IPR) parsing error - Subprogram call syntax is incorrect.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).
3F16	16150	Interpreter(IPR) parsing error - It exceeded the maximum subprogram call.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).
3F17	16151	Interpreter(IPR) parsing error - It is a program that was already called.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).
3F18	16152	Interpreter (IPR) parsing error - There is no M99 in the subprogram.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).
3F19	16153	Interpreter (IPR) parsing error - M99 syntax is incorrect.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).
3F1A	16154	Interpreter (IPR) parsing error - There are a large number of loops.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).
3F1B	16155	Interpreter(IPR) parsing error - There is no start of loop.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).
3F1C	16156	Interpreter(IPR) parsing error - The connection of loops is invalid.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).

Error	code		
Hex	Dec	Error Description	Solutions
3F1D	16157	Interpreter(IPR) parsing error - It exceeded M command limit in one block.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).
3F1E	16158	Interpreter (IPR) parsing error - It is an unused G code.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).
3F1F	16159	Interpreter (IPR) parsing error - It is not possible to be commanded simultaneously in one block.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).
3F20	16160	Interpreter(IPR) parsing error - The center point of the arc cannot be found.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).
3F21	16161	Interpreter(IPR) parsing error - It is not possible to create a path of cycle code.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).
3F22	16162	Interpreter(IPR) parsing error - The taper amount of the cycle code is too large.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).
3F23	16163	Interpreter(IPR) parsing error - It is not possible to be commanded within a cycle shape block.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).
3F24	16164	Interpreter(IPR) parsing error - There is a problem with the cycle shape block command.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).
3F26	16166	Interpreter(IPR) parsing error - The tool offset number is not valid.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).
3F27	16167	Interpreter(IPR) parsing error - The center point of the arc is not correct.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).
3F28	16168	Interpreter(IPR) parsing error - It is not possible to call the subprogram in MDI mode.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).
3F29	16169	Interpreter(IPR) parsing error - Chamfering and rounding can applied only to the cutting feed command.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).

Error	code				
Hex	Dec	Error Description	Solutions		
3F2A	16170	Interpreter(IPR) parsing error - Chamfering and rounding are duplicated in instructions.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).		
3F2B	16171	Interpreter(IPR) parsing error - Only a single axis command is available in chamfering and rounding.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).		
3F2C	16172	Interpreter(IPR) parsing error - The chamfering and rounding reference value is greater than the feed amount.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).		
3F2D	16173	Interpreter(IPR) parsing error - It is not possible to obtain the next block information in chamfering and rounding.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).		
3F2E	16174	Interpreter(IPR) parsing error - An arc in the next block is not allowed in chamfering and rounding.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).		
3F2F	16175	Interpreter(IPR) parsing error - Rounding cannot be performed in the same straight line feed.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).		
3F30	16176	Interpreter(IPR) parsing error - Correction start and end can be made only in linear feed.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).		
3F31	16177	Interpreter(IPR) parsing error - There is no feed command in cycle shape end block.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).		
3F32	16178	Interpreter(IPR) parsing error - There is an axis command that is irrelevant to the plane in chamfering and rounding.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).		
3F33	16179	Interpreter(IPR) parsing error - It exceeded IJK command limit within one block in calling macro.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).		
3F34	16180	Interpreter(IPR) parsing error - Modal macro cannot be called from the subprogram.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).		
3F35	16181	Interpreter(IPR) parsing error - It exceeded the multiple call limits of modal macro.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).		

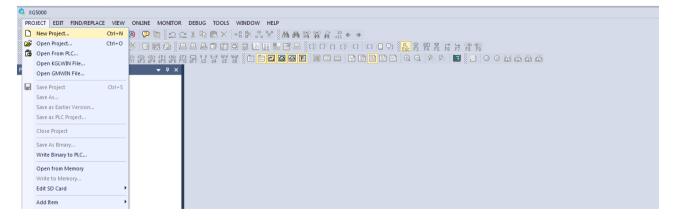
Error code			
Hex	Dec	Error Description	Solutions
3F36	16182	Interpreter(IPR) parsing error - It is unused M code.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).
3F37	16183	Interpreter(IPR) parsing error - Pitch cannot be calculated in rigid tapping.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).
3F38	16184	Interpreter(IPR) parsing error - String exceeded the maximum buffer.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).
3F39	16185	Interpreter(IPR) parsing error - String syntax is incorrect.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).
3F3A	16186	Interpreter(IPR) parsing error - It reached the target processing quantity.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).
3F3B	16187	Interpreter(IPR) parsing error - It is user stop of macro program.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).
3F3C	16188	Interpreter(IPR) parsing error - It is not possible to create a path for compound thread cycle.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).
3F3D	16189	Interpreter(IPR) parsing error - It cannot be commanded at polar coordinate interpolation.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).
3F3E	16190	Interpreter(IPR) parsing error - It cannot be traversed to 0 at polar coordinate interpolation.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).
3F3F	16191	Interpreter(IPR) parsing error - It is a syntax error in cylindrical interpolation command.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).
3F40	16192	Interpreter(IPR) parsing error - It cannot be commanded during cylindrical interpolation.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).
3F41	16193	Interpreter(IPR) parsing error - It is a constant surface speed control mode in polar coordinate and cylindrical interpolations.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).

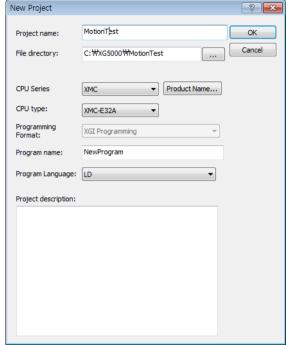

Error	r code	Funan Danawintian	Calutiana
Hex	Dec	Error Description	Solutions
3F42	16194	Interpreter(IPR) parsing error - It is not the origin.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).
3F43	16195	Interpreter(IPR) parsing error - Tool interference occurred.	Check whether there is a program error in the block after confirming the 'error block number' among the NC channel flags. The automatic operation can be executed again after the NC channel is reset with the NC reset command NC_Reset).
3FE0	16352	Program processor(PA) error - There is no corresponding pointer location of the program file.	Execute the automatic operation again after resetting the NC channel with the NC reset command(NC_Reset).
3FE1	16353	Program processor(PA) error - It is not possible to read from the program file.	Execute the automatic operation again after resetting the NC channel with the NC reset command(NC_Reset).
3FE2	16354	Program processor(PA) error - The selected program file does not exist.	Check whether the specified program is stored in the controller. The automatic operation can be executed again after the NC channel is reset with the NC reset command (NC_Reset).
3FE3	16355	Program processor(PA) error - It is not possible to open NcAccess semaphore.	Execute the automatic operation again after resetting the NC channel with the NC reset command(NC_Reset).
3FE4	16356	Program processor(PA) error - The number of characters per block is limited to 300.	Check whether the number of characters per block of the specified program exceeds 300. The automatic operation can be executed again after the NC channel is reset with the NC reset command (NC_Reset).

Appendix 3 Setting Example

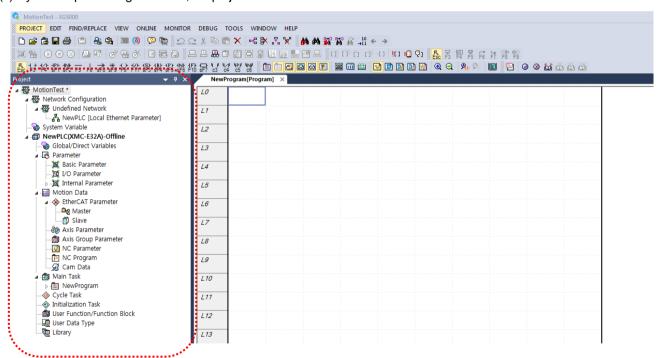
It describes how to set when using the motion controller at the beginning.

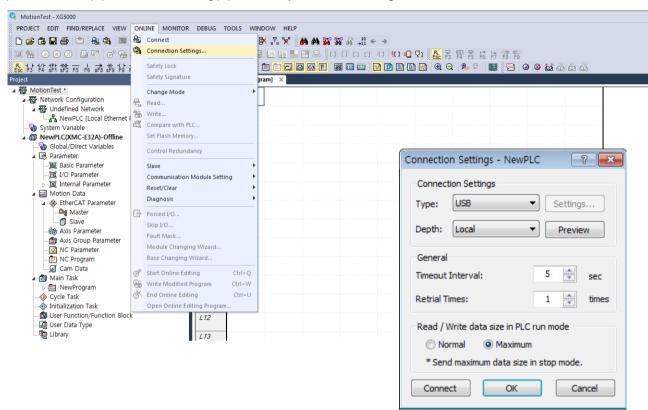
- (1) Install the servo driver.
 - Connect the power and motor to the servo driver and connect external signal as necessary.
- (2) Install motion controller.
 - Install motion controller. And at the beginning of test-run, for safety's sake, make sure motion controller is Stop mode.
- (3) Connect the motion controller and servo driver.
 - Connect the motion controller and first servo driver by using Ethernet cable. And connect other servo driver.
 - At this time, check the I/O direction of communication port of the servo driver distinctly. Below is a list of servo drive which fundamentally has network setting information in the connection and module when servo drive and EtherCAT I/O are connected to motion controller.



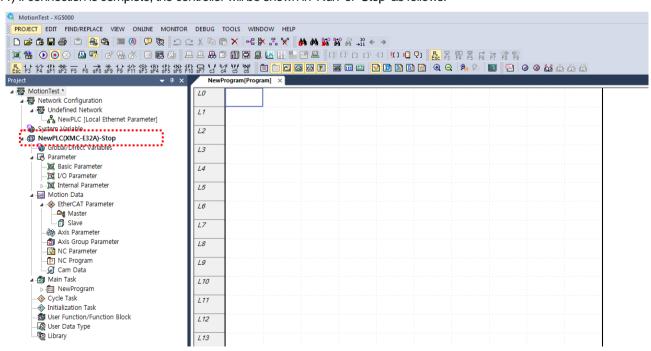

Notes

When the installation of servo drive has completed, make sure to check the following points by using dedicated setting TOOL provided by the servo drive manufacturer; failure to meet the standards requires reset to meet the actual user condition.


- 1. Power supply
 - Check if the power connected to servo drive and the allowable power conditions are the same.
 - (There are instances where no power setting is in parameter depending on the type of servo drive.)
- 2. The type of motor and encoder(feedback)
 - Set the parameter according to the type of encoder and motor connected to actual servo drive.)
- 3. Command position unit setting
 - If it is possible to set the command position unit by servo drive parameter, make sure to set it by pulse unit (Inc. or Counts), and set the encoder resolution value per motor rotation according to the bit number of encoder used.
 - (There are instances where no separate setting item exists depending on the type of servo drive.)
- (4) Install XG5000 at the PC.
- (5) Execute XG5000 and create motion control project by selecting "Project(P) New Project(N)".



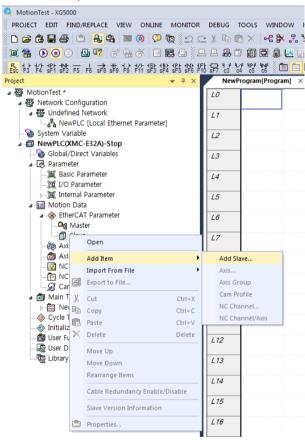
(7) If you set up as the figure above, the project will be created as follows.

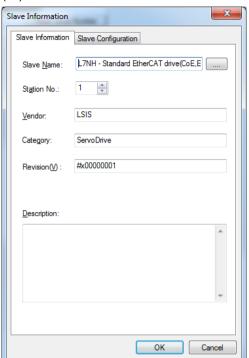


(8) Turn on motion controller and servo driver and connect PC with motion controller through USB or Ethernet cable.

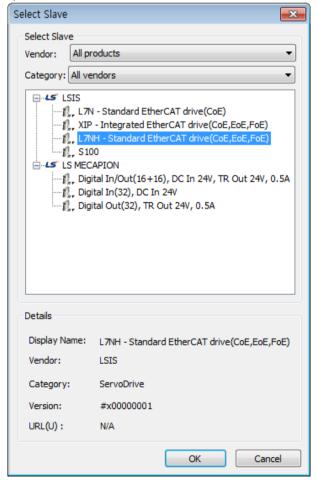
(9) Select "Online(O)- Connection Setting(O)" and set up connection settings.

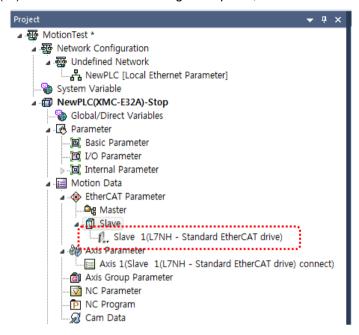
- (10) Select "Online(O)-Connect(N)" to connect PC with motion controller.
- (11) If connection is complete, the controller will be shown in 'Run' or 'Stop' as follows.




(12) If the controller doesn't become "Online" and keeps "Offline", check whether the controller is connected cable, is turned on.

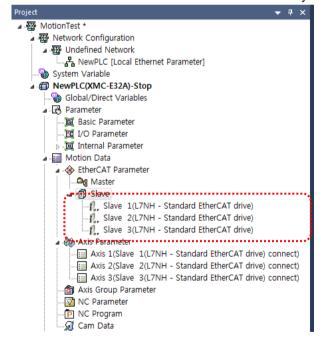
(13) Check if motion controller is in Stop state. If motion controller is in Run state, change it to Stop state and execute the next steps.


- (14) Writing must be executed in the motion controller after setting the servo drive actually connected to the network parameter in order to execute the connection with servo drive. First, check if the relevant controller is in off-line state to set network parameter. If it is in on-line state, execute "Online -Disconnect" to change it to off-line state.
- (15) Right click on a mouse in the slave parameter of the project tree and select "Add item Slave-servo drive" in order to add servo drive to network parameter.



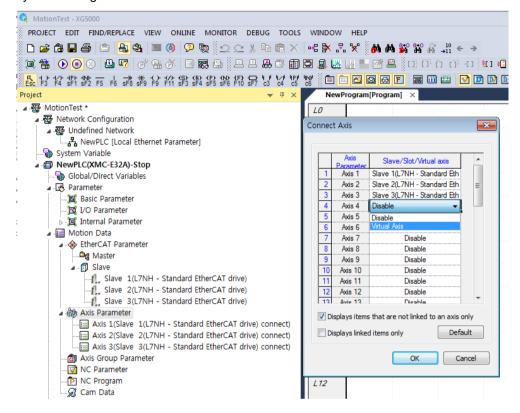
(16) When the slave information window comes up, click the"..." button next to the slave name.

(17) Select the servo drive connected first to motion controller in the servo drive selection window and click OK.

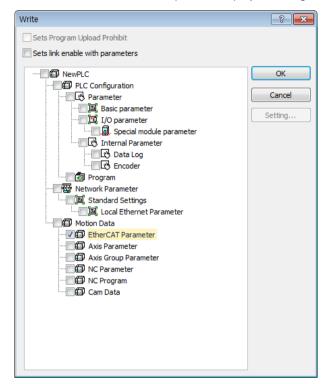


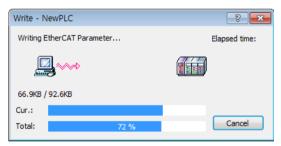
(18) When the axis number setting is completed, the servo drive added earlier is indicated in slave of EtherCAT parameter.

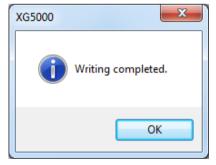
(19) Execute the servo drive addition in the same way for the other servo drives.


This is the screen to show all the servo drives actually connected to slave parameter are added.

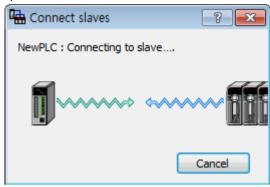
(20) After setting the slave, connect the set slave and the axis to be controlled by the motion controller.

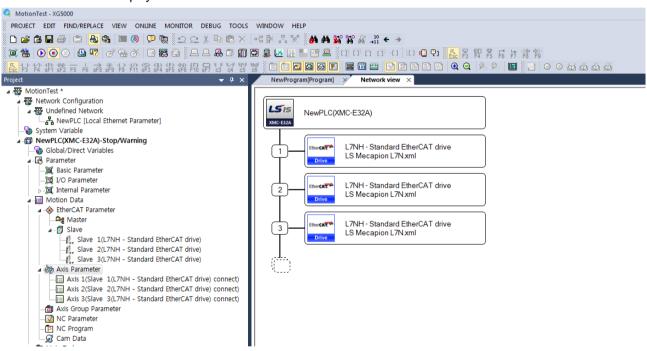

The axes are set in the order that the slave is set but the user can arbitrarily assign slaves to the axes.


Select the axis parameters in the project tree, right-click and select "Axis / slave connection" to create the following window. Here you can assign a slave to the axis. The axis can be set to the set slave and virtual axis

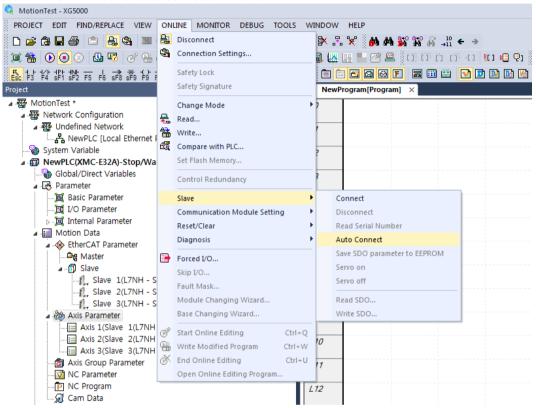


(21) After adding all the EtherCAT salves connected to EtherCAT parameter, execute "Online-Connection" first and execute "Online-Write" to write EtherCAT parameter in motion controller.


(22) When the project writing window comes up, check in the EtherCAT parameter and check OK to execute writing. This is the screen to show the whole execution process of project writing.

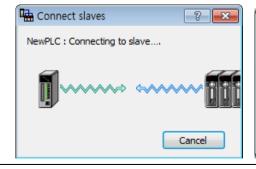


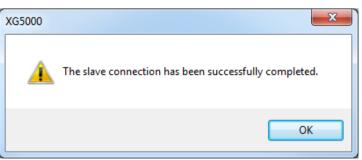
(23) Select "Online - Slave - Connect" to execute communication link between motion controller and servo drive.


(24) When the link is completed, the servo drive name of slave parameter is activated to black from gray. Execute the "View – Display EtherCAT Network" in the menu to check the servo drive connection.

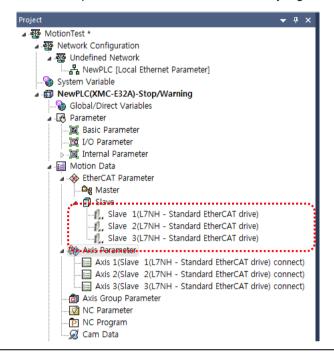

Notes

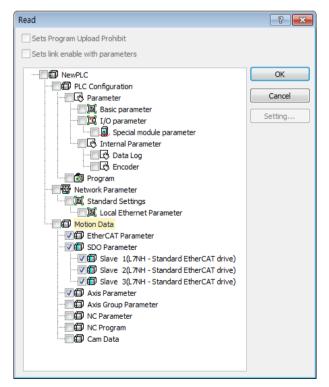
When connecting the network for the first time after the system configuration using motion controller, use "slave auto connection" to conveniently execute connection to servo drive without setting the EtherCAT slaver.


1. Execute the "Online - slave - auto connection" menu.

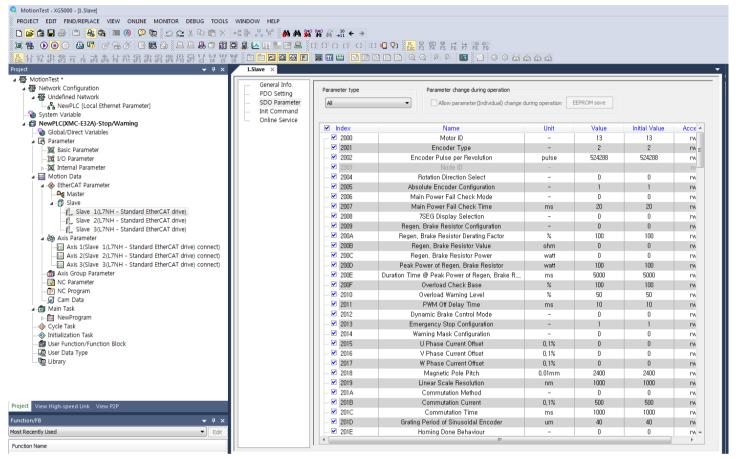


2. Popup notification message appears as follows. This is an alert message notifying when executing slave auto connection, the network parameter set in the current XG5000 and motion controller is initialized and so the servo parameter(SDO parameter) in XG5000 is. Check the message and click OK.

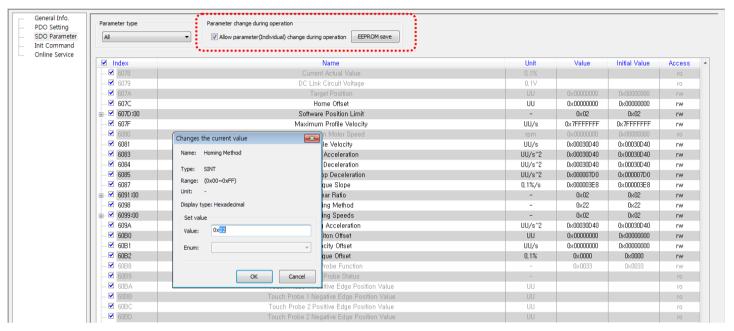

3. Slave connection message appears, and if the connection is completed normally, completion message is indicated.



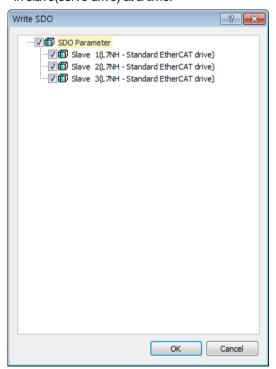
Notes


4. When executing the "slave auto connection" command, the EtherCAT slave information currently connected to the EtherCAT parameter slave parameter of XG5000 is automatically registered if the connection command is completed normally.

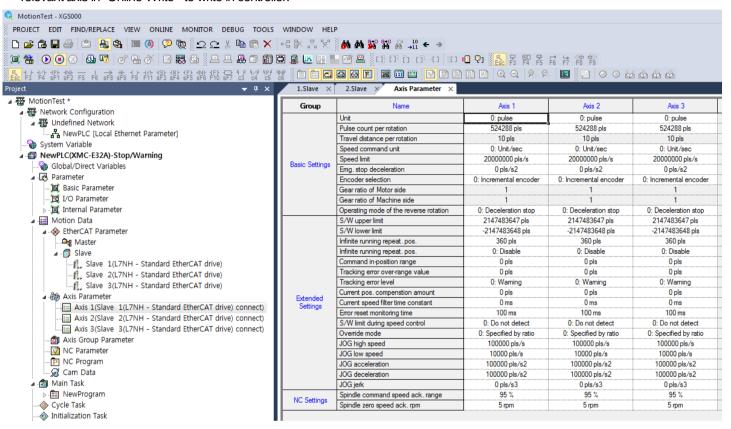
(25) Read SDO parameter to set operation parameter and SDO parameter of EtherCAT slave. Select "Online -Read"in the menu and select the item to be read.



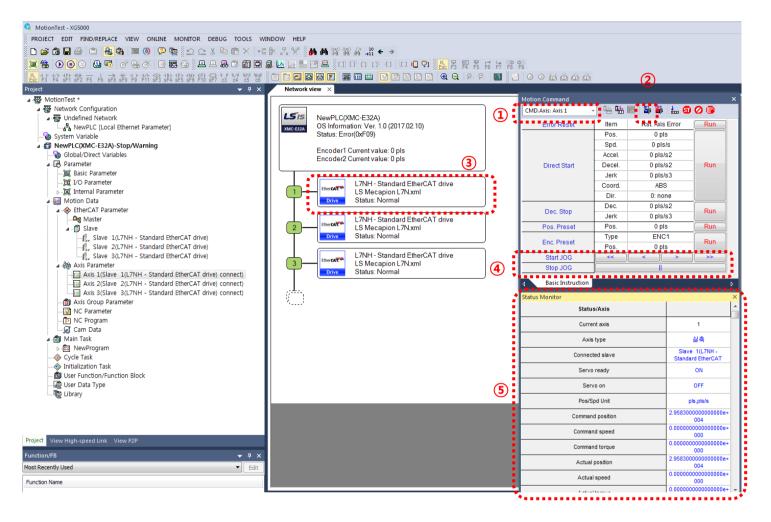
(26) Following is the reading of servo parameter content of L7NH servo drive. The content of servo parameter can differ depending on the types of servo drive. Refer to the instruction manuals of each servo drive for details.


(27) SDO parameter can be set in two ways.

First method is only to change the value of one item of SDO parameter; select the 'Allow SDO Parameter (Individual) Change during Operation' checkbox and set the SDO parameter value that you want to change, then the set value is applied to slave(servo drive) immediately. Reflection of the modified value to the 'current value' column of SDO parameter means the value is transmitted normally.


In order to keep the data after turn on/off the power of slave(servo drive), execute the "Online-Save slave parameter to EEPROM" command because modifying the parameter in operation of SDO parameter (individual) is only valid when the power is currently on.

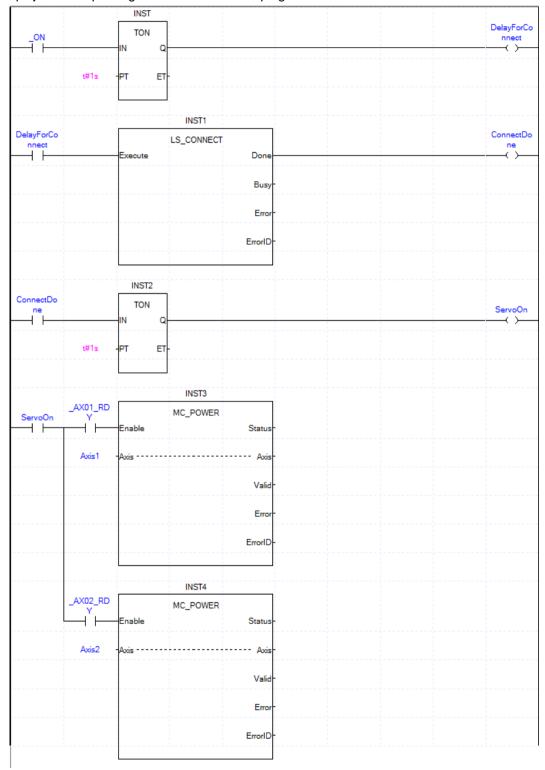
Second method is to set all the SDO parameter you want to modify and execute 'Online -Write ' to write the whole SDO parameter in slave(servo drive) at a time.


When writing the whole SDO parameter, "Save SDO parameter to EEPROM" command is automatically executed. Therefore, you do not need to execute "SDO parameter to EEPROM" separately. Refer to the instruction manual of the relevant slave(servo drive) because sometimes modified set value is applied after the power is on/off depending on the item of SDO parameter.

(28) When finishing the SDO parameter setting, set the operation parameter of each axis and select the operation parameter of the relevant axis in "Online-Write" to write in controller.

(29) If you turned off the power of slave(servo drive) and turned it on again in the step (28), execute "Online – Slave - Connect" again to connect module and slave(servo drive).

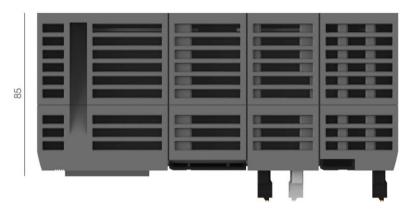
(30) After selecting the command axis and turning on the servo of the relevant axis, check if the relevant axis is in servo on state and check the motor operation by operating the motor using jog or others.

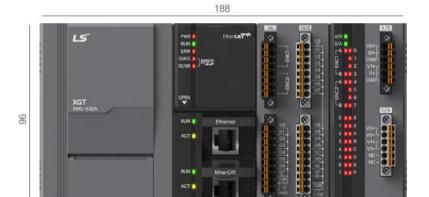


(31) If vibration or noise is generated when motor is operating, adjust the responsibility, inertia ratio, and gain values of servo parameter and transmit them to servo drive. Use the dedicated setting tool of servo drive for detailed setting such as auto tuning.

(32) Create motion program.

The exercise below is for the case that 2 servos are set to 1 & 2 axes using XGK CPU, and LS_CONNECT is used for connection and the connected axis is servo on by using MC_Power. The rest of the exercise can be added as user's need.


Motion task can be divided into main task, periodic task, and initialization task. You can add program to the relevant task of the project tree depending on the character of the program.



Appendix 4 Dimension

XMC-E32A/XMC-E32C

-This figure shows the XMC-E32A. XMC-E32C has same Dimension.

* The external size of the XMC-E16A, XMC-E08A, XMC-E32C is same as that of the XMC-E32A.

Appendix 5 ESC(EtherCAT Slave Controller) Register

The following table is the information ESC(EtherCAT Slave Controller) Register. For information on the all area, refer to the EtherCAT Registers(Section II) datasheet on the BECKHOFF website below.

http://www.beckhoff.com/english.asp?download/ethercat_development_products.htm

1. ESC DL Status (0x0110:0x0111)

Bit	Description	ECAT	PDI	Reset Value
0	PDI operational/EEPROM loaded correctly:	r*/-	r/-	0
	0: EEPROM not loaded, PDI not operational (no access to Process Data			
	RAM)			
	1: EEPROM loaded correctly, PDI operational (access to Process Data			
	RAM)			
1	PDI Watchdog Status:	r*/-	r/-	0
	0: Watchdog expired			
	1: Watchdog reloaded			
2	Enhanced Link detection:	r*/-	r/-	ET1100/ET1200: 1
	0: Deactivated for all ports			until first EEPROM
	1: Activated for at least one port			load, then EEPROM
	NOTE: EEPROM value is only taken over at first EEPROM load after			ADR 0x0000.9
	power-on or reset			IP Core with feature:
				1 until first EEPROM
				load, then EEPROM
				ADR 0x0000.9 or
				0x0000[15:12]
				Others: 0
3	Reserved	r*/-	r/-	0
4	Physical link on Port 0:	r*/-	r/-	0
	0: No link			
	1: Link detected			
5	Physical link on Port 1:	r*/-	r/-	0
	0: No link			
	1: Link detected			
6	Physical link on Port 2:	r*/-	r/-	0
	0: No link			
	1: Link detected			
7	Physical link on Port 3:	r*/-	r/-	0
	0: No link			
	1: Link detected			
8	Loop Port 0:	r*/-	r/-	0
	0: Open			
	1: Closed			
9	Communication on Port 0:	r*/-	r/-	0
	0: No stable communication			
	1: Communication established			
10	Loop Port 1:	r*/-	r/-	0
	0: Open			
	1: Closed			

Bit	Description	ECAT	PDI	Reset Value
11	Communication on Port 1:	r*/-	r/-	0
	0: No stable communication			
	1: Communication established			
12	Loop Port 2:	r*/-	r/-	0
	0: Open			
	1: Closed			
13	Communication on Port 2:	r*/-	r/-	0
	0: No stable communication			
	1: Communication established			
14	Loop Port 3:	r*/-	r/-	0
	0: Open			
	1: Closed			
15	Communication on Port 3:	r*/-	r/-	0
	0: No stable communication			
	1: Communication established			

Table 1-1: Register ESC DL Status (0x0110:0x0111)

Register 0x0111	Port 3	Port 2	Port 1	Port 0
0x55	No link, closed	No link, closed	No link, closed	No link, closed
0x56	No link, closed	No link, closed	No link, closed	Link, open
0x59	No link, closed	No link, closed	Link, open	No link, closed
0x5A	No link, closed	No link, closed	Link, open	Link, open
0x65	No link, closed	Link, open	No link, closed	No link, closed
0x66	No link, closed	Link, open	No link, closed	Link, open
0x69	No link, closed	Link, open	Link, open	No link, closed
0x6A	No link, closed	Link, open	Link, open	Link, open
0x95	Link, open	No link, closed	No link, closed	No link, closed
0x96	Link, open	No link, closed	No link, closed	Link, open
0x99	Link, open	No link, closed	Link, open	No link, closed
0x9A	Link, open	No link, closed	Link, open	Link, open
0xA5	Link, open	Link, open	No link, closed	No link, closed
0xA6	Link, open	Link, open	No link, closed	Link, open
0xA9	Link, open	Link, open	Link, open	No link, closed
0xAA	Link, open	Link, open	Link, open	Link, open
0xD5	Link, closed	No link, closed	No link, closed	No link, closed
0xD6	Link, closed	No link, closed	No link, closed	Link, open
0xD9	Link, closed	No link, closed	Link, open	No link, closed
0xDA	Link, closed	No link, closed	Link, open	Link, open

Table 1-2: Decoding port state in ESC DL Status register 0x0111 (typical modes only)

Appendix5 ESC(EtherCAT Slave Controller) Register

2. RX Error Counter (0x0300:0x0307)

Errors are only counted if the corresponding port is enabled.

Bit	Description	ECAT	PDI	Reset Value
7:0	Invalid frame counter of Port y (counting is stopped when 0xFF is	r/-	r/-	0
	reached).	w(clr)		
15:8	RX Error counter of Port y (counting is stopped when 0xFF is reached).	r/-	r/-	0
	This is coupled directly to RX ERR of MII interface/EBUS interface.	w(clr)		

Table 2: Register RX Error Counter Port y (0x0300+y*2:0x0301+y*2)

3. Forwarded RX Error Counter (0x0308:0x030B)

Bit	Description	ECAT	PDI	Reset Value
7:0	Forwarded error counter of Port y (counting is stopped when 0xFF is	r/-	r/-	0
	reached).	w(clr)		

Table 3: Register Forwarded RX Error Counter Port y (0x0308+y)

NOTE: Error Counters 0x0300-0x030B are cleared if one of the RX Error counters 0x0300-0x030B is written. Write value is ignored (write 0).

4. ECAT Processing Unit Error Counter (0x030C)

Bit	Description	ECAT	PDI	Reset Value
7:0	ECAT Processing Unit error counter (counting is stopped when 0xFF is	r/-	r/-	0
	reached). Counts errors of frames passing the Processing Unit (e.g., FCS	w(clr)		
	is wrong or datagram structure is wrong).			

Table 4: Register ECAT Processing Unit Error Counter (0x030C)

NOTE: Error Counter 0x030C is cleared if error counter 0x030C is written. Write value is ignored (write 0).

5. Lost Link Counter (0x0310:0x0313)

Bit	Description	ECAT	PDI	Reset Value
7:0	Lost Link counter of Port y (counting is stopped when 0xff is reached).	r/	r/-	0
	Counts only if port loop is Auto.	w(clr)		

Table 5: Register Lost Link Counter Port y (0x0310+y)

NOTE: Only lost links at open ports are counted. Lost Link Counters 0x0310-0x0313 are cleared if one of the Lost Link Counters 0x0310-0x0313 is written. Write value is ignored (write 0).

6. AL Status (0x0130:0x0131)

Bit	Description	ECAT	PDI	Reset Value
3:0	Actual State of the Device State Machine:	r*/-	r/(w)	1
	1: Init State			
	3: Request Bootstrap State			
	2: Pre-Operational State			
	4: Safe-Operational State			
	8: Operational State			
4	Error Ind:	r*/-	r/(w)	0
	0: Device is in State as requested or Flag cleared by command			
	1: Device has not entered requested State or changed State as result of a			
	local action			
5	Device Identification:	r*/-	r/(w)	0
	0: Device Identification not valid			
	1: Device Identification loaded			
15:6	Reserved, write 0	r*/-	r/(w)	0

Table 6: Register AL Status (0x0130:0x0131)

NOTE: AL Status register is only writable from PDI if Device Emulation is off (0x0140.8=0), otherwise AL Status register will reflect AL Control register values.

7. AL Status Code (0x0134:0x0135)

В	Bit	Description		PDI	Reset Value
1:	5:0	AL Status Code	r/-	r/w	0

Table 7: Register AL Status Code (0x0134:0x0135)

8. ECAT Event Request (0x0210:0x0211)

Bit	Description	ECAT	PDI	Reset Value
0	DC Latch event:	r/-	r/-	0
	0: No change on DC Latch Inputs			
	1: At least one change on DC Latch Inputs			
	(Bit is cleared by reading DC Latch event times from ECAT for ECAT			
	controlled Latch Units, so that Latch 0/1 Status 0x09AE:0x09AF indicates			
	no event)			
1	Reserved	r/-	r/-	0
2	DL Status event:	r/-	r/-	0
	0: No change in DL Status			
	1: DL Status change			
	(Bit is cleared by reading out DL Status 0x0110:0x0111 from ECAT)			
3	AL Status event:	r/-	r/-	0
	0: No change in AL Status			
	1: AL Status change			
	(Bit is cleared by reading out AL Status 0x0130:0x0131 from ECAT)			
4	Mirrors values of each SyncManager Status:	r/-	r/-	0
5	0: No Sync Channel 0 event			
	1: Sync Channel 0 event pending			
	0: No Sync Channel 1 event			
	1: Sync Channel 1 event pending			
11	0: No Sync Channel 7 event	r/-	r/-	0
	1: Sync Channel 7 event pending			
15:12	Reserved	r/-	r/-	0

Table 8: Register ECAT Event Request (0x0210:0x0211)

^{*} Reading AL Status from ECAT clears ECAT Event Request 0x0210[3].

Appendix 6 Using EtherCAT slaves form other companies

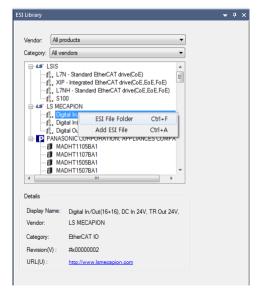
Describes how to use the EtherCAT slaves from other companies that is not existed ESI file in XG5000, to XMC-E32A.

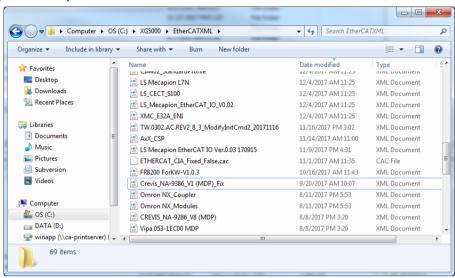
(1) EtherCAT slave information file (ESI)

The information of the EtherCAT slave is defined by the ESI (EtherCAT Slave Information) file, which is supplied by the manufacturer of slave product. Based on the ESI file information, the XG5000 configures communication settings with the EtherCAT slave and downloads it to the XMC-E32A. ESI file is required for connection and operation of XMC-E32A and slaves. For normal operation of slaves, the ESI file must be a version supports the slaves.

For the latest version of ESI file, please contact the manufacturer or distributor of the slaves.

(2) Adding ESI file of EtherCAT slave from other companies

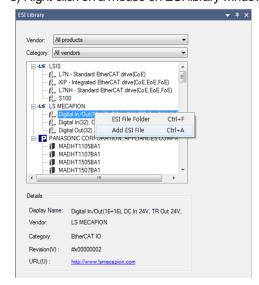

The XG5000 provides functions for adding ESI file of EtherCAT slave from other companies, and searching the installation folder of ESI file.


(a) Searching function of EtherCAT slave information (ESI) file (provided by XG5000 4.22 or later version)

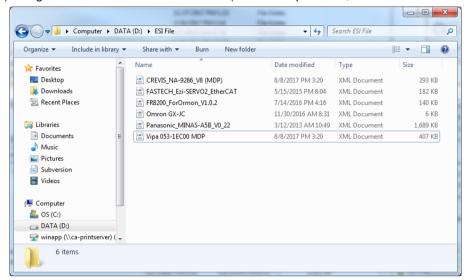
After adding the ESI file to the EtherCATXML directory folder (XG5000\EtherCATXML) and restarting the XG5000, it will be reflected in the ESI library window.

For user's convenience, XG5000 provides the function to open the folder. Perform the ESI file folder search function in the following order.

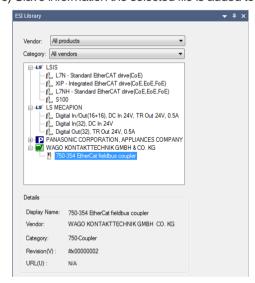
- 1) Execute XG5000
- 2) Click 'View' 'ESI library window' menu to activate the ESI library window.
- 3) Right-click on a mouse on ESI library window, and click on 'ESI file folder' menu.



4) Window Explorer of 'EtherCATXML' folder is activated as shown below.


(b) Adding function of EtherCAT slave information (ESI) file (provided by XG5000 4.22 or later version)

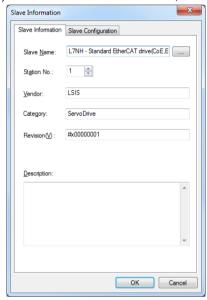
EtherCAT slave information file In addition to bulk addition of ESI files by folder search, it provides individual ESI file addition function. ESI files can be added to the ESI library window without having to restart the XG5000. Perform the ESI file adding function in the following order.


- 1) Execute XG5000.
- 2) Click 'View' 'ESI library window' menu to activate the ESI library window.
- 3) Right-click on a mouse on ESI library window, and click on 'ESI file adding' menu.

- 4) Window Explorer of 'EtherCATXML' folder is activated as shown below.
- 5) Navigate to the folder and select ESI file. (In the example below, there is ESI files in 'E:\ ESIFiles' folder)

6) Slave information the selected file is added to the ESI library window.

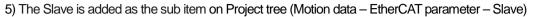
(3) Setting of slave supporting MDP

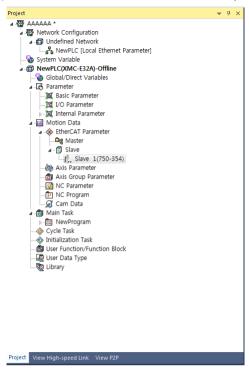

(provided by XG5000 4.22 and XMC-E32A OS 1.1 or later version)

The MDP (Modular Device Profile) is the EtherCAT standard(ETG50001) that defines the configuration data structure of EtherCAT slave. Slave supporting MDP can be set in 'EtherCAT parameter – Slave configuration edit window' of XG5000. In order to set slave supporting MDP, slave information and module information mounted on slave must be configured

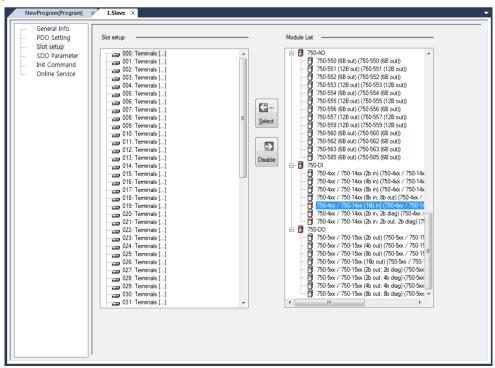
(a) Addition of slave supporting MDP

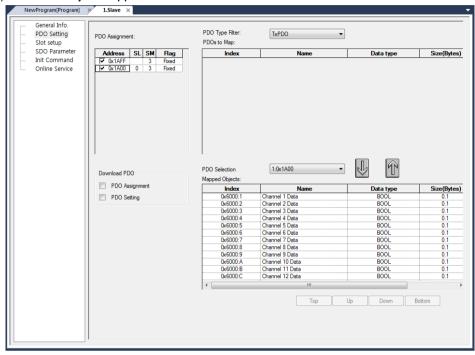
How to add slave supporting MDP and configure module.


- 1) In 'EtherCAT parameter Slave' menu, Right-click on, and add slave via 'Add item Add slave'.
- 2) In the slave information window, click on the ____ button.



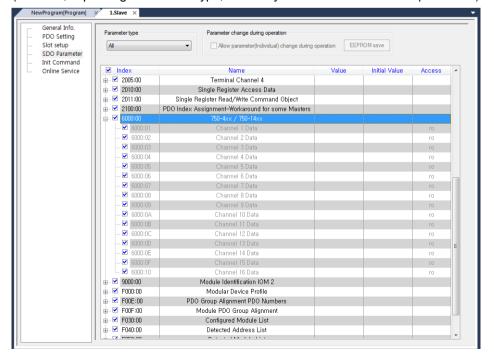
3) In the slave select window, select the slave supporting MDP and click on the OK button.


4) In the slave information window, click on the OK button


(b) Editing Slave supporting MDP

- 1) Double-click on 'Slave Slave1(750-354)' on project tree
- 2) Click on 'Slot setup'.
- 3) In the module list, select the module you want to set.
- 4) Select the slot you want to assign the module
- 5) Click on the Select button.

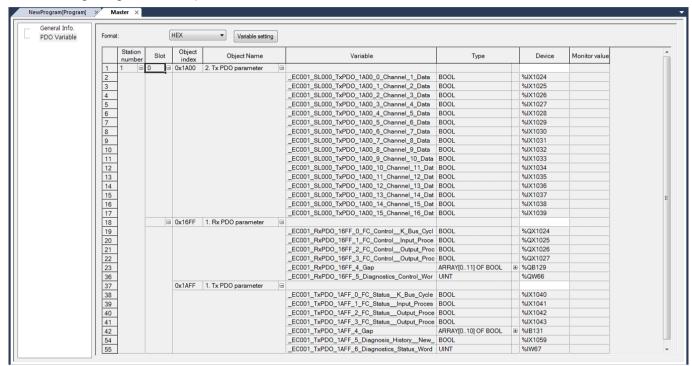
(c) Check of PDO allocation information


- 1) Click on 'PDO Setting'
- 2) Check the PDO assignment window.
- 3) Check the slot number of current module in 'SL number window'
- 4) Check the object mapped to current slot address in 'PDO window'

(d) Check of SDO parameter

- 1) Click on 'SDO parameter'.
- 2) Check the added object in SDO parameter.

(However, depending on the slave type, PDO may not be added in the SDO parameter.)



Appendix6 Using EtherCAT Slaves from other companies

(e) Check of PDO variable information

- 1) Double-click on 'EtherCAT parameter Master' on project tree.
- 2) Click on 'PDO variable'.
- 3) Check the added object with slot information.

(The added PDO variable can be used as a variable specified and device in the program, after registering it in the global variable through 'Register variable'.)

Note

In addition to manual configuration through user editing, Automatic configuration is provided for connection of slave supporting MDP and generation of EtherCAT parameter.

Add ESI file of slave supporting MDP on ESI library window, connect XMC-E32A and slave as network, and perform the function 'Online - EtherCAT Slave - Auto Connect'.

If the automatic configuration does not work normally, please upgrade the product OS. (XMC-E32A OS 1.1 or later version)

Appendix 7 Terms of Cnet Communications

1) Communication Methods

(1) Simplex communication

It refers to a communication method in which the flow of information is always transmitted in one direction.

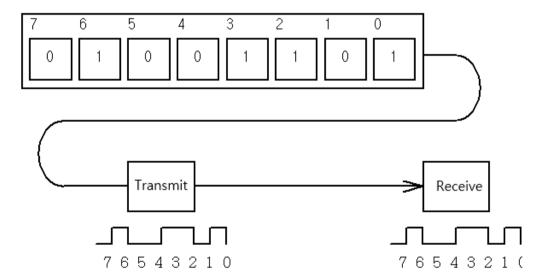
The information cannot be sent in the reverse direction.

(2) Half-duplex communication

It is a method that can transmit information in both directions at intervals, although it cannot send the flow of information in both directions at the same time with the use of a 1-wire cable.

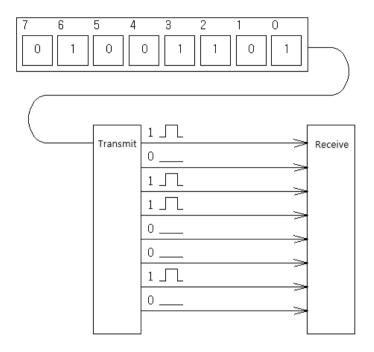
(3) Full-duplex communication

It is a method in which the flow of information can be transmitted and received simultaneously with the use of a 2-wire cable.

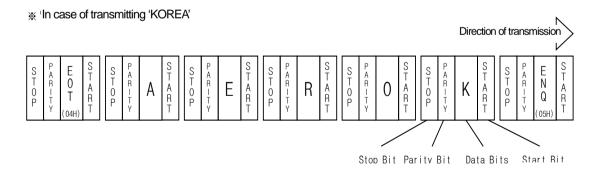

2) Transmission Methods

In consideration of the speed, stability and economical efficiency in binary (0 and 1) data transmission, transmission methods are divided into the following two methods.

(1) Serial communication


It is the process of transmitting data one bit at a time through one cable. It results in a lower transmission speed, but has advantages of low installation cost and simple software.

RS-232C, RS-422 and RS-485 are applicable to serial communication.


(2) Parallel transmission

This method is used in printers, and the like. It sends one byte of data at a time, which ensures high speed and superior data accuracy, but has a disadvantage in that the installation costs increase exponentially as the transmission distance increases.

3) Asynchronous Communication

This method transmits only 1 character at a time in serial transmission, when the synchronous signal (clock, etc.) is not transmitted. It sends a character code with a start bit at the beginning of 1 character and end with a stop bit at the end.

4) Protocol

It refers to a communication rule defined between the transmission and reception sides of information in advance to send and receive efficient and reliable information between more than two computers and terminals without errors. In general, it defines call establishment, connection, structure of message exchange format, retransmission of error message, circuit inversion procedures, and character synchronization between terminals.

Appendix7 Terms of Cnet Communications

5) BPS (Bits Per Second) and CPS (Characters Per Second)

BPS refers to the unit of transmission rate that indicates how many bits are sent per second in data transmission. CPS refers to the number of characters transmitted per second.

Normally, 1 byte (8 bits) holds 1 character, so CPS is the number of bytes that can be transmitted per second.

6) Node

Node refers to the connection point of data in a network tree structure. In general, a network consists of many nodes. It is also referred to as station number.

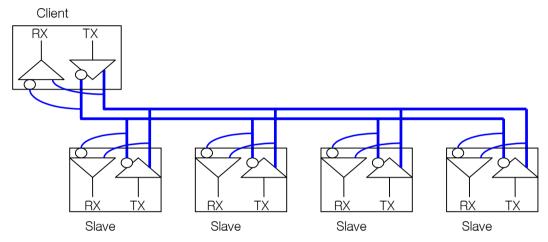
7) Packet

It is a term used in packet switching, which is a method of grouping data that is transmitted over a network into packets. The packet is a combination of the words "package" and "bucket" and attaches a header that indicates a destination address (station number, etc.) by separating the transmission data into a predetermined length.

8) Port

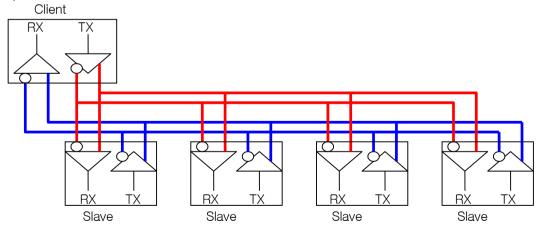
It refers to a part of the data processing device that receives or sends data from a remote terminal in data communication, and it means RS-232C or RS-422 port in Cnet serial communication.

9) RS-232C


It refers to a serial communication standard established by EIA according to the recommendations of CCITT as an interface for connecting a modern to a terminal or a computer. It is used not only for modern connection but also for direct connection to null modern. The disadvantages are that the transmission distance is short, and only 1:1 communication is possible, and a standard that overcomes these disadvantages is RS-422, RS-485.

10) RS-422/RS-485

It is one of the serial transmission standards and enables 1:N connection and ensures longer transmission distance than RS-232C. The difference between the two standards is that RS-422 uses four signal lines: TX(+), TX(-), RX(+) and RX(-), whereas RS-485 has two signal lines (+) (-) and performs transmission and reception trough the same signal line. Accordingly, RS-422 implements full-duplex communication and RS-485 implements half-duplex communication.


11) Half-Duplex Communication

It refers to a communication method that allows communication in both directions, but not at the same time, and RS-485 communication method is applicable to this method. Since transmission and reception are made through a single communication line, it is mainly used in multi-drop communication systems where several stations communicate over a single signal line. Because it uses one signal line, data may be lost due to data collision when several stations transmit data simultaneously, thereby ensuring that only one station transmits at a time. The flowing figure shows an example of the configuration by half-duplex communication. Since each communication station is connected to each other so that it can transmit and receive through one line, it is possible to communicate between all stations and thus to run multiple servers

12) Full-Duplex Communication

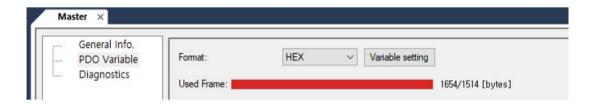
It refers to a communication method that can transmit and receive data in both directions at the same time, and RS-232C and RS-422 communication methods are applicable to this method. Since the transmission and reception lines are separated, it can transmit and receive data simultaneously without data collision. The figure shows an example of the configuration of RS-422 full-duplex communication. Since the transmitting end of the server station and the receiving end of the client stations are connected to one line, and the transmitting end of the client stations is connected to the receiving end of the server station, the multi-server function is limited because communication between the client stations is impossible.

13) BCC (Block Check Character)

Since serial communication has the potential to transmit a distorted signal due to the effects of unwanted noise in the transmission line, BCC is required to enable a receiver side to determine whether the signal is a normal signal or a distorted signal. The receiver side can calculate BCC for itself by using the data that came in the front-end of the BCC, compare it with the received BCC, and determine whether the signal is normal or abnormal.

Appendix 8 EtherCAT Diagnostics

This appendix explains the diagnosis functions provided by the EtherCAT Master and XG5000.


(1) Offline diagnostic function

XG5000 can examine effectiveness of a slave that participates in EtherCAT communication through ESI (EtherCAT Slave Information) file inspection used by users during an EtherCAT connection.

(a) EtherCAT frame size examination

XG5000 can confirm frame sizes used by the EtherCAT that the current user added through the following procedure.

- 1) Select [Motion Data]-[EtherCAT Parameter]-[Master] items on the XG5000 project window.
- 2) Activate the master window.
- 3) Activate the PDO variable information item window on the master window.
- 4) Confirm the used frame on the screen.The used frame is displayed as the frame usage that is currently set versus the maximum tolerated frame size.
- 5) If the frame size in current use is greater than the maximum tolerated frame size by adding slaves or PDO items, the progress bar of the used frame is displayed in red.
- 6) When the relevant error occurs, the frame is prepared within the maximum tolerated frame size by deleting slaves or PDO items.

(b) Effectiveness assessment for each slave operation mode

XG5000 performs the essential PDO (Process Data Object) examination for each operation mode of drive slaves that is automatically allocated by connecting with an axis when adding slaves.

Operation modes supported by XMC products are as follows:

CiA 402 Operation Mode	Support
Profile position mode	-
Velocity mode	0
Profile velocity mode	-
Torque profile mode	-
Homing mode	0
Interpolated position mode	-
Cyclic sync position mode	0
Cyclic sync velocity mode	0
Cyclic sync torque mode	0

Essential PDO configuration for each operation mode is as follows:

Velocity(vI) mode PDO Item

Index	Name	Category
6040h	Control word	Necessary
6041h	Status word	Necessary
6042h	vl target velocity	Necessary
6044h	vl velocity actual value	Necessary

Cyclic sync velocity(csv) mode PDO Item

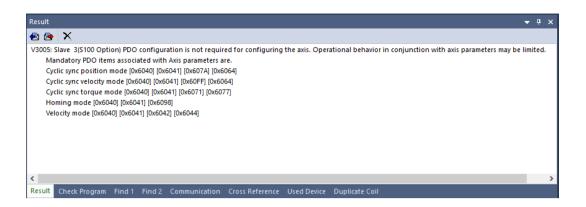
Index	Name	Category
6040h	Control word	Necessary
6041h	Status word	Necessary
6064h	Position actual value	Necessary
60FFh	Target velocity	Necessary

Cyclic sync torque(cst) mode PDO Item

Index	Name	Category
6040h	Control word	Necessary
6041h	Status word	Necessary
6071h	Target torque Necessar	
6077h	Torque actual value	Necessary

Homing(hm) mode PDO Item

Index	Name	Category
6040h	Control word	Necessary
6041h	Status word	Necessary
6098h	Homing method	Necessary


Cyclic sync position(csp) mode PDO Item

Index	Name	Category
6040h	Control word	Necessary
6041h	Status word	Necessary
607Ah	Target position	Necessary
6064h	Position actual value	Necessary

If there is no PDO item corresponding to the operation mode set in the PDO setting based on the above-mentioned contents, the following warning message is output on the screen when adding slaves.

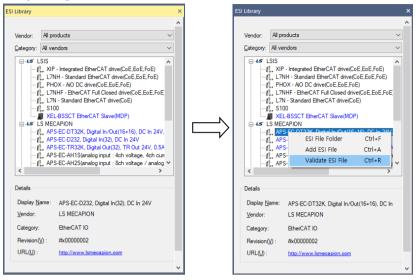
The following warning message is output in the result window.

Note

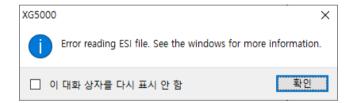
The following is the contents of PDO configuration for each operation mode suggested by the Implementation Directive for CiA402 Drive Profile

(ETG.6010 D(R) V1.1.0). For PDO configuration for each operation mode, see the contents.

Table 80: Recommended PDO Mapping according to supported modes of operation


Index	Name	only	only	cst only	csp + csv	csp + cst	csv + cst	csp + csv + cst	pp + hm
RxPDOs									
6040 _h	Controlword	+	+	+	+	+	+	+	+
6060 _h	Modes of operation	-	-	-	+	+	+	+	0
607A _h	Target Position	+	-	-	+	+	-	+	+
60FF _h	Target velocity	-	+	-	+	-	+	+	-
6071 _h	Target Torque	-	-	+	-	+	+	+	-
TxPDOs									
6041 _h	Statusword	+	+	+	+	+	+	+	+
6061 _h	Modes of operation display	-	-	-	+	+	+	+	0
6064 _h	Position actual value	+	+	+	+	+	+	+	+
6077 _h	Torque actual value	-	-	+	-	+	+	+	-
+ = should : 0 = can = p - = not used									

(c) Effectiveness assessment of ESI files


XG5000 has a function to assess ESI files through XSD (XML Schema Definition) files, or structure-defined files of the ESI file. An assessing item is the relationship between data in a file and consistency of the ESI file structure.

If an error is expected to occur in the ESI file of the assessed device, blue text is displayed on each slave of the ESI library window.

For assessment of the relevant ESI, select the slave on which the blue text is displayed, right click on the menu and execute the [ESI File Inspection] menu.

When executing it, the following warning dialog box is displayed.

In the result window, you can confirm errors of the ESI file that the device currently assessed belongs to.

(2) Online diagnostic function

XMC provides diagnostic functions of the EtherCAT network that is currently connected through flags and diagnostic functions. Diagnostic flags provide a function to read the ESC Register through a flag without using the existing ESC Register read command (LS_READESC).

The operation of diagnostic flags is conducted after the EtherCAT connection is completed through a connection behavior after manually writing the EtherCAT parameter or conducting EtherCAT slave>>Automatic connection through XG5000.

(a) Diagnostic Flag

Flag Name	Flag Description
_SLVxx_ALStatus	Shows the AL status of slave applications.
_SLVxx_ALStatusCode	Shows the error code of slave applications.
_SLVxx_DLStatus	Shows the link status information of slaves.
_SLVxx_LinkLostCounterA/B/C/D	Shows the link stop event counter for each port of slaves.
_SLVxx_InvalidFrameCounterA/B/C/D	The count increases if there are errors in frame formats such as Preamble, SFD and CRC. The whole bit sequence corresponds to the damaged frame. Errors can occur in frames.
_SLVxx_RxErrorCounterA/B/C/D	The count increases if individual symbols are not valid. Errors can occur both in and out of frames.
_SLVxx_ForwardedRXErrCounterA/B/C/D	Abnormal frames detected through the previous slaves show the received count.


Note

For more information about a diagnostic flag value, see Appendix 5 ECS Register.

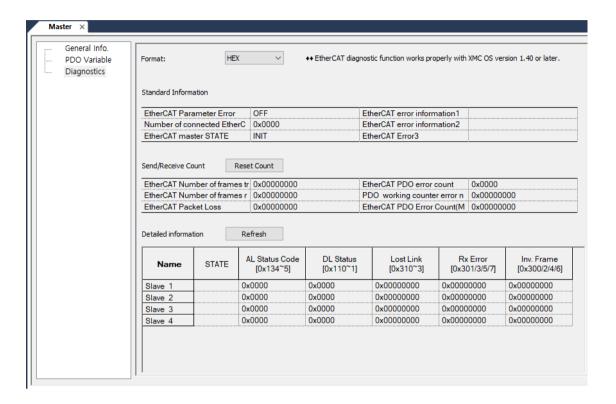
(b) Slave Diagnosis using a Diagnostic Flag

Problems can occur in EtherCAT communication due to various causes such as device failure during EtherCAT communication and the occurrence of external EMC failure. In such a case, a slave location where a problem occurs can be estimated through a diagnostic flag.

The following figure shows the case that communication failure occurs because external noise flows into a cable between slave 1 and slave 2.

As communication failure occurs due to noise that flows into a cable between slave 1 and slave 2, the value of

SLV02_InvalidFrameCounterA or SLV02_RxErrorCounterA of slave 2 increases. As the frame that an error is detected in slave 2 is conveyed to slave 3, the value of SLV03_ForwardedRxErrCounterA of slave 3 increases. As frames in communication loopbacked at slave 3 are conveyed to port B of slave 1 and slave 2, each value of SLV01_ForwardedRxErrCounterB and SLV01_ForwardedRxErrCounterB increases.


Note

If a problem occurs during EtherCAT communication, diagnosis is performed by using a diagnostic flag as follows:

Sequ	Diagnostic activities
ence	
1	Find a slave where the value of InvalidFrameCounter or RxErrorCounter has increased. - The location where many problems have occurred is a slave where the value of InvalidFrameCounter or RxErrorCounter is not 0.
2	Confirm the detected slave and a cable of the slave connected to the front end. - Confirm if the EtherCAT cable is located close to a power cable or noise sources - Confirm if our manufactured cable is bad. - Confirm if the cable shields are proper.
3	Confirm the detected slave and the slave device connected to the front end. - Confirm if the power is proper. - Confirm the ground of slaves.
4	Confirm if a problem is related with a specific device by moving the position or exchanging a device of the detected slave.

(c) Diagnostic information of the master

XMC provides a monitoring function that can confirm flags to confirm the EtherCAT communication status on the screen through [Master]-[Diagnostic information].

[Description of the diagnostic information window]

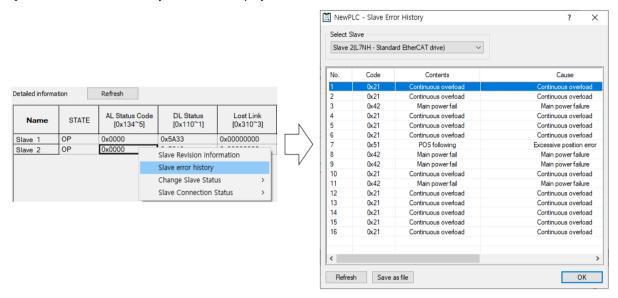

- a. Methods to display monitors: Decide the types of data displayed. Decimal or hexadecimal can be chosen.
- Basic information: Monitor common information related to EtherCAT. Display basic information related to the EtherCAT connection.
 - Confirm the number of EtherCAT slave connections and the error information flag when an EtherCAT error occur.
- c. Count information for sending and receiving: Users can confirm the number of sending and receiving frames while EtherCAT communication operates and the value to count PDO errors. Users can reset the current count through the [Reset count] function.
- d. Detailed information: Diagnostic flags of slaves are updated during monitoring. Users can read the current flag values when they want to read during monitoring through the [Update the current value] function.

(d) Confirm the CiA 402 Drive Profile support mode

Users can confirm the CiA 402 Drive Profile mode supported by a slave on the screen of diagnostic information. After selecting a slave on the screen of diagnostic information, right click and select [Basic information of a slave].

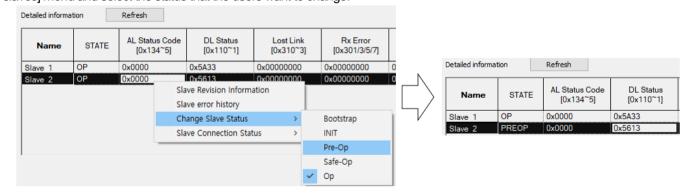
Users can confirm information of the CiA 402 support mode supported by the relevant slave along with Slave name/Revision information on the slave information window. Users should previously confirm if the PDO configuration is appropriate for an operation mode to use the supported operation mode.

[Whether to support] displays support modes supported by the current slave and a cell marked with a white color shows the CiA 402 support mode provided by the EtherCAT master of the current XMC product family. The [Current operation mode] displays the current value of an operation mode where a slave is operating.

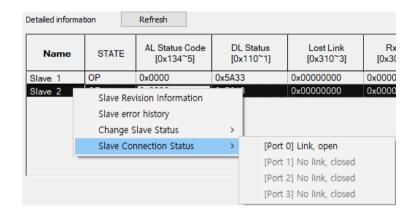

Note

The EtherCAT master of the XMC product family supports VL (Velocity mode), HM (Homing Mode), CSP (Cyclic sync position mode), CSV (Cyclic sync velocity mode) and CST (Cyclic sync torque mode) among the CiA 402 drive profile modes.

The EtherCAT slave that supports modes other than them can be used by allocating it to the operating axes.


(e) History of slave errors

The function to view the history of EtherCAT slave errors on the screen of diagnostic information is provided. On the screen of diagnostic information place mouse cursor to the detailed information of slaves, and right click and select the [History of slave errors] menu. The selected history of slaves is displayed on the screen.


(f) Change the status of slaves

A function to change the status of EtherCAT slaves on the screen of diagnostic information is supported. On the screen of diagnostic information, place the mouse cursor on the detailed information of slaves, right click and select the [Change the status of slaves] menu and select the status that the users want to change.

(g) Status of slave connection

A function to confirm the status of an EtherCAT slave connection on the screen of diagnostic information is supported. On the screen of diagnostic information, place the mouse cursor on the detailed information of slaves, right click and select the [Status of slave connection] menu and then, users can confirm the current status of slave connections.

Note

Online diagnostic flags and diagnostic functions are supported on XMC-E32A(C) OS 1.4 and XG5000 4.28 or later.

Warranty

1. Warranty Period

The product you purchased will be guaranteed for 18 months from the date of manufacturing.

2. Scope of Warranty

Any trouble or defect occurring for the above-mentioned period will be partially replaced or repaired. However, please note the following cases will be excluded from the scope of warranty.

- (1) Any trouble attributable to unreasonable condition, environment or handling otherwise specified in the manual,
- (2) Any trouble attributable to others' products,
- (3) If the product is modified or repaired in any other place not designated by the company,
- (4) Due to unintended purposes
- (5) Owing to the reasons unexpected at the level of the contemporary science and technology when delivered.
- (6) Not attributable to the company; for instance, natural disasters or fire
- 3. Since the above warranty is limited to PLC unit only, make sure to use the product considering the safety for system configuration or applications.

Environmental Policy

LS ELECTRIC Co., Ltd supports and observes the environmental policy as below.

LS ELECTRIC considers the environmental preservation as the preferential management subject and every staff of LS ELECTRIC use the reasonable endeavors for the pleasurably environmental preservation of the earth. About Disposal LS ELECTRIC' PLC unit is designed to protect the environment. For the disposal, separate aluminum, iron and synthetic resin (cover) from the product as they are reusable.

www.lselectric.co.kr

LS ELECTRIC Co., Ltd.

■ Headquarter

LS-ro 127(Hogye-dong) Dongan-gu, Anyang-si, Gyeonggi-Do, 14119, Korea

■ Seoul Office

LS Yongsan Tower, 92, Hangang-daero, Yongsan-gu, Seoul, 04386, Korea

Tel: 82-2-2034-4033, 4888, 4703 Fax: 82-2-2034-4588 E-mail: automation@lselectric.co.kr

■ Factory

56, Samseong 4-gil, Mokcheon-eup, Dongnam-gu, Cheonan-si, Chungcheongnam-do, 31226, Korea

Specifications in this instruction manual are subject to change without notice due to continuous products development and improvement.

■ Overseas Subsidiaries

- LS ELECTRIC Japan Co., Ltd. (Tokyo, Japan)
 Tel: 81-3-6268-8241 E-Mail: jschuna@lselectric.biz
- LS ELECTRIC (Dalian) Co., Ltd. (Dalian, China)
 Tel: 86-411-8730-6495 E-Mail: jiheo@lselectric.com.cn
- LS ELECTRIC (Wuxi) Co., Ltd. (Wuxi, China)
 Tel: 86-510-6851-6666 E-Mail: sblee@lselectric.co.kr
- LS ELECTRIC Shanghai Office (China)

 Tel: 86-21-5237-9977 E-Mail: tsjun@lselectric.com.cn
- LS ELECTRIC Vietnam Co., Ltd.
- Tel: 84-93-631-4099 E-Mail: jhchoi4@Iselectric.biz (Hanoi)
 Tel: 84-28-3823-7890 E-Mail: sjbaik@Iselectric.biz (Hochiminh)
 LS ELECTRIC Middle East FZE (Dubai, U.A.E.)
- Tel: 971-4-886-5360 E-Mail: salesme@lselectric.biz
 LS ELECTRIC Europe B.V. (Hoofddorf, Netherlands)
- Tel: 31-20-654-1424 E-Mail: europartner@lselectric.biz
- LS ELECTRIC America Inc. (Chicago, USA)
 Tel: 1-800-891-2941 E-Mail: sales.us@lselectricamerica.com